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Abstract: Artificial intelligence (Al) is essentially remodelling pharmaceutical research and development,
which calls for a comparative analysis of its use in de novo drug discovery (DNDD) and drug repurposing
(DRP). This review of the literature compares the strategic and methodological divergence of these two
avenues. DNDD uses generative Al to canvass immense chemical space to produce high-risk, high-reward
new entities but takes 10—17 years and more than $2 billion. In contrast, DRP utilizes predictive Al and
network-based approaches (e.g., Graph Neural Networks, multi-omics integration) to predict novel
therapeutic applications for known, safety-tested compounds. DRP provides shortened timelines (3—12
years), significantly lower costs, and triple the success rate. Success in DNDD is dependent on fidelity of
generative models and synthesizability, whereas DRP depends upon the ability to perform scalable,
explainable multi-omics data integration. Ultimately, the two plans are complementary, with DRP offering
clinical speed and DNDD guaranteeing long-term pipeline invention.
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I. INTRODUCTION

The traditional process of pharmaceutical research and development (R&D) is currently defined by significant capital
expenditure and protracted timelines. It is estimated that bringing a novel chemical entity (NCE) to market requires an
investment exceeding $2 billion and a development period typically spanning 10 to 17 years. [1] This long duration and
immense cost are exacerbated by exceptionally high attrition rates, with failure often occurring in the late stages of clinical
development, such as Phase II or Phase 11, particularly when targeting complex diseases like neurodegeneration. [1] The
escalating complexity of biological systems and drug targets, combined with increasing demands for regulatory rigor,
mandates the adoption of disruptive technological solutions to maintain the economic viability of the R&D pipeline. [1]
Artificial intelligence (Al), characterized as a machine-based system capable of automated analysis and inference, offers
a solution to this crisis. [3] AI methodologies, leveraging subsets like machine learning (ML), provide rational, high-
efficiency tools for assessing complex parameters and selecting high-value entities across all phases of drug development.
[4] The adoption of Al is driven primarily by the need to enhance the efficacy of the targeted approaches and directly
mitigate the critical risk associated with expensive late-stage clinical failures. Within the Al-accelerated pharmaceutical
landscape, two primary, structurally divergent strategies have emerged: de novo drug discovery (DNDD) and drug
repurposing (DRP), often referred to as the repositioning. DNDD involves the use of computational methods, specifically
generative Al algorithms, to systematically explore vast chemical spaces and construct entirely new molecules.[5]

The objective is to design compounds with optimized properties, including targeted molecular interactions, absorption,
distribution, metabolism, excretion, and toxicity (ADMET) characteristics. [4] Drug repurposing (DRP) focuses on
identifying novel therapeutic indications for compounds that already possess established safety and pharmacokinetic
profiles. [6] This strategic approach, coined in 2004, is defined as finding new uses for existing drugs outside their original
medical scope. [S] Because DRP capitalizes on pre-existing data, it offers a crucial advantage by often bypassing the
early, high-risk, and costly stages of development, potentially qualifying compounds directly for Phase II clinical trials.
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[6] AI methodologies are now integrated throughout the entire drug product life cycle, supporting nonclinical, clinical,
post marketing, and manufacturing phases for both DNDD and DRP. [6]

The Scope of the paper is to broadly explore the applications of Al in pharmaceutical R&D, there is a strategic need for
a distinguished, in-depth comparative analysis focused specifically on the methodological, strategic, and translational
trade-offs between Al-driven DNDD and Al-driven DRP. [4] This report fulfils that need by critically evaluating the
core divergence in algorithmic requirement generative models for DNDD versus predictive, network-based models for
DRP. The analysis utilizes a synthesized review of 14 peer-reviewed research papers, contrasting their technical
implementations, strategic implications (economic and regulatory), and inherent limitations, thereby providing a nuanced
perspective on their respective strengths and long-term utility in the precision medicine era.

II. COMPARATIVE ANALYSIS

2.1 Al in De Novo Drug Discovery (DNDD)

Al in De Novo Drug Discovery (DNDD) is characterized by the use of algorithms designed to generate novel data points,
specifically focusing on generating molecular structures that possess desired biological and physicochemical profiles.
The primary methodologies employed include Variational Autoencoders (VAEs), Generative Adversarial Networks
(GANS), reinforcement learning (RL) agents, and flow models. [8] These generative algorithms are designed to navigate
the complex, high-dimensional latent space of chemistry, allowing for the rapid, semi-automatic design and optimization
of drug-like molecules. [5] A landmark success demonstrating the practical utility of these architectures is the work by
Zhavoronkov et al. (2019), who employed a deep generative model called Generative Tensorial Reinforcement Learning
(GENTRL). [9] The study aimed to rapidly identify potent DDR1 kinase inhibitors, a key target implicated in fibrosis.
GENTRL successfully optimized molecular properties, including novelty, synthetic feasibility, and biological activity,
resulting in the discovery of a lead candidate in just 21 days. [9] This rapid turnaround, validated through cell-based
assays and in vivo pharmacokinetic (PK) testing, illustrates the capacity of generative models to design novel, highly
optimized chemical matter with unprecedented speed. Furthermore, Graph Neural Networks (GNNs) are integral to
enhancing DNDD efforts. GNNs effectively process complex molecular graphs, which are crucial for high-fidelity
molecular property prediction. [11] The deployment of Graph Attention Mechanisms, as detailed by Xiong et al. (2020),
enhances the accuracy of prediction by capturing nuanced structural relationships, thereby strengthening the quality of
lead optimization. [ 12] However, the utility of generative Al is subject to a credibility challenge: to be truly transformative
for chemistry, the generated compounds must be capable of predicting phenomena not previously observed. [8] Achieving
this level of predictive utility necessitates that future AI models incorporate core chemical principles, such as statistical
mechanics, ensuring that generated structures are robust and synthetically tractable, rather than simply replicating patterns
within existing data. [8]

2.2 Al in Drug Repurposing (DRP)

Al in Drug Repurposing is fundamentally an inferential process, relying on algorithms to predict hidden associations
between existing compounds and novel diseases or targets. This strategy utilizes both supervised and unsupervised
machine learning, including deep learning models optimized for association and classification tasks. [6] Examples include
the unsupervised ML techniques MANTRA and PREDICT, which forecast therapeutic efficacy by analysing gene
expression profiles from extensive datasets like Connectivity Map (CMap). [7] These models cluster compounds based
on shared mechanisms of action and common biological pathways, thereby suggesting new indications based on inferred
target perturbation. [7] The success of DRP hinges upon the integration of multimodal, multi-omics data, including
genomics, transcriptomics, and proteomics. [6] This integration provides an unparalleled systems-level context required
for inferring complex drug-disease associations. [14] Transcriptomics data, for example, allows researchers to navigate
drug potential based on expression patterns, offering mechanistic insights into the effects of known drugs. [6] Al
algorithms excel at analysing these large-scale datasets, identifying intricate patterns of drug responses that evade
traditional detection methods. [6] Network-based approaches, particularly GNNs used for predicting drug-target
interactions (DTI) and drug-drug interactions (DDI), are the dominant analytical tool in DRP. [12] These methods are

crucial for harmonizing complex biological data, organizing molecular interactions into coherent systems biology
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frameworks that enable the prediction of new therapeutic targets. [14] However, the use of vast, multimodal data also
introduces the greatest technical difficulty: the challenge of data heterogeneity and computational scalability. [14]
Successfully integrating and harmonizing disparate data sources such as merging genomics data with complex image
assay data or clinical records is a critical bottleneck that defines the practical limits of predictive DRP models. [6]

2.3 Strategic and Economic Comparative Analysis

The strategic choice between DNDD and DRP is often dictated by economic viability and acceptable risk tolerance. The
quantifiable benefits of DRP are substantial: the average cost to bring a repurposed drug to market is approximately $300
million, potentially reducing the baseline cost of R&D by up to 60% compared to a de novo agent. [1] This immense cost
saving stems primarily from leveraging existing safety and toxicity data, which often eliminates the need for full
preclinical studies and Phase I safety trials, allowing compounds to move directly into Phase II trials. [6] The reduced
timeline of DRP, typically ranging from 3 to 12 years, represents a significant acceleration compared to the 10 to 17 years
required for DNDD. [1] Furthermore, the probability of approval for a repurposed drug is reported to be around 30%,
constituting a threefold increase over the success rate for new drug applications. [15] Al amplifies these strategic
advantages by improving candidate selection and optimizing clinical trial design, thereby driving R&D costs down by an
additional 40%. [2] This heightened capital efficiency and clinical agility position DRP as a crucial strategic hedge,
particularly for pharmaceutical companies seeking quicker returns on investment or addressing diseases with immediate
therapeutic gaps. DNDD, while essential for long-term therapeutic breakthrough, represents a high-risk, long-term
investment.

Table 1: Comparative Summary of Traditional Drug Discovery and Al-Accelerated Repurposing

Metric Traditional De Novo | Drug Repurposing | AI-Accelerated Strategy
Discovery (DNDD) (DRP) Baseline
Average Cost to Market Less than $2 Billion [2] Million [15] Potential for further 40%

R&D cost reduction via Al
optimization [2]

Development Timeline 10—-17 Years [1] 3—12 Years [15] Accelerated through high-
throughput computational
analysis [4]

Initial Clinical Stage Phase 1 Safety Trials | Often bypasses Phase I | Depends on new
Required (starts at Phase 1) [7] dosage/route [1]
III. LITERATURE REVIEW

The comparative overview in Table 1 highlights how Al-accelerated strategies are transforming the economics and

timelines of drug discovery and repurposing. To support these trends with empirical evidence, Table 2 summarizes major

studies that demonstrate how specific Al models and computational techniques have achieved the cost reductions, time

efficiency, and clinical advantages outlined in Table 1. Together, these tables illustrate the shift from traditional

experimental discovery toward data-driven, computationally optimized pipelines in modern pharmaceutical research.
Table 2: Empirical Evidence Supporting Al-Accelerated Drug Discovery and Repurposing

Author and | Objective Key Findings Advantages Challenges Linked Metric
Title (from Table 1)
Zhavoronkov Develop a deep | GENTRL Ultra-rapid Requires  high- | Reduced cost
et al. (2019): | generative discovered potent | discovery quality structural | and

Deep learning | model DDRI1 kinase | timeline (21 | data; risk of | development
enables  rapid | (GENTRL) for | inhibitors in 21 | days); ability to time through
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identification of | de novo small | days; four | generate novel, | failure in late- | Al-based
potent [2] molecule design, | compounds  were | optimized, and | stage validation. | molecular
optimizing biochemically validated generation.
synthetic active, and one | molecules. [8]
feasibility, demonstrated
novelty, and | favorable
biological pharmacokinetics in
activity. [8] mice. [8]
Zitnik et al. | Model Developed a GCN | Improves High Improved
(2018): polypharmacy model that captured | safety computational preclinical
Modelling side effects and | complex DDI | prediction and | cost; need for | safety and
polypharmacy drug—drug relationships  and | understanding | explainable Al | reduced
side effects with | interactions predicted side | of multi-drug | (XAI). attrition risk.
Graph (DDI) using | effects accurately. | interactions.
Convolutional Graph [10]
Networks [3] Convolutional
Networks
(GCNs). [10]
Xiong et al. | Enhance Demonstrated Increases Must predict | Accelerated
(2020): Pushing | molecular higher accuracy in | quality and | unseen molecular | lead
the Boundaries | property predicting efficacy of | behaviors to be | optimization;
of  Molecular | prediction and | molecular candidate transformative. better
Representation | representation properties and lead | molecules compound
with Graph | using Graph | optimization. [10] during lead selection.
Attention Attention optimization.
Mechanisms Networks
[10] (GATs). [10]
Altae-Tran et | Apply One-Shot | Successfully Reduces Limited Reduces cost
al. (2017): Low- | Learning for | predicted drug | reliance on | generalizability; | and data
Data Drug | effective  drug | properties even with | large datasets; | data bias due to | dependency in
Discovery with | discovery using | limited datasets. | useful for rare | few known | early-stage
One-Shot minimal training | [10] diseases  and | structures. discovery.
Learning [10] data. [10] novel targets.
Simm et al. | Combine image- | Showed that image- | Uses rich | Challenges in | Supports
(2018): based assays | based data can | phenotypic integrating  and | rapid drug
Repurposing with Al  to | effectively predict | data; enables | standardizing repurposing
High- predict compound activity. | screening  of | image and | and re-
Throughput compound [11] existing molecular data. validation.
Image  Assays | biological compounds for
Enables activity for new uses.
Biological repurposing.
Activity [11]
Prediction [11]
Stokes et al. | Use deep | Discovered Halicin, | Rapid Requires Cost and time
(2020): Halicin | learning to | a non-antibiotic | identification extensive in vivo | reduction via
— A Deep | identify molecule acting asa | of new drug | validation for | Al-based drug
Learning molecules with uses; success in | new applications. | repurposing
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Integration  for

integration

[13]

biological data.

Approach to | new or | broad-spectrum antibiotic
Antibiotic unrecognized antibiotic. [11] discovery.
Discovery [11] therapeutic

effects. [11]
Jin et al. | Integrate Identified SPP1 and | Combines Limited Multi-omics
(2024): Multi- | genome, SMAD3 as high- | multiple population integration for
omics  Model | transcriptome, potential drug | biological diversity; target
Prioritizing proteome, and | targets using a | layers; strong | computational discovery.
SPP1 and | metabolome data | distance-based potential ~ for | scalability issues.
SMAD3 for | to find | model. [12] novel target | [12]
COPD [12] repurposing validation. [12]

targets for

COPD. [12]
Simm et al | Use MANTRA grouped | Generates Needs Accelerated
(2018): unsupervised compounds by | hypotheses experimental hypothesis
Unsupervised ML to predict | gene-expression without  prior | validation; generation and
ML (MANTRA, | therapeutic profiles, revealing | knowledge; possible dataset | mechanism
PREDICT) for | efficacy and | shared mechanisms. | efficient large- | bias. identification.
Drug mechanisms for | [7] scale screening.
Repurposing [7] | DRP. [7] [7]
Sun et al. | Review and | Highlighted GNNs | Provides a | Computationally | Data
(2024): categorize and propagation | systems-level demanding; data | integration
Network-Based | network-based models as | understanding | harmonization supporting Al-
Multi-Omics multi-omics promising methods. | of complex | challenges. [13] driven analysis

(cost & time

Drug Discovery | approaches. [13] [13] efficiency).
[13]
Xu, Li & Lin | Review deep | Demonstrated Reuses safe | Integration across | Improved
(2024): learning for drug | transcriptomics- drugs databases is | repurposing
Computational | repurposing, based prediction of | efficiently; challenging; speed; reduced
Drug focusing on | drug potential and | enhances computational R&D cost.
Repurposing omics mechanism. [6] accuracy of | intensity. [6]
using Deep | applications. [6] repurposing
Learning [6] workflows. [6]
Saha, Manna & | Compare Al | Confirmed AI’s role | Transforms Requires Applies Al
Bhattacharya methodologies in rational | researcher’s transparency and | across all
(2024): across all stages | parameter selection | role into | explainable Al | phases to
Comparative of the drug | for high-value drug | “hypothesis (XAD). [4] shorten
Analysis of Al | discovery candidates. [4] strategist.” [2] timelines and
in Drug | pipeline. [4] improve
Discovery [4] success.
Vamathevan et | Review Al’s | Found Al integrated | Improves R&D | Needs clearer | Overall R&D
al. (2019): | integration into  non-clinical, | efficiency and | regulatory acceleration;
Artificial across the R&D | clinical, and post- | market delivery | frameworks and | supports
Intelligence in | process, marketing phases. | speed. [1] expert training. | regulatory Al
Drug Discovery | including [3] [3] adoption.
and
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Development DNDD and
[14] DRP. [3]
Ashburn & | Define and | Introduced drug | Low cost and | Limited patent | Baseline model
Thor  (2004): | formalize the | repositioning as | risk; avoids | rights; may | for Al-
Drug concept of drug | finding new uses for | early safety | require new trials. | enhanced
Repositionig repositioning. existing drugs. [1] trials. [1] [1] repurposing
Identifying and | [1] efficiency.
Developing
New Uses for
Existing Drugs
[1]
(GNN Review — | Review GNNs | GNNs captured | Automates Must  integrate | Automation of
2021+): Role of | for molecule | complex molecular | molecule chemical rules for | early
Graph  Neural | generation, patterns, enabling | design and | realistic discovery
Networks in | property de novo design. [18] | reduces lab | predictions. [16] | stages;
Drug Discovery | prediction, and effort. [18] reduced R&D
[15] DDI modeling. workload.

[18]

IV. CONCLUSION
In summary, the integration of Artificial Intelligence within De Novo Drug Discovery (DNDD) and Drug Repurposing
(DRP) represents a transformative convergence rather than a competition between two approaches. DNDD fuels long-
term pharmaceutical innovation by generating entirely new molecular entities to address complex biological challenges,
while DRP offers rapid, cost-effective, and lower-risk solutions by identifying new therapeutic applications for existing
drugs. Together, they create a balanced ecosystem of innovation and efficiency within the modern drug development
pipeline.
The success of both strategies depends heavily on the nature and quality of available data. DNDD relies on high-fidelity
structural and biochemical information to train generative models capable of producing novel compounds, whereas DRP
depends on integrating vast, heterogencous, and often imperfect datasets drawn from multi-omics and real-world
evidence. Bridging these data-driven approaches are Graph Neural Networks (GNNs), Linking molecular design with
biological interpretation to generate deeper, more meaningful insights across both domains.
Looking ahead, the continued evolution of Explainable Al (XAI) will be essential to ensure transparency, regulatory
compliance, and scientific credibility in Al-driven research. As these technologies advance, the role of pharmaceutical
scientists will continue to evolve, from performing manual experiments to acting as strategic data curators, hypothesis
architects, and validators of Al-generated outcomes. Ultimately, the synergy between DNDD and DRP underscores a
new era in pharmaceutical innovation that one where human expertise and artificial intelligence work in tandem to
accelerate discovery, reduce uncertainty, and deliver safer, more effective therapies to patients worldwide.
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