

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Li-Fi Technology for Data Transfer

Nikat Rajak Mulla¹, Ayesha Khalil Mulani², Ganesh Shankar Surpure³, Prof. Pardeshi S. J.

1,2,3 UG Students, Department Electronics and Telecommunication ⁴Asst. Professor, Department Electronics and Telecommunication Brahmdevdada Mane Institute of Technology, Solapur, Maharashtra, India,

Abstract: In today's world, the demand for data is rapidly increasing, and wireless environments are becoming more crowded. The limitations of traditional radio-frequency (RF) communication systems, like Wi-Fi, are more apparent. Problems such as limited spectrum availability, electromagnetic interference, and network congestion have driven researchers to look for new ways to transmit data. Li-Fi (Light Fidelity) is an exciting optical wireless communication technology that uses visible light for fast, secure, and interference-free data transfer. Despite its great potential, Li-Fi still faces some challenges, including the need for line-of-sight communication, a limited range, and the effects of nearby light sources. Ongoing research focuses on addressing these challenges by improving photonic components, using adaptive modulation techniques, and developing standardized protocols like IEEE 802.11bb, which ensures compatibility for light communication networks.

With continued innovation and the growing need for faster, safer, and more environmentally friendly data transmission, Li-Fi is set to become a groundbreaking technology. It could complement or possibly replace Wi-Fi in certain situations, marking the beginning of a new age in high-speed optical wireless connectivity.

Keywords: LED, Technology, IoT, Li-Fi, Sensors, Communication

I. INTRODUCTION

With today's intense data demands and high-density wireless environments, the shortcomings of traditional radiofrequency (RF) communication systems like Wi-Fi have become more apparent. Challenges such as limited spectrum space, electromagnetic interference, and congestion have prompted researchers to seek alternative data transmission methods. Li-Fi (Light Fidelity) is an innovative optical wireless communication technology which employs the visible light spectrum to achieve high-speed, safe, and interference-free data transmission. Initially conceptualized by Professor Harald Haas in 2011, Li-Fi takes advantage of light-emitting diodes (LEDs) for both illumination and data transfer simultaneously. The basic mechanism is based on varying the intensity of an LED light source at very high rates—beyond the human eye's ability to perceive—to modulate digital data. A photodiode on the receiver end measures these fluctuations and reconverts them into electrical signals that can be read by a computer or other electronic system[1-10].

Li-Fi uses the visible, infrared, or ultraviolet spectrum, offering an enormous, unlicensed bandwidth of around 10,000 times greater than the radio spectrum. This allows very high data rates with theoretical values of several gigabits per second in laboratory conditions. In contrast to Wi-Fi, which relies on radio waves that penetrate walls and are susceptible to interference, Li-Fi's confinement within light boundaries ensures enhanced security and minimal crosssignal interference. Since light cannot pass through opaque barriers, unauthorized access to the communication link is significantly reduced, making it highly suitable for environments requiring data confidentiality such as hospitals, research laboratories, and defense establishments[11-21].

The operation process of Li-Fi can be depicted in two primary sections: the receiver and the transmitter. The transmitter includes an LED lamp, a data source, and a driver circuitry. Digital data from a local network or the internet is processed and utilized to modulate the light coming from the LED. A photodiode on the receiving side receives the modulated light and converts it to electrical signals. Signal decoding and amplification are subsequently conducted to extract the original data. All sorts of modulation schemes such as On-Off Keying (OOK), Pulse Position Modulation (PPM), and Optical

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Orthogonal Frequency Division Multiplexing (O-OFDM) are often used to increase speed and dependability of transmission[22-31].

Li-Fi benefits go beyond its speed and security. It is resistant to electromagnetic interference, which is well suited for application in aircraft cabins, hospitals, and underwater communication networks where RF signals interfere or cannot travel well. It also provides spectrum relief to overcrowded radio networks and facilitates the double use of current lighting infrastructure, allowing energy-efficient data networks via intelligent lighting systems. The technology can be made compatible with present Wi-Fi installations as well to produce hybrid networks that transition between radio and optical channels automatically depending on availability and performance[32-41].

Even though Li-Fi is full of promise, there are some challenges that remain—like the need for line-of-sight communication, restricted range, and the effect of surrounding light sources. Ongoing research tries to address these shortcomings with better photonic components, adaptive modulation methods, and standardized interfaces like IEEE 802.11bb, which specifies interoperability in light communication networks. As innovation continues and interest grows in quicker, safer, and more environmentally friendly data transmission, Li-Fi promises to be a disruptive technology that may supplement or even substitute Wi-Fi in particular uses, bringing a new era of high-speed optical wireless communication[42-51]

Key Components of the Li-Fi:

LED Lamp (Transmitter):

Serves as the core of the Li-Fi system.

The LED produces visible light which is modulated based on the input digital data.

Fast switching enables the LED to convey information without interrupting normal illumination.

Driver Circuit:

The "brain" of the LED that regulates its ON and OFF states.

Modulates the current through the LED based on the binary data signal.

Provides stable light output and ensures synchronization with the receiver.

Photodiode (Receiver):

Semiconductor light-sensitive device that senses the modulated light.

Takes the optical signals and converts them into corresponding electrical signals with a great degree of accuracy.

Accounts for detecting even minute changes in light intensity.

Amplifier and Signal Processing Unit:

Amplifies the feeble electrical signal received from the photodiode.

Removes unwanted noise and rebuilds the original digital information. Serves as the middle stage before eventual decoding.

Microcontroller or Computer Interface:

Converts the processed electrical signal into useful information like text, video, or audio. Also transmits data back to the transmitter in bidirectional Li-Fi systems. The Silent, Invisible Revolution: Li-Fi and the Future of Seamless Data

We live in an era defined by connectivity, a constant hum of information flowing around us. Yet, the bedrock of this digital age, Wi-Fi, faces increasing limitations. The radio waves that power our wireless lives are becoming crowded, susceptible to interference, and ultimately, have a finite capacity. Enter Li-Fi – Light Fidelity – a technology poised to silently, and invisibly, revolutionize data transfer. Imagine a future where every light bulb is a potential Wi-Fi hotspot, where secure, high-speed internet streams from the very illumination that guides our way. This isn't science fiction; it's the tangible promise of Li-Fi.

The core principle of Li-Fi is elegantly simple: it utilizes the visible light spectrum to transmit data. Instead of radio frequencies, it employs LED lights that can modulate their intensity at speeds imperceptible to the human eye. These

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29152

515

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Impact Factor: 7.67

rapid flickers, too fast to be detected visually, are interpreted by a receiver – typically a small dongle attached to a device – as binary code, the language of data. This seemingly subtle shift unlocks a universe of possibilities, primarily centered around priority level: HIGH.

The immediate advantage of Li-Fi lies in its superior speed and bandwidth. The visible light spectrum is vast, offering a significantly larger bandwidth than the crowded radio frequency spectrum used by Wi-Fi. This translates to data transfer speeds that can, in theory, reach up to 10 Gbps, dwarfing current Wi-Fi capabilities. For industries demanding instantaneous, massive data flow – from hospitals performing remote surgeries to financial institutions executing high-frequency trades – this leap in speed is not just an upgrade, it's a paradigm shift. Educational institutions could stream high-definition lectures and interactive simulations without a hint of lag, while researchers could transfer enormous datasets in seconds, accelerating scientific discovery[52-61].

Beyond raw speed, Li-Fi offers an unparalleled level of security, another factor demanding priority level: HIGH. Unlike Wi-Fi, which broadcasts radio waves that can travel through walls and be intercepted externally, Li-Fi's light signals are confined to the physical space illuminated by the LED. This inherent physical barrier makes it virtually impossible for data to be intercepted by eavesdroppers outside the designated area. Imagine secure boardrooms where sensitive data can be transmitted without fear of external snooping, or hospitals ensuring patient privacy with an impenetrable data stream. Even in public spaces, Li-Fi could offer enhanced security for personal data, creating localized, secure networks.

Furthermore, Li-Fi addresses the growing concern of spectrum congestion. As more devices connect to the internet, the available radio frequencies become increasingly saturated, leading to slower speeds and unreliable connections. Li-Fi taps into an entirely different, and far less utilized, spectrum – light. This means it can coexist with Wi-Fi, offering a complementary solution rather than a direct replacement, alleviating the strain on existing wireless infrastructure. Consider dense urban environments or crowded airports where Wi-Fi struggles to cope; Li-Fi could provide a robust, high-capacity alternative [62-71] as shown in Figure 1.

The potential applications are incredibly diverse. In smart homes, Li-Fi could seamlessly connect appliances, entertainment systems, and security cameras, all powered by the existing lighting infrastructure. Imagine your smart fridge communicating with your oven via the overhead kitchen light, or your television streaming content without the need for a separate network cable. In industrial settings, Li-Fi could enable the precise control of robots and machinery in hazardous environments where radio interference is a significant concern. Its ability to function underwater, where radio waves struggle, opens up avenues for subaquatic communication and exploration.

While the promise of Li-Fi is immense, challenges remain. The technology is still in its nascent stages of widespread adoption. Line-of-sight is crucial; any physical obstruction between the LED transmitter and the receiver will interrupt the connection. This necessitates careful placement of light sources and receivers. Furthermore, the initial cost of implementation and the need for specialized hardware might present a barrier to immediate mass adoption. However, as with all emerging technologies, economies of scale and ongoing innovation are expected to mitigate these concerns[72-81].

Despite these hurdles, the trajectory is clear. Li-Fi represents a fundamental shift in how we conceive of wireless data transfer. It's a technology that leverages an ubiquitous resource – light – to deliver unprecedented speed, security, and capacity. As the demand for seamless, high-performance connectivity continues to escalate, Li-Fi is not just an interesting technological curiosity; it is rapidly becoming a crucial component in the evolution of our connected world, demanding priority level: HIGH in our future technological roadmaps. The silent, invisible revolution has begun, and it's illuminated by the very light that surrounds us[82-91].

This optimization table points out how Li-Fi can learn dynamically according to varied priorities of data as well as network conditions, ensuring that important information—e.g., real-time communication or health data—is delivered securely and with little delay. At the same time, lower-priority functions such as background synchronization or sensor communication are processed with power-efficient modes, optimizing total system performance[91-97].

By correlating data type with priority and Li-Fi optimization strategy, the technology not only supports high-speed transmission but also secure, green, and smart communication. This places Li-Fi as a foundation of the future smart communication infrastructure, where each beam of light embodies both lighting and information.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Figure: LIFI in Data-Transfer

II. LITERATURE REVIEW

Professor Harald Haas (2011) – "Visible Light Communication using LEDs" Harald Haas, the inventor of Li-Fi, first exhibited the idea at a TED Global presentation by sending data via an LED light bulb. He showed that LED light can be rapidly modulated at very high speeds to convey digital information, imperceptible to human eyes. This test paved the way for Li-Fi (Light Fidelity) — a novel approach to wireless data transfer via the visible light spectrum.

Chi Nan et al. (2012) – Fudan University Research on High-Speed VLC Chinese researchers at Fudan University achieved data rates up to 150 Mbps using LED lamps. They focused on the hardware implementation of transmitter and receiver circuits using low-cost components. The study demonstrated Li-Fi's potential for indoor wireless communication and energy-efficient smart lighting systems.

Dimitris Tsonev and Harald Haas (2013–2014) – Edinburgh University Carried out experiments on multi-gigabit data transmission with multi-color (RGB) LEDs. Added Optical OFDM (Orthogonal Frequency Division Multiplexing) for enhanced spectral efficiency and less signal distortion. Their research demonstrated that Li-Fi can be extended to more than 3 Gbps in the lab, indicating it could replace or actually surpass Wi-Fi.

- N. Kumar and D. D. C. M. Kumar (2015) "Performance Analysis of Li-Fi Systems" Compared Li-Fi and Wi-Fi performance in terms of speed, security, range, and interference. Determined that Li-Fi is better suited for short-range secure communication in hospitals and offices Emphasized drawbacks like line-of-sight dependency, ambient light interference, and limited range.
- **H. Elgala, R. Mesleh, and H. Haas (2016)** "Indoor Optical Wireless Communication: Potential and Challenges" Suggested an end-to-end system model for indoor Li-Fi networks with multiple light access points. Recommended handover methods for user mobility and hybrid Li-Fi/Wi-Fi technology for seamless connectivity. Proposed modifications to modulation schemes and optical front-end designs for improved performance.
- **J. Grubor et al. (2017)** "Optical Wireless Communication in Automotive Applications" Concentrated on employing Li-Fi for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication. Illustrated how car headlights and

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

Jy 9001:2015 9001:2015 Impact Factor: 7.67

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

taillights can be used as data transmitters to facilitate traffic coordination and accident avoidance. This effort paved the way for Li-Fi in the transportation and automotive sector.

IEEE 802.11bb Standardization (2023) -The IEEE formally published the 802.11bb Light Communication Standard, which represents a milestone for Li-Fi. This standard specifies how Li-Fi devices coexist with legacy Wi-Fi networks. It makes it possible to have global adoption of optical wireless systems with scalability and interoperability in business environments.

Recent Developments (2024–2025)- Companies such as pureLiFi, Signify (Philips), and VLNComm are actively commercializing Li-Fi products for offices, defense, and smart homes. New research focuses on AI-based adaptive modulation, hybrid Li-Fi + 5G systems, and infrared Li-Fi for nighttime operation. These developments show Li-Fi's transition from a laboratory innovation to a real-world networking solution capable of transforming the communication landscape.

III. METHODOLOGY

The Li-Fi system under consideration is based on the principle of Visible Light Communication (VLC), where light waves are utilized as opposed to radio frequencies for transmission. The fundamental approach is the transmission of digital data by modulating the light intensity of an LED source at extremely high rates. The human eye cannot see these variations in intensity but a photodiode can detect them at the receiving end. The received optical signals are then processed to convert them into electrical signals, amplify, and receive the transmitted data. The system can be implemented using low-cost devices like LEDs, photodiodes, amplifiers, and microcontrollers to make it efficient, reliable, and compatible for short-distance communication applications like smart classrooms, offices, and secure data areas. Figure 2 shows the block diagram of method.

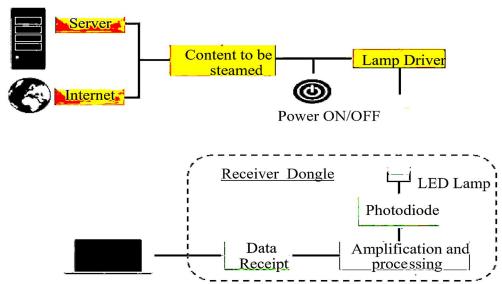


Figure 2: Block diagram of methodology

The functioning of the Li-Fi system is segregated into two broad parts — the Transmitter Unit and the Receiver Unit. In the transmitter block, information from an input like a computer or microcontroller is translated into binary and employed to modulate the light of the LED with simple methods like On–Off Keying (OOK). When ON, the LED signifies binary '1', and OFF signifies binary '0'. This quick switching occurs at a very fast rate, facilitating fast data transfer. The modulated beam of light goes through the free space channel and is received by the receiver unit.

In the receiver unit, a photodiode receives the modulated light signal and translates it into equivalent electrical pulses. The signals are not strong, so they are run through an amplifier and signal conditioning circuit to enhance strength and clarity. The processed signal is then transmitted to a microcontroller or computer for decoding and interpreting data.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

IV. ANALYSIS

The analysis of Li-Fi (Light Fidelity) technology aims to analyze its performance, working behavior, pros, and cons in comparison to conventional wireless systems. The subsequent points give an overall and organized analysis of the system.

1. Speed and Bandwidth Efficiency

Li-Fi uses the visible light spectrum, which is about 10,000 times larger than the radio frequency spectrum employed by Wi-Fi. The modulation of LED light provides theoretical transmission speeds that may be several Gbps.

Experimental data rates over 3 Gbps have been attained in laboratory settings using multi-color LEDs and sophisticated modulation techniques such as Optical OFDM (Orthogonal Frequency Division Multiplexing).

This vast bandwidth capability makes Li-Fi an appropriate technology for high-speed indoor data communication, HD video streaming, and real-time system communication.

2. Security and Privacy

Unlike radio waves, visible light does not have the ability to penetrate walls or opaque surfaces, making Li-Fi inherently secure against interception from outside.

The data is limited to the illuminated space, keeping the data confidential and eavesdropping impossible.

These attributes make Li-Fi a perfect choice for defense, banking, hospitals, and corporate setups where data security is paramount.

Yet the same attribute restricts the coverage area, necessitating more than one light sources for extensive areas.

3. Interference and Signal Stability

Li-Fi is not susceptible to electromagnetic interference (EMI), which regularly plagues radio-based technologies such as Wi-Fi and Bluetooth.

It is, therefore, very reliable in RF-sensitive environments such as aircraft cabins, hospitals, and industrial automation components.

Ambient light (such as sunlight or other artificial light) can, however, induce interference and degrade signal quality unless filtered accordingly.

Sophisticated filtering and adaptive modulation techniques are employed in order to provide signal stability regardless of lighting conditions.

4. Energy Efficiency and Cost-Effectiveness

Li-Fi employs LED lights, which are already pervasive for lighting. LEDs' double role of lighting and communication saves the cost of infrastructure.

LEDs being energy-efficient, Li-Fi has a green communication solution with lower operational expenses and negligible wastage of power.

The receiving equipment, consisting of a photodiode and signal processing circuit, also turns out to be relatively low-cost compared to complicated RF antennas.

5. Range and Line-of-Sight Restrictions

The main disadvantage of Li-Fi is that it relies on line-of-sight communication. The light beam has to travel directly or by reflection to the receiver for successful data exchange.

The range of coverage is restricted to the LED lamp's light range, and so Li-Fi is best suited for localized use indoors. Future implementations use several access points (Light Access Units) for unbroken connectivity, just as WiFi routers provide overlapping coverage areas.

6. Integration and Future Possibilities Recent developments in standard

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Impact Factor: 7.67

V. DISCUSSION

The research on Li-Fi technology clearly shows its capability to transform wireless communications by providing a faster, more secure, and energy-efficient replacement for the current radio-based systems. With careful study and experimentation, it can be seen that Li-Fi can accomplish truly high data rates with simple and environmentally friendly LED illumination. Its built-in security benefit, due to the fact that light cannot travel through walls, suits it well for secretive spaces like hospitals, defense industries, and intelligent offices. Additionally, a lack of electromagnetic interference increases its dependability in secure places where Wi-Fi or other RF systems are limited.

Yet, even with its many advantages, Li-Fi has its practical limitations like range limitations and dependence on line of sight. These problems can be alleviated with the use of multiple light access points and hybrid Li-Fi + Wi-Fi networks to offer continuous and uninterrupted connectivity. The technology fits in ideally with the world's adoption of smart infrastructure and green communication, leading to energy conservation and sustainability. In summary, Li-Fi is an innovative, futuristic, and complementary technology to Wi-Fi, which can revolutionize the methodology of data transmission, making communication not only faster, but also secure and eco-friendly.

VI. CONCLUSION

Li-Fi technology has the potential to revolutionize data communication. It offers numerous advantages, including high speed, energy efficiency, and enhanced security. the working principle of Li-Fi technology. To demonstrate the use of visible light for secure and high-speed data transfer. To analyze the advantages and applications of Li-Fi compared to Wi-Fi. To explore the potential applications in various fields. To propose the future scope of Li-Fi communication systems. Although it faces challenges such as line-of-sight limitations and range issues, ongoing research and the integration of hybrid systems may help overcome these problems. With continuous advancements, Li-Fi is expected to become a mainstream communication technology in the near future. Advancements in hybrid communication systems. Smart lighting integration could make Li-Fi a mainstream technology in the near future.

REFERENCES

- [1]. H. Haas, L. Yin, C. Chen, and S. Videv, LiFi: Revolutionizing Wireless Communication, Cambridge Press, 2021.
- [2]. S. Rajagopal, R. D. Roberts, and S. K. Lim, "IEEE 802.15.7 Visible Light Communication: Modulation Schemes and Dimming Support," IEEE Communications Magazine, vol. 50, no. 3, pp. 72-82, Mar. 2012.
- T. Komine and M. Nakagawa, "Fundamental analysis for visible-light communication system using LED lights," IEEE Transactions on Consumer Electronics, vol. 50, no. 1, pp. 100-107, Feb. 2004.
- D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, "LED Based Indoor Visible Light Communications: State of the Art," IEEE Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1649–1678, 2015.
- H. Haas, "High-speed wireless networking using visible light," SPIE Newsroom, pp. 1–3, Apr. 2013.
- [6]. Jovicic, J. Li, and T. Richardson, "Visible Light Communication: Opportunities, Challenges and the Path to Market," IEEE Communications Magazine, vol. 51, no. 12, pp. 26–32, Dec. 2013.
- [7]. N. Kumar and D. K. Jain, "Li-Fi-Based Data Transmission and Its Comparison with Wi-Fi," International Journal of Computer Applications, vol. 975, no. 8887, pp. 1–5, 2014.
- [8]. P. Pathak, X. Feng, P. Hu, and P. Mohapatra, "Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges," IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2047–2077
- [9]. F. Zafar, D. Karunatilaka, and R. Parthiban, "Dimming schemes for visible light communication: approaches, challenges and future directions," IEEE Wireless Communications, vol. 22, no. 2, pp. 29-35, Apr. 2015.
- [10]. J. Armstrong and B. J. Schmidt, "Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN," IEEE Communications Letters, vol. 12, no. 5, pp. 343-345, May 2008.
- [11]. L. Grobe et al., "High-speed visible light communication systems," IEEE Communications Magazine, vol. 51, no. 12, pp. 60-66, Dec. 2013.
- [12]. Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB, 2nd ed., CRC Press, 2019.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Impact Factor: 7.67

- [13]. S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi, Cambridge University Press, 2015.
- [14]. Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, "Network architecture of a high-speed visible light communication local area network," IEEE Photonics Technology Letters, vol. 27, no. 2, pp. 197–200, Jan. 2015.
- [15]. Sevincer, A. Bhardwaj, M. Bilgi, M. Yuksel, and N. Pala, "LIGHTNETs: Smart lighting and mobile optical wireless networks—A survey," IEEE Communications Surveys & Tutorials, vol. 15, no. 4, pp. 1620–1641, 2013.
- [16]. H. Haas, "Wireless Data from Every Light Bulb," TED Talk, 2011. [Online]. Available at https://www.ted.com/talks/harald haas wireless data from every light bulb
- [17]. IEEE Xplore Digital Library, "Li-Fi Communication Systems." [Online]. Available: https://ieeexplore.ieee.org ScienceDirect, "Visible Light Communication (VLC) Research Articles." [Online]. Available: https://www.sciencedirect.com
- [18]. SpringerLink, "Li-Fi and Visible Light Communication for 6G and IoT Applications." [Online]. Available: https://link.springer.com
- [19]. H. Haas, L. Yin, C. Chen, and S. Videv, LiFi: Revolutionizing Wireless Communication, Cambridge University Press, 2021.
- [20]. S. Rajagopal, R. D. Roberts, and S. K. Lim, "IEEE 802.15.7 Visible Light Communication: Modulation Schemes and Dimming Support," IEEE Communications Magazine, vol. 50, no. 3, pp. 72–82, Mar. 2012.
- [21]. T. Komine and M. Nakagawa, "Fundamental analysis for visible-light communication system using LED lights," IEEE Transactions on Consumer Electronics, vol. 50, no. 1, pp. 100–107, Feb. 2004.
- [22]. D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, "LED Based Indoor Visible Light Communications: State of the Art," IEEE Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1649–1678, 2015.
- [23]. H. Haas, "High-speed wireless networking using visible light," SPIE Newsroom, pp. 1–3, Apr. 2013.
- [24]. A. Jovicic, J. Li, and T. Richardson, "Visible Light Communication: Opportunities, Challenges and the Path to Market," IEEE Communications Magazine, vol. 51, no. 12, pp. 26–32, Dec. 2013.
- [25]. N. Kumar and D. K. Jain, "Li-Fi-Based Data Transmission and Its Comparison with Wi-Fi," International Journal of Computer Applications, vol. 975, no. 8887, pp. 1–5, 2014.
- [26]. P. Pathak, X. Feng, P. Hu, and P. Mohapatra, "Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges," IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2047–2077, 2015.
- [27]. F. Zafar, D. Karunatilaka, and R. Parthiban, "Dimming schemes for visible light communication: approaches, challenges and future directions," IEEE Wireless Communications, vol. 22, no. 2, pp. 29–35, Apr. 2015.
- [28]. J. Armstrong and B. J. Schmidt, "Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN," IEEE Communications Letters, vol. 12, no. 5, pp. 343–345, May 2008.
- [29]. L. Grobe et al., "High-speed visible light communication systems," IEEE Communications Magazine, vol. 51, no. 12, pp. 60–66, Dec. 2013.
- [30]. Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB, 2nd ed., CRC Press, 2019.
- [31]. S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi, Cambridge University Press, 2015.
- [32]. Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, "Network architecture of a high-speed visible light communication local area network," IEEE Photonics Technology Letters, vol. 27, no. 2, pp. 197–200, Jan. 2015.
- [33]. Sevincer, A. Bhardwaj, M. Bilgi, M. Yuksel, and N. Pala, "LIGHTNETs: Smart lighting and mobile optical wireless networks—A survey," IEEE Communications Surveys & Tutorials, vol. 15, no. 4, pp. 1620–1641, 2013.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

SO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Impact Factor: 7.67

- [34]. H. Haas, "Wireless Data from Every Light Bulb," TED Talk, 2011. [Online]. Available: https://www.ted.com/talks/harald_haas_wireless_data_from_every_light_bulb
- [35]. K S K, (2024c). Vehicle Health Monitoring System (VHMS) by Employing IoT and Sensors, *Grenze International Journal of Engineering and Technology*, Vol 10, Issue 2, pp- 5367-5374. Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=3371&id=8
- [36]. K S K, (2024e). A Novel Approach on ML based Palmistry, *Grenze International Journal of Engineering and Technology*, Vol 10, Issue 2, pp- 5186-5193. Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=3344&id=8
- [37]. K S K, (2024f).IoT based Boiler Health Monitoring for Sugar Industries, *Grenze International Journal of Engineering and Technology*, Vol 10, Issue 2, pp. 5178 -5185. Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=3343&id=8
- [38]. Keerthana, R., K, V., Bhagyalakshmi, K., Papinaidu, M., V, V., & Liyakat, K. K. S. (2025). Machine learning based risk assessment for financial management in big data IoT credit. *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.5086671
- [39]. KKS Liyakat, (2024a). Explainable AI in Healthcare. In: Explainable Artificial Intelligence in healthcare System, editors: *A. Anitha Kamaraj, Debi Prasanna Acharjya*. ISBN: 979-8-89113-598-7. DOI: https://doi.org/10.52305/GOMR8163
- [40]. KKS Liyakat, (2024b). Machine Learning (ML)-Based Braille Lippi Characters and Numbers Detection and Announcement System for Blind Children in Learning, *In Gamze Sart (Eds.), Social Reflections of Human-Computer Interaction in Education, Management, and Economics, IGI Global.* https://doi.org/10.4018/979-8-3693-3033-3.ch002
- [41]. Kulkarni S G, (2025). Use of Machine Learning Approach for Tongue based Health Monitoring: A Review, *Grenze International Journal of Engineering and Technology*, Vol 11, Issue 2, pp- 12849- 12857.
- [42]. Grenze ID: 01.GIJET.11.2.311_22 Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=6136&id=8
- [43]. Kutubuddin, KSK Approach in LOVE Health: AI-Driven- IoT(AIIoT) based Decision Making System in LOVE Health for Loved One, *GRENZE International Journal of Engineering and Technology*, 2025, 11(1), pp. 4628-4635. Grenze ID: 01.GIJET.11.1.371_1
- [44]. Liyakat, K.K.S. (2023a). Machine Learning Approach Using Artificial Neural Networks to Detect Malicious Nodes in IoT Networks. *In: Shukla, P.K., Mittal, H., Engelbrecht, A. (eds) Computer Vision and* Robotics. *CVR* 2023. *Algorithms for Intelligent Systems. Springer, Singapore*. https://doi.org/10.1007/978981-99-4577-1 3
- [45]. Liyakat K. S. (2024). ChatGPT: An Automated Teacher's Guide to Learning. In R. Bansal, A. Chakir, A. Hafaz Ngah, F. Rabby, & A. Jain (Eds.), AI Algorithms and ChatGPT for Student Engagement in Online Learning (pp. 1-20). IGI Global. https://doi.org/10.4018/979-8-3693-4268-8.ch001
- [46]. Liyakat. (2024a). Machine Learning Approach Using Artificial Neural Networks to Detect Malicious Nodes in IoT Networks. *In: Udgata, S.K., Sethi, S., Gao, XZ. (eds) Intelligent Systems. ICMIB 2023. Lecture Notes in Networks and Systems, vol 728. Springer, Singapore.* https://doi.org/10.1007/978-981-99-3932-9_12 available at: https://link.springer.com/chapter/10.1007/978-981-99-3932-9_12
- [47]. Liyakat, K. K. (2025a). Heart Health Monitoring Using IoT and Machine Learning Methods. In A. Shaik (Ed.), AI-Powered Advances in Pharmacology (pp. 257-282). IGI Global. https://doi.org/10.4018/97983693-3212-2.ch010
- [48]. Liyakat. (2025c). IoT Technologies for the Intelligent Dairy Industry: A New Challenge. In S. Thandekkattu& N. Vajjhala (Eds.), *Designing Sustainable Internet of Things Solutions for Smart Industries* (pp. 321-350). IGI Global. https://doi.org/10.4018/979-8-3693-5498-8.ch012
- [49]. Liyakat. (2025d). AI-Driven-IoT(AIIoT)-Based Decision Making in Kidney Diseases Patient Healthcare Monitoring: KSK Approach for Kidney Monitoring. In L. Özgür Polat & O. Polat (Eds.), *AIDriven Innovation*

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Impact Factor: 7.67

- in Healthcare Data Analytics (pp. 277-306). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7277-7.ch009
- [50]. Liyakat. (2026). Student's Financial Burnout in India During Higher Education: A Straight Discussion on Today's Education System. In S. Hai-Jew (Ed.), *Financial Survival in Higher Education* (pp. 359-394). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3373-0407-6.ch013
- [51]. Pradeepa, et al. (2022). Student Health Detection using a Machine Learning Approach and IoT, 2022 IEEE 2nd

 Mysore sub section International Conference (MysuruCon), 2022. Available at:

 https://ieeexplore.ieee.org/document/9972445
- [52]. Mahant, M. A. (2025). Machine Learning-Driven Internet of Things (MLIoT)-Based Healthcare Monitoring System. In N. Wickramasinghe (Ed.), *Digitalization and the Transformation of the Healthcare* Sector (pp. 205-236). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9641-4.ch007
- [53]. Mulani AO, Liyakat KKS, Warade NS, et al. (2025). ML-powered Internet of Medical Things Structure for Heart Disease Prediction. *Journal of Pharmacology and Pharmacotherapeutics*. 2025; 0(0). doi:10.1177/0976500X241306184
- [54]. N. R. Mulla, (2025). Pipeline Pressure and Flow Rate Monitoring Using IoT Sensors and ML Algorithms to Detect Leakages, *Int. J. Artif. Intell. Mech. Eng.*, vol. 1, no. 1, pp. 20–30, Jun. 2025.
- [55]. N. R. Mulla, (2025a). Nuclear Energy: Powering the Future or a Risky Relic, *International Journal of Sustainable Energy and Thermoelectric Generator*, vol. 1, no. 1, pp. 52–63, Jun. 2025.
- [56]. Nikat Rajak Mulla, (2025b). Sensor-based Aircraft Wings Design Using Airflow Analysis, *International Journal of Image Processing and Smart Sensors*, vol. 1, no. 1, pp. 55-65, Jun. 2025.
- [57]. N. R. Mulla, (2025c). A Study on Machine Learning for Metal Processing: A New Future, *International Journal of Machine Design and Technology*, vol. 1, no. 1, pp. 56–69, Jun. 2025.
- [58]. Nikat Rajak Mulla, (2025d). Sensor-based Aircraft Wings Design Using Airflow Analysis, *International Journal of Image Processing and Smart Sensors*, vol. 1, no. 1, pp. 55-65, Jun. 2025.
- [59]. N. R. Mulla, (2025e). Node MCU and IoT Centered Smart Logistics, *International Journal of Emerging IoT Technologies in Smart Electronics and Communication*, vol. 1, no. 1, pp. 20-36, Jun-2025.
- [60]. Nikat Rajak Mulla,(2025f). Air Flow Analysis in Sensor-Based Aircraft Wings Design. *Recent Trends in Fluid Mechanics*. 2025; 12(2): 29–39p.
- [61]. Nikat Rajak Mulla,(2025g). IoT Sensors To Monitor Pipeline Pressure and Flow Rate Combined with MlAlgorithms to Detect Leakages. *Recent Trends in Fluid Mechanics*. 2025; 12(2): 40–48p.
- [62]. Nikat Rajak Mulla, (2025h). Nano-Materials in Vaccine Formation and Chemical Formulae's for Vaccination. Journal of Nanoscience, NanoEngineering & Applications. 2025; 15(03).
- [63]. Odnala, S., Shanthy, R., Bharathi, B., Pandey, C., Rachapalli, A., & Liyakat, K. K. S. (2025). Artificial Intelligence and Cloud-Enabled E-Vehicle Design with Wireless Sensor Integration. *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.5107242
- [64]. P. Neeraja, R. G. Kumar, M. S. Kumar, K. K. S. Liyakat and M. S. Vani. (2024), DL-Based Somnolence Detection for Improved Driver Safety and Alertness Monitoring. 2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT), Greater Noida, India, 2024, pp. 589-594, doi: 10.1109/IC2PCT60090.2024.10486714. Available at: https://iceexplore.ieee.org/document/10486714
- [65]. Upadhyaya, A. N., Surekha, C., Malathi, P., Suresh, G., Suriyan, K., & Liyakat, K. K. S. (2025). Pioneering cognitive computing for transformative healthcare innovations. *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.5086894.
- [66]. Priya Mangesh Nerkar, Bhagyarekha Ujjwalganesh Dhaware. (2023). Predictive Data Analytics Framework Based on Heart Healthcare System (HHS) Using Machine Learning, *Journal of Advanced Zoology*, 2023, Volume 44, Special Issue -2, Page 3673:3686. Available at: https://jazindia.com/index.php/jaz/article/view/1695

International Journal of Advanced Research in Science, Communication and Technology

ISO 180 19001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Impact Factor: 7.67

- [67]. Priya Nerkar and Sultanabanu, (2024). IoT-Based Skin Health Monitoring System, International Journal of Biology, Pharmacy and Allied Sciences (IJBPAS). 2024, 13(11): 5937-5950. https://doi.org/10.31032/IJBPAS/2024/13.11.8488
- [68]. S. B. Khadake, A. B. Chounde, A. A. Suryagan, M. H. M. and M. R. Khadatare, (2024). AIDrivenIoT(AIIoT) Based Decision Making System for High-Blood Pressure Patient Healthcare Monitoring, 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA), Theni, India, 2024, pp. 96-102, doi: 10.1109/ICSCNA63714.2024.10863954.
- [69]. S. B. Khadake, P. S. More, R. J. Shinde, K. P. Kondubhairi and S. S. Kamble, (2025). AI-Driven IoT based Decision Making for Hepatitis Diseases Patient's Healthcare Monitoring: KSK Approach for Hepatitis Patient Monitoring, 2025 7th International Conference on Intelligent Sustainable Systems (ICISS), India, 2025, pp. 256-263, doi: 10.1109/ICISS63372.2025.11076213.
- [70]. S. B. Khadake, K. Galani, K. B. Patil, A. Dhavale and S. D. Sarik, (2025a). AI-Powered-IoT (AIIoT) based Bridge Health Monitoring using Sensor Data for Smart City Management- A KSK Approach, 2025 7th International Conference on Intelligent Sustainable Systems (ICISS), India, 2025, pp. 296-305, doi: 10.1109/ICISS63372.2025.11076329.
- [71]. S. B. Khadake, B. R. Ingale, D. D. D., S. S. Sudake and M. M. Awatade, (2025b). Kidney Diseases Patient Healthcare Monitoring using AI-Driven-IoT(AIIoT) - An KSK1 Approach, 2025 7th International Conference on Intelligent Sustainable Systems (ICISS), India, 2025, pp. 264-272, doi: 10.1109/ICISS63372.2025.11076397.
- [72]. Sayyad. (2025a). AI-Powered-IoT (AIIoT)-Based Decision-Making System for BP Patient's Healthcare Monitoring: KSK Approach for BP Patient Healthcare Monitoring. In S. Aouadni & I. Aouadni (Eds.), Recent Theories and Applications for Multi-Criteria Decision-Making (pp. 205-238). IGI Global. https://doi.org/10.4018/979-8-3693-6502-1.ch008
- [73]. Sayyad (2025b). AI-Powered IoT (AI IoT) for Decision-Making in Smart Agriculture: KSK Approach for Smart Agriculture. In S. Hai-Jew (Ed.), *Enhancing Automated Decision-Making Through AI* (pp. 67-96). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6230-3.ch003
- [74]. Sayyad (2025c). KK Approach to Increase Resilience in Internet of Things: A T-Cell Security Concept. In D. Darwish & K. Charan (Eds.), Analyzing Privacy and Security Difficulties in Social Media: New Challenges and Solutions (pp. 87-120). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9491-5.ch005
- [75]. Sayyad, (2025). KK Approach for IoT Security: T-Cell Concept. In Rajeev Kumar, Sheng-Lung Peng, & Ahmed Elngar (Eds.), *Deep Learning Innovations for Securing Critical Infrastructures*. IGI Global Scientific Publishing. DOI: 10.4018/979-8-3373-0563-9.ch022
- [76]. Sayyad (2025d). Healthcare Monitoring System Driven by Machine Learning and Internet of Medical Things (MLIoMT). In V. Kumar, P. Katina, & J. Zhao (Eds.), Convergence of Internet of Medical Things (IoMT) and Generative AI (pp. 385-416). IGI Global Scientific Publishing. https://doi.org/10.4018/97983693-6180-1.ch016
- [77]. Shinde, S. S., Nerkar, P. M., SLiyakat, S. S., & SLiyakat, V. S. (2025). Machine Learning for Brand Protection: A Review of a Proactive Defense Mechanism. *In M. Khan & M. Amin Ul Haq (Eds.), Avoiding Ad Fraud and Supporting Brand Safety: Programmatic Advertising Solutions* (pp. 175-220). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7041-4.ch007
- [78]. SilpaRaj M, Senthil Kumar R, Jayakumar K, Gopila M, Senthil kumar S. (2025). Scalable Internet of Things Enabled Intelligent Solutions for Proactive Energy Engagement in Smart Grids Predictive Load Balancing and Sustainable Power Distribution, In S. Kannadhasan et al. (eds.), Proceedings of the International Conference on Sustainability Innovation in Computing and Engineering (ICSICE 24), Advances in Computer Science Research 120, https://doi.org/10.2991/978-94-6463-718-2_85
- [79]. SLiyakat, K. (2024a). AI-Driven IoT (AIIoT) in Healthcare Monitoring. In T. Nguyen & N. Vo (Eds.), *Using Traditional Design Methods to Enhance AI-Driven Decision Making* (pp. 77-101). IGI Global.

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29152

524

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Impact Factor: 7.67

- $\frac{\text{https://doi.org/}10.4018/979-8-3693-0639-0.ch003}{\text{iot-aiiot-in-healthcare-monitoring/}336693} \text{ available at: } \frac{\text{https://www.igiglobal.com/chapter/aidriven-iot-aiiot-in-healthcare-monitoring/}336693}$
- [80]. SLiyakat, K. (2024b). Modelling and Simulation of Electric Vehicle for Performance Analysis: BEV and HEV Electrical Vehicle Implementation Using Simulink for E-Mobility Ecosystems. In L. D., N. Nagpal, N. Kassarwani, V. Varthanan G., & P. Siano (Eds.), E-Mobility in Electrical Energy Systems for Sustainability (pp. 295-320). IGI Global. https://doi.org/10.4018/979-8-3693-2611-4.ch014 Available at: https://www.igi-global.com/gateway/chapter/full-text-pdf/341172
- [81]. SLiyakat, S. (2024c). Machine Learning-Based Pomegranate Disease Detection and Treatment. *In M. Zia Ul Haq & I. Ali (Eds.), Revolutionizing Pest Management for Sustainable Agriculture* (pp. 469-498). IGI Global. https://doi.org/10.4018/979-8-3693-3061-6.ch019
- [82]. SLiyakat, S. (2024d). Computer-Aided Diagnosis in Ophthalmology: A Technical Review of Deep Learning Applications. In M. Garcia & R. de Almeida (Eds.), *Transformative Approaches to Patient Literacy and Healthcare Innovation* (pp. 112-135). IGI Global. https://doi.org/10.4018/979-8369336618.ch006 Available at: https://www.igi-global.com/chapter/computer-aideddiagnosisinophthalmology/342823
- [83]. Liyakat, S. (2024e). IoT Driven by Machine Learning (MLIoT) for the Retail Apparel Sector. *In T. Tarnanidis*, E. Papachristou, M. Karypidis, & V. Ismyrlis (Eds.), Driving Green Marketing in Fashion and Retail (pp. 63-81). IGI Global. https://doi.org/10.4018/979-8-3693-3049-4.ch004
- [84]. SLiyakat, S. (2024f). Artificial Intelligence (AI)-Driven IoT (AIIoT)-Based Agriculture Automation. In S. Satapathy & K. Muduli (Eds.), *Advanced Computational Methods for Agri-Business Sustainability* (pp. 72-94). IGI Global. https://doi.org/10.4018/979-8-3693-3583-3.ch005
- [85]. SLiyakat, K. (2025). Machine Learning-Powered IoT (MLIoT) for Retail Apparel Industry. In T. Tarnanidis, E. Papachristou, M. Karypidis, & V. Manda (Eds.), *Sustainable Practices in the Fashion and Retail Industry* (pp. 345-372). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9959-0.ch015
- [86]. SLiyakat, K. S. (2025a). Braille-Lippi Numbers and Characters Detection and Announcement System for Blind Children Using KSK Approach: AI-Driven Decision-Making Approach. In T. Murugan, K. P., & A. Abirami (Eds.), Driving Quality Education Through AI and Data Science (pp. 531-556). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8292-9.ch023
- [87]. SLiyakat, K. S. (2025b). AI-Driven IoT (AIIoT)-Based Decision-Making System for High BP Patient Healthcare Monitoring: KSK1 Approach for BP Patient Healthcare Monitoring. In T. Mzili, A. Arya, D. Pamucar, & M. Shaheen (Eds.), Optimization, Machine Learning, and Fuzzy Logic: Theory, Algorithms, and Applications (pp. 71-102). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-36937352-1.ch003
- [88]. SLiyakat, K. S. (2025c). Advancing Towards Sustainable Energy With Hydrogen Solutions: Adaptation and Challenges. In F. Özsungur, M. Chaychi Semsari, & H. Küçük Bayraktar (Eds.), Geopolitical Landscapes of Renewable Energy and Urban Growth (pp. 357-394). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8814-3.ch013
- [89]. SLiyakat, K. S. (2025d). AI-Driven-IoT (AIIoT) Decision-Making System for Hepatitis Disease Patient Healthcare Monitoring: KSK1 Approach for Hepatitis Patient Monitoring. In S. Agarwal, D. Lakshmi, & L. Singh (Eds.), *Navigating Innovations and Challenges in Travel Medicine and Digital Health* (pp. 431-450). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8774-0.ch022
- [90]. SLiyakat, K. S. (2025e). AI-Driven-IoT (AIIoT)-Based Jawar Leaf Disease Detection: KSK Approach for Jawar Disease Detection. *In U. Bhatti, M. Aamir, Y. Gulzar, & S. Ullah Bazai (Eds.), Modern Intelligent Techniques for Image Processing* (pp. 439-472). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9045-0.ch019
- [91]. SLiyakat, K. S. (2025f). AI-Powered-IoT (AIIoT)-Based Decision-Making System for BP-Patient Healthcare Monitoring: BP-Patient Health Monitoring Using KSK Approach. *In M. Lytras & S. Alajlan (Eds.), Transforming Pharmaceutical Research With Artificial Intelligence* (pp. 189-218). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6270-9.ch007

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Impact Factor: 7.67

- [92]. SLiyakat, K. S. (2025g). A Study on AI-Driven Internet of Battlefield Things (IoBT)-Based Decision Making: KSK Approach in IoBT. In M. Tariq (Ed.), *Merging Artificial Intelligence With the Internet of Things* (pp. 203-238). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8547-0.ch007
- [93]. SLiyakat, K. S. (2025h). KK Approach to Increase Resilience in Internet of Things: A T-Cell Security Concept. In M. Almaiah & S. Salloum (Eds.), *Cryptography, Biometrics, and Anonymity in Cybersecurity* Management (pp. 199-228). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8014-7.ch010
- [94]. SLiyakat, K. S. (2025i). KK Approach for IoT Security: T-Cell Concept. In R. Kumar, S. Peng, P. Jain, & A. Elngar (Eds.), *Deep Learning Innovations for Securing Critical Infrastructures* (pp. 369-390). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3373-0563-9.ch022
- [95]. SLiyakat, K. S. (2025j). Hydrogen Energy: Adaptation and Challenges. In J. Mabrouki (Ed.), *Obstacles Facing Hydrogen Green Systems and Green Energy* (pp. 205-236). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8980-5.ch013
- [96]. SLiyakat, K. S. (2025k). Roll of Carbon-Based Supercapacitors in Regenerative Breaking for Electrical Vehicles. In M. Mhadhbi (Ed.), *Innovations in Next-Generation Energy Storage Solutions* (pp. 523-572). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9316-1.ch017
- [97]. SLiyakat, S. (2025). AI-Driven-IoT (AIIoT)-Based Decision Making in Drones for Climate Change: KSK Approach. *In S. Aouadni & I. Aouadni (Eds.), Recent Theories and Applications for Multi-Criteria Decision-Making* (pp. 311-340). IGI Global. https://doi.org/10.4018/979-8-3693-6502-1.ch011
- [98]. SLiyakat, S. (2025m). Machine Learning-Driven Internet of Medical Things (ML-IoMT)-Based Healthcare Monitoring System. In B. Soufiene & C. Chakraborty (Eds.), Responsible AI for Digital Health and Medical Analytics (pp. 49-86). IGI Global Scientific Publishing. https://doi.org/10.4018/97983693-6294-5.ch003
- [99]. SLiyakat, S. (2025n). Transformation of Agriculture Effectuated by Artificial Intelligence-Driven Internet of Things (AIIoT). In J. Garwi, M. Dzingirai, & R. Masengu (Eds.), *Integrating Agriculture, Green Marketing Strategies, and Artificial Intelligence* (pp. 449-484). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6468-0.ch015

