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Abstract: Artificial intelligence (AI) is essentially remodelling pharmaceutical research and development, 

which calls for a comparative analysis of its use in de novo drug discovery (DNDD) and drug repurposing 

(DRP). This review of the literature compares the strategic and methodological divergence of these two 

avenues. DNDD uses generative AI to canvass immense chemical space to produce high-risk, high-reward 

new entities but takes 10–17 years and more than $2 billion. In contrast, DRP utilizes predictive AI and 

network-based approaches (e.g., Graph Neural Networks, multi-omics integration) to predict novel 

therapeutic applications for known, safety-tested compounds. DRP provides shortened timelines (3–12 

years), significantly lower costs, and triple the success rate. Success in DNDD is dependent on fidelity of 

generative models and synthesizability, whereas DRP depends upon the ability to perform scalable, 

explainable multi-omics data integration. Ultimately, the two plans are complementary, with DRP offering 

clinical speed and DNDD guaranteeing long-term pipeline invention. 
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I. INTRODUCTION 

The traditional process of pharmaceutical research and development (R&D) is currently defined by significant capital 

expenditure and protracted timelines. It is estimated that bringing a novel chemical entity (NCE) to market requires an 

investment exceeding $2 billion and a development period typically spanning 10 to 17 years. [1] This long duration and 

immense cost are exacerbated by exceptionally high attrition rates, with failure often occurring in the late stages of clinical 

development, such as Phase II or Phase III, particularly when targeting complex diseases like neurodegeneration. [1] The 

escalating complexity of biological systems and drug targets, combined with increasing demands for regulatory rigor, 

mandates the adoption of disruptive technological solutions to maintain the economic viability of the R&D pipeline. [1] 

Artificial intelligence (AI), characterized as a machine-based system capable of automated analysis and inference, offers 

a solution to this crisis. [3] AI methodologies, leveraging subsets like machine learning (ML), provide rational, high-

efficiency tools for assessing complex parameters and selecting high-value entities across all phases of drug development. 

[4] The adoption of AI is driven primarily by the need to enhance the efficacy of the targeted approaches and directly 

mitigate the critical risk associated with expensive late-stage clinical failures. Within the AI-accelerated pharmaceutical 

landscape, two primary, structurally divergent strategies have emerged: de novo drug discovery (DNDD) and drug 

repurposing (DRP), often referred to as the repositioning. DNDD involves the use of computational methods, specifically 

generative AI algorithms, to systematically explore vast chemical spaces and construct entirely new molecules.[5]  

The objective is to design compounds with optimized properties, including targeted molecular interactions, absorption, 

distribution, metabolism, excretion, and toxicity (ADMET) characteristics. [4] Drug repurposing (DRP) focuses on 

identifying novel therapeutic indications for compounds that already possess established safety and pharmacokinetic 

profiles. [6] This strategic approach, coined in 2004, is defined as finding new uses for existing drugs outside their original 

medical scope. [5] Because DRP capitalizes on pre-existing data, it offers a crucial advantage by often bypassing the 

early, high-risk, and costly stages of development, potentially qualifying compounds directly for Phase II clinical trials. 
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[6] AI methodologies are now integrated throughout the entire drug product life cycle, supporting nonclinical, clinical, 

post marketing, and manufacturing phases for both DNDD and DRP. [6]  

The Scope of the paper is to broadly explore the applications of AI in pharmaceutical R&D, there is a strategic need for 

a distinguished, in-depth comparative analysis focused specifically on the methodological, strategic, and translational 

trade-offs between AI-driven DNDD and AI-driven DRP.  [4] This report fulfils that need by critically evaluating the 

core divergence in algorithmic requirement generative models for DNDD versus predictive, network-based models for 

DRP. The analysis utilizes a synthesized review of 14 peer-reviewed research papers, contrasting their technical 

implementations, strategic implications (economic and regulatory), and inherent limitations, thereby providing a nuanced 

perspective on their respective strengths and long-term utility in the precision medicine era. 

 

II. COMPARATIVE ANALYSIS 

2.1 AI in De Novo Drug Discovery (DNDD) 

AI in De Novo Drug Discovery (DNDD) is characterized by the use of algorithms designed to generate novel data points, 

specifically focusing on generating molecular structures that possess desired biological and physicochemical profiles. 

The primary methodologies employed include Variational Autoencoders (VAEs), Generative Adversarial Networks 

(GANs), reinforcement learning (RL) agents, and flow models. [8] These generative algorithms are designed to navigate 

the complex, high-dimensional latent space of chemistry, allowing for the rapid, semi-automatic design and optimization 

of drug-like molecules. [5] A landmark success demonstrating the practical utility of these architectures is the work by 

Zhavoronkov et al. (2019), who employed a deep generative model called Generative Tensorial Reinforcement Learning 

(GENTRL). [9] The study aimed to rapidly identify potent DDR1 kinase inhibitors, a key target implicated in fibrosis. 

GENTRL successfully optimized molecular properties, including novelty, synthetic feasibility, and biological activity, 

resulting in the discovery of a lead candidate in just 21 days. [9] This rapid turnaround, validated through cell-based 

assays and in vivo pharmacokinetic (PK) testing, illustrates the capacity of generative models to design novel, highly 

optimized chemical matter with unprecedented speed. Furthermore, Graph Neural Networks (GNNs) are integral to 

enhancing DNDD efforts. GNNs effectively process complex molecular graphs, which are crucial for high-fidelity 

molecular property prediction. [11] The deployment of Graph Attention Mechanisms, as detailed by Xiong et al. (2020), 

enhances the accuracy of prediction by capturing nuanced structural relationships, thereby strengthening the quality of 

lead optimization. [12] However, the utility of generative AI is subject to a credibility challenge: to be truly transformative 

for chemistry, the generated compounds must be capable of predicting phenomena not previously observed. [8] Achieving 

this level of predictive utility necessitates that future AI models incorporate core chemical principles, such as statistical 

mechanics, ensuring that generated structures are robust and synthetically tractable, rather than simply replicating patterns 

within existing data. [8] 

 

2.2 AI in Drug Repurposing (DRP) 

AI in Drug Repurposing is fundamentally an inferential process, relying on algorithms to predict hidden associations 

between existing compounds and novel diseases or targets. This strategy utilizes both supervised and unsupervised 

machine learning, including deep learning models optimized for association and classification tasks. [6] Examples include 

the unsupervised ML techniques MANTRA and PREDICT, which forecast therapeutic efficacy by analysing gene 

expression profiles from extensive datasets like Connectivity Map (CMap). [7] These models cluster compounds based 

on shared mechanisms of action and common biological pathways, thereby suggesting new indications based on inferred 

target perturbation. [7] The success of DRP hinges upon the integration of multimodal, multi-omics data, including 

genomics, transcriptomics, and proteomics. [6] This integration provides an unparalleled systems-level context required 

for inferring complex drug-disease associations. [14] Transcriptomics data, for example, allows researchers to navigate 

drug potential based on expression patterns, offering mechanistic insights into the effects of known drugs. [6] AI 

algorithms excel at analysing these large-scale datasets, identifying intricate patterns of drug responses that evade 

traditional detection methods. [6] Network-based approaches, particularly GNNs used for predicting drug-target 

interactions (DTI) and drug-drug interactions (DDI), are the dominant analytical tool in DRP. [12] These methods are 

crucial for harmonizing complex biological data, organizing molecular interactions into coherent systems biology 
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frameworks that enable the prediction of new therapeutic targets. [14] However, the use of vast, multimodal data also 

introduces the greatest technical difficulty: the challenge of data heterogeneity and computational scalability. [14] 

Successfully integrating and harmonizing disparate data sources such as merging genomics data with complex image 

assay data or clinical records is a critical bottleneck that defines the practical limits of predictive DRP models. [6] 

 

2.3 Strategic and Economic Comparative Analysis  

The strategic choice between DNDD and DRP is often dictated by economic viability and acceptable risk tolerance. The 

quantifiable benefits of DRP are substantial: the average cost to bring a repurposed drug to market is approximately $300 

million, potentially reducing the baseline cost of R&D by up to 60% compared to a de novo agent. [1] This immense cost 

saving stems primarily from leveraging existing safety and toxicity data, which often eliminates the need for full 

preclinical studies and Phase I safety trials, allowing compounds to move directly into Phase II trials. [6] The reduced 

timeline of DRP, typically ranging from 3 to 12 years, represents a significant acceleration compared to the 10 to 17 years 

required for DNDD. [1] Furthermore, the probability of approval for a repurposed drug is reported to be around 30%, 

constituting a threefold increase over the success rate for new drug applications. [15] AI amplifies these strategic 

advantages by improving candidate selection and optimizing clinical trial design, thereby driving R&D costs down by an 

additional 40%. [2] This heightened capital efficiency and clinical agility position DRP as a crucial strategic hedge, 

particularly for pharmaceutical companies seeking quicker returns on investment or addressing diseases with immediate 

therapeutic gaps. DNDD, while essential for long-term therapeutic breakthrough, represents a high-risk, long-term 

investment. 

Table 1:  Comparative Summary of Traditional Drug Discovery and AI-Accelerated Repurposing  

Metric Traditional De Novo 

Discovery (DNDD) 

Drug Repurposing 

(DRP) Baseline 

AI-Accelerated Strategy 

Average Cost to Market Less than $2 Billion [2]  Million [15] Potential for further 40% 

R&D cost reduction via AI 

optimization [2] 

Development Timeline 10–17 Years [1] 3–12 Years [15] Accelerated through high-

throughput computational 

analysis [4] 

Initial Clinical Stage Phase I Safety Trials 

Required 

Often bypasses Phase I 

(starts at Phase II) [7] 

Depends on new 

dosage/route [1] 

 

III. LITERATURE REVIEW 

The comparative overview in Table 1 highlights how AI-accelerated strategies are transforming the economics and 

timelines of drug discovery and repurposing. To support these trends with empirical evidence, Table 2 summarizes major 

studies that demonstrate how specific AI models and computational techniques have achieved the cost reductions, time 

efficiency, and clinical advantages outlined in Table 1. Together, these tables illustrate the shift from traditional 

experimental discovery toward data-driven, computationally optimized pipelines in modern pharmaceutical research. 

Table 2: Empirical Evidence Supporting AI-Accelerated Drug Discovery and Repurposing 

Author and 

Title 

Objective Key Findings Advantages Challenges Linked Metric 

(from Table 1) 

Zhavoronkov 

et al. (2019): 

Deep learning 

enables rapid 

Develop a deep 

generative 

model 

(GENTRL) for 

GENTRL 

discovered potent 

DDR1 kinase 

inhibitors in 21 

Ultra-rapid 

discovery 

timeline (21 

days); ability to 

Requires high-

quality structural 

data; risk of 

Reduced cost 

and 

development 

time through 
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identification of 

potent [2] 

de novo small 

molecule design, 

optimizing 

synthetic 

feasibility, 

novelty, and 

biological 

activity. [8] 

days; four 

compounds were 

biochemically 

active, and one 

demonstrated 

favorable 

pharmacokinetics in 

mice. [8] 

generate novel, 

optimized, and 

validated 

molecules. [8] 

failure in late-

stage validation. 

AI-based 

molecular 

generation. 

Zitnik et al. 

(2018): 

Modelling 

polypharmacy 

side effects with 

Graph 

Convolutional 

Networks [3] 

Model 

polypharmacy 

side effects and 

drug–drug 

interactions 

(DDI) using 

Graph 

Convolutional 

Networks 

(GCNs). [10] 

Developed a GCN 

model that captured 

complex DDI 

relationships and 

predicted side 

effects accurately. 

[10] 

Improves 

safety 

prediction and 

understanding 

of multi-drug 

interactions. 

High 

computational 

cost; need for 

explainable AI 

(XAI). 

Improved 

preclinical 

safety and 

reduced 

attrition risk. 

Xiong et al. 

(2020): Pushing 

the Boundaries 

of Molecular 

Representation 

with Graph 

Attention 

Mechanisms 

[10] 

Enhance 

molecular 

property 

prediction and 

representation 

using Graph 

Attention 

Networks 

(GATs). [10] 

Demonstrated 

higher accuracy in 

predicting 

molecular 

properties and lead 

optimization. [10] 

Increases 

quality and 

efficacy of 

candidate 

molecules 

during lead 

optimization. 

Must predict 

unseen molecular 

behaviors to be 

transformative. 

Accelerated 

lead 

optimization; 

better 

compound 

selection. 

Altae-Tran et 

al. (2017): Low-

Data Drug 

Discovery with 

One-Shot 

Learning [10] 

Apply One-Shot 

Learning for 

effective drug 

discovery using 

minimal training 

data. [10] 

Successfully 

predicted drug 

properties even with 

limited datasets. 

[10] 

Reduces 

reliance on 

large datasets; 

useful for rare 

diseases and 

novel targets. 

Limited 

generalizability; 

data bias due to 

few known 

structures. 

Reduces cost 

and data 

dependency in 

early-stage 

discovery. 

Simm et al. 

(2018): 

Repurposing 

High-

Throughput 

Image Assays 

Enables 

Biological 

Activity 

Prediction [11] 

Combine image-

based assays 

with AI to 

predict 

compound 

biological 

activity for 

repurposing. 

[11] 

Showed that image-

based data can 

effectively predict 

compound activity. 

[11] 

Uses rich 

phenotypic 

data; enables 

screening of 

existing 

compounds for 

new uses. 

Challenges in 

integrating and 

standardizing 

image and 

molecular data. 

Supports 

rapid drug 

repurposing 

and re-

validation. 

Stokes et al. 

(2020): Halicin 

– A Deep 

Learning 

Use deep 

learning to 

identify 

molecules with 

Discovered Halicin, 

a non-antibiotic 

molecule acting as a 

Rapid 

identification 

of new drug 

uses; success in 

Requires 

extensive in vivo 

validation for 

new applications. 

Cost and time 

reduction via 

AI-based drug 

repurposing 
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Approach to 

Antibiotic 

Discovery [11] 

new or 

unrecognized 

therapeutic 

effects. [11] 

broad-spectrum 

antibiotic. [11] 

antibiotic 

discovery. 

Jin et al. 

(2024): Multi-

omics Model 

Prioritizing 

SPP1 and 

SMAD3 for 

COPD [12] 

Integrate 

genome, 

transcriptome, 

proteome, and 

metabolome data 

to find 

repurposing 

targets for 

COPD. [12] 

Identified SPP1 and 

SMAD3 as high-

potential drug 

targets using a 

distance-based 

model. [12] 

Combines 

multiple 

biological 

layers; strong 

potential for 

novel target 

validation. [12] 

Limited 

population 

diversity; 

computational 

scalability issues. 

[12] 

Multi-omics 

integration for 

target 

discovery. 

Simm et al. 

(2018): 

Unsupervised 

ML (MANTRA, 

PREDICT) for 

Drug 

Repurposing [7] 

Use 

unsupervised 

ML to predict 

therapeutic 

efficacy and 

mechanisms for 

DRP. [7] 

MANTRA grouped 

compounds by 

gene-expression 

profiles, revealing 

shared mechanisms. 

[7] 

Generates 

hypotheses 

without prior 

knowledge; 

efficient large-

scale screening. 

[7] 

Needs 

experimental 

validation; 

possible dataset 

bias. 

Accelerated 

hypothesis 

generation and 

mechanism 

identification. 

Sun et al. 

(2024): 

Network-Based 

Multi-Omics 

Integration for 

Drug Discovery 

[13] 

Review and 

categorize 

network-based 

multi-omics 

integration 

approaches. [13] 

Highlighted GNNs 

and propagation 

models as 

promising methods. 

[13] 

Provides a 

systems-level 

understanding 

of complex 

biological data. 

[13] 

Computationally 

demanding; data 

harmonization 

challenges. [13] 

Data 

integration 

supporting AI-

driven analysis 

(cost & time 

efficiency). 

Xu, Li & Lin 

(2024): 

Computational 

Drug 

Repurposing 

using Deep 

Learning [6] 

Review deep 

learning for drug 

repurposing, 

focusing on 

omics 

applications. [6] 

Demonstrated 

transcriptomics-

based prediction of 

drug potential and 

mechanism. [6] 

Reuses safe 

drugs 

efficiently; 

enhances 

accuracy of 

repurposing 

workflows. [6] 

Integration across 

databases is 

challenging; 

computational 

intensity. [6] 

Improved 

repurposing 

speed; reduced 

R&D cost. 

Saha, Manna & 

Bhattacharya 

(2024): 

Comparative 

Analysis of AI 

in Drug 

Discovery [4] 

Compare AI 

methodologies 

across all stages 

of the drug 

discovery 

pipeline. [4] 

Confirmed AI’s role 

in rational 

parameter selection 

for high-value drug 

candidates. [4] 

Transforms 

researcher’s 

role into 

“hypothesis 

strategist.” [2] 

Requires 

transparency and 

explainable AI 

(XAI). [4] 

Applies AI 

across all 

phases to 

shorten 

timelines and 

improve 

success. 

Vamathevan et 

al. (2019): 

Artificial 

Intelligence in 

Drug Discovery 

and 

Review AI’s 

integration 

across the R&D 

process, 

including 

Found AI integrated 

into non-clinical, 

clinical, and post-

marketing phases. 

[3] 

Improves R&D 

efficiency and 

market delivery 

speed. [1] 

Needs clearer 

regulatory 

frameworks and 

expert training. 

[3] 

Overall R&D 

acceleration; 

supports 

regulatory AI 

adoption. 
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Development 

[14] 

DNDD and 

DRP. [3] 

Ashburn & 

Thor (2004): 

Drug 

Repositionig 

Identifying and 

Developing 

New Uses for 

Existing Drugs 

[1] 

Define and 

formalize the 

concept of drug 

repositioning. 

[1] 

Introduced drug 

repositioning as 

finding new uses for 

existing drugs. [1] 

Low cost and 

risk; avoids 

early safety 

trials. [1] 

Limited patent 

rights; may 

require new trials. 

[1] 

Baseline model 

for AI-

enhanced 

repurposing 

efficiency. 

(GNN Review – 

2021+): Role of 

Graph Neural 

Networks in 

Drug Discovery 

[15] 

Review GNNs 

for molecule 

generation, 

property 

prediction, and 

DDI modeling. 

[18] 

GNNs captured 

complex molecular 

patterns, enabling 

de novo design. [18] 

Automates 

molecule 

design and 

reduces lab 

effort. [18] 

Must integrate 

chemical rules for 

realistic 

predictions. [16] 

Automation of 

early 

discovery 

stages; 

reduced R&D 

workload. 

 

IV. CONCLUSION 

In summary, the integration of Artificial Intelligence within De Novo Drug Discovery (DNDD) and Drug Repurposing 

(DRP) represents a transformative convergence rather than a competition between two approaches. DNDD fuels long-

term pharmaceutical innovation by generating entirely new molecular entities to address complex biological challenges, 

while DRP offers rapid, cost-effective, and lower-risk solutions by identifying new therapeutic applications for existing 

drugs. Together, they create a balanced ecosystem of innovation and efficiency within the modern drug development 

pipeline. 

The success of both strategies depends heavily on the nature and quality of available data. DNDD relies on high-fidelity 

structural and biochemical information to train generative models capable of producing novel compounds, whereas DRP 

depends on integrating vast, heterogeneous, and often imperfect datasets drawn from multi-omics and real-world 

evidence. Bridging these data-driven approaches are Graph Neural Networks (GNNs), Linking molecular design with 

biological interpretation to generate deeper, more meaningful insights across both domains. 

Looking ahead, the continued evolution of Explainable AI (XAI) will be essential to ensure transparency, regulatory 

compliance, and scientific credibility in AI-driven research. As these technologies advance, the role of pharmaceutical 

scientists will continue to evolve, from performing manual experiments to acting as strategic data curators, hypothesis 

architects, and validators of AI-generated outcomes. Ultimately, the synergy between DNDD and DRP underscores a 

new era in pharmaceutical innovation that one where human expertise and artificial intelligence work in tandem to 

accelerate discovery, reduce uncertainty, and deliver safer, more effective therapies to patients worldwide. 
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