

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ctober 2025 Impact Factor: 7.67

Volume 5, Issue 1, October 2025

AI-Powered Motorcycle Anti-Theft and Safety System

Paul Pranit Sunil¹, Dhyvarkonda Udaykiran Tulshidas², Gone Yashasvi Prakash³, Dr. Kazi K. S.⁴

^{1,2,3}UG Students, Department Electronics and Telecommunication
⁴Head of Department, Department Electronics and Telecommunication
Brahmdevdada Mane Institute of Technology Solapur, Maharashtra, India, pran.itspaul@gmail.com

Abstract: This document gives formatting instructions for authors preparing papers for publication in the International Journal. This paper presents the development of an AI-based Anti-Theft and Safety System for motorcycles using IoT and embedded systems. The project addresses major challenges for riders: motorcycle theft and slow accident response. Current limitations include the failure of normal locks and alarms to prevent theft or provide quick accident assistance. The proposed solution features biometric authentication (fingerprint/face) for ignition, ensuring only the owner can start the bike. If unauthorized access or tampering is detected, the system immediately blocks the ignition, sounds an alarm, and sends an SMS alert with GPS location to the owner. Furthermore, integrated motion sensors (accelerometer and gyroscope) detect falls or crashes, automatically sending an emergency SMS with live GPS location to family/friends. The system integrates biometric authentication, GPS tracking, and AI algorithms to make motorcycles safer, smarter, and harder to steal.

Keywords: AI, Biometric Security, GPS Tracking, Motorcycle Safety, Anti-Theft System

I. INTRODUCTION

This document is a template. An electronic copy can be downloaded from the website. The proposed system integrates several key technologies to create a robust and intelligent solution for motorcycle security and safety. The key components include biometric authentication (such as fingerprint or face recognition), real-time **GPS tracking**, and **fall/crash detection** using dedicated sensors. The use of AI algorithms is critical to enable smarter detection of both unauthorized access and accidents. Communication is handled through **real-time alerts via GSM/App** to the owner or pre-configured emergency contacts. Ultimately, this system aims to make motorcycles significantly safer, smarter, and more resistant to theft than traditional methods[1-30].

Motorcycles offer the purest form of kinetic freedom. But that thrill comes tethered to a silent anxiety: vulnerability. A bike is easily targeted, easily towed, and often left unprotected. For decades, security has relied on heavy chains, loud alarms, and passive GPS trackers—measures that react to trouble but rarely prevent it. The next evolutionary leap is here: Integrated AI-Powered Safety and Anti-Theft Systems. This technology isn't just an alarm; it's an invisible, intelligent crew chief that guards your machine 24/7 and acts as a proactive co-pilot on the road[31-76].

Part I: The Algorithmic Muscle – Zero-Tolerance Anti-Theft

The AI anti-theft system transcends simple geofencing and motion sensors by creating a complex "digital twin" of the motorcycle and its owner's behavior. It operates in three predictive spheres:

1. Behavioral Biometrics and Predictive Locking

Traditional security waits for a lock to be broken. The Digital Sentinel anticipates the attempt.

The system learns the nuanced vibrational profile of the bike—the specific rumble of the engine starting, the gentle sway when the owner climbs on, and the characteristic lack of movement when it's parked.

Micro-Vibrational Analysis: Any irregular contact—the lift of a hydraulic jack, the specific frequency of a grinder, or the sudden, unnatural movement of the handlebars—triggers an alert long before physical damage occurs.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 1, October 2025

Biometric Handshake: The bike establishes a continuous, encrypted connection with the rider's smart device or biometric helmet. If the bike moves without this authorized "handshake," the AI immediately recognizes an anomaly. If the owner's approved device is stationary 10 miles away (verified by external GPS/cellular data), the system confirms the unauthorized access.

The Unmovable Object: In the event of confirmed theft, the AI doesn't just send an alert; it initiates a stratified, invisible lockdown. If the engine is running, the AI can degrade performance until the bike is gently brought to a halt. If it's being lifted or towed, the magnetic suspension locks into a rigid, non-compliant posture, sometimes triggering internal, non-destructive chemical markers that tag the surroundings or the vehicle itself for later identification, rendering the bike essentially immobile and useless.

2. Contextual Threat Mapping

The AI overlays real-time crime data and user-generated alerts onto the motorcycle's current location.

A park job mght be safe at noon, but high-risk at 3 AM. If the bike is parked in a transient "hot zone" late at night, the system defaults to a higher sensitivity. It reports back to the owner: "High risk of unauthorized access detected in current area. Initiating full system lockdown."

If the bike is moved from a secure garage to an unfamiliar location, the AI immediately flags the change and increases its monitoring tempo, transforming the bike from a passive target into an actively defended fortress.

Part II: The Invisible Co-Pilot – Proactive Safety

The true genius of the AI system lies in its ability to transition seamlessly from guarding the parked machine to safeguarding the rider in motion.

1. Real-Time Danger Assessment (RTDA)

Using forward-facing LiDARS and integrated cameras, the AI processes environmental data faster than the human brain. It doesn't just see obstacles; it predicts trajectories and risks.

Anticipatory Braking Support: If the system calculates that a car is running a red light or that debris on the road requires a reaction time the rider is unlikely to meet, it can subtly precondition the brakes or even apply micro-corrections to the throttle and stability control. This is not autonomous driving; it is augmented riding, designed to tighten reaction windows without usurping control.

Lean Angle Optimization: The AI monitors road surface quality (wetness, gravel) via sensor feedback and matches it against the rider's current speed and lean angle. If the limits are being approached, it provides haptic feedback through the handlebars—a gentle, escalating vibration—warning the rider to adjust their input before grip is truly lost.

2. Fatigue and Cognitive Monitoring

The motorcycle is connected to the rider through their helmet and controls. The AI learns the rider's baseline behavior: how they modulate the throttle, their preferred braking pressure, and the subtlety of their steering inputs.

Detecting Deviation: On long rides, fatigue introduces micro-deviations—slower steering response, inconsistent throttle holding, or delayed braking application. When the AI detects these measurable drops in cognitive performance, it prompts the rider: "Fatigue detected. Suggesting rest stop in 5 miles."

Automated Emergency Response (e-Call): In the event of a high-impact crash, the integrated accelerometer and gyroscope instantly confirm the accident. If the rider does not respond to an audio prompt within 45 seconds, the AI automatically contacts emergency services, relaying the exact GPS coordinates, the velocity at impact, and the rider's pre-registered medical profile (blood type, known allergies).

The AI-powered motorcycle is not just a collection of sensors; it is a learning system. Every ride, every near-miss, and every attempted theft is instantaneously integrated into the machine's collective intelligence. These data points refine the algorithms, making the system smarter, faster, and less intrusive over time.

This technology transforms the riding experience. The anxiety of parking is replaced by guaranteed security; the risk of the open road is mitigated by an unblinking algorithmic guardian. The freedom remains, but the vulnerability fades.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 1, October 2025

For the modern motorcyclist, the future is not about riding with a security system; it's about riding inside one—a digital tether that ensures your passion remains protected, awake, and ready for the next adventure.

II. PROBLEM STATEMENT

The system addresses critical challenges faced by motorcycle riders and the limitations of existing security measures:

- Rising Motorcycle Theft: Two-wheelers are consistently among the most frequently stolen vehicles worldwide.
- Lack of Smart Authentication: Most bikes still rely on simple physical keys, which are easy to bypass.
- **Delayed Theft Detection:** Current anti-theft systems often alert the owner only after the vehicle has been stolen and moved.
- Poor Connectivity: GSM-based systems can fail in areas with weak mobile signals, leading to alert failures.
- No Centralized Integration: Existing solutions typically lack effective connectivity to a centralized cloud or mobile application platform.
- High Cost: There is a market need for a reliable, low-cost alternative to expensive commercial security solutions.

III. WORKING

The system's functionality is divided into two modules: anti-theft and safety, all controlled by a central microcontroller like the **ESP32**.

3.1 Anti-Theft Security

The system uses a biometric sensor (e.g., fingerprint sensor). Only the authorized user who successfully authenticates can start the engine. If an unauthorized attempt is detected:

The system immediately **blocks the ignition** and sounds an alarm.

An **SMS** is sent to the owner via a **GSM module** (e.g., SIM800L), including the bike's current **GPS location** (via a GPS Module like NEO-6M).

The owner can track the bike and remotely **lock/unlock the engine** via a connected mobile app or SMS command.

3.2 Safety Module - Accident Detection

The bike is equipped with **motion sensors** (Accelerometer & Gyroscope, e.g., MPU6050) that continuously monitor for a fall or accident.

If a crash or fall is detected by the impact sensors and AI algorithms, an alert is triggered.

An emergency SMS is automatically sent to pre-configured family/friends (or emergency services) with the precise live GPS location.

3.3 Hardware Components

The system utilizes the following key components:

- Microcontroller: ESP-32
- Location Tracking: GPS Module (NEO-6M GPS)
- Communication: GSM Module (SIM800L), Wi-Fi or Bluetooth Module
- Motion/Impact Sensing: Accelerometer & Gyroscope (MPU6050), Vibration Sensor (SW-420)
- Actuator/Alerts: Relay Module (for ignition block), Buzzer or Alarm

IV. ADVANTAGE & APPLICATION

4.1 Key Advantages

• **High Security:** Biometric recognition and AI make the system significantly harder to bypass than traditional locks and alarms.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 1, October 2025

- Real-Time Alerts: The owner receives instant notifications via app or SMS if theft is detected.
- Engine Immobilization: The bike's engine can be locked remotely, immediately stopping a theft.
- **Versatile Operation:** The system can function with internet (app + cloud) or without internet (SMS via GSM).

4.2 Diverse Applications

- **Personal Motorcycles:** Provides enhanced security and crash-response for daily riders.
- Fleet Management: Ideal for rental companies or delivery services requiring real-time tracking and security.
- Motorsport Safety: Can be integrated into track day protocols for rapid crash response.

V. FUTURE SCOPES

Future development includes expanding the system with advanced features:

- Predictive Maintenance: Integrating telematics to monitor bike health and proactively alert owners about maintenance needs.
- Adaptive AI Learning: Continuous learning from rider behavior and environmental factors to reduce false alarms and improve detection accuracy.
- **V2X Communication:** Incorporating Vehicle-to-Everything communication for enhanced road safety, collision avoidance, and smart city integration.
- Integrated Dash Cams: Adding AI-powered dash cameras for accident reconstruction and additional security surveillance.

VI. CONCLUSION

The AI-Powered Motorcycle Anti-Theft and Safety System represents a paradigm shift in vehicle protection and rider well-being. By leveraging cutting-edge artificial intelligence, real-time communication, and integrated sensor technology, this solution offers an unparalleled level of security and peace of mind. The system not only safeguards valuable assets but also provides critical, life-saving support when an accident occurs, setting a new benchmark for intelligent motorcycle safety solutions.

VII. ACKNOWLEDGMENT

I wish to seize this opportunity to sincerely thank all of those who have guided, supported, and encouraged me during the completion of this project titled "AI-Powered Motorcycle Anti-Theft And Safety System' Most importantly, I would like to thank my project guide, IR.Dr. Kazi K.S for his priceless guidance, continuous encouragement, and constructive feedback during every stage of this project. I would also like to thank again IR Dr. KAZI K.S., Head of the Department of Electronics and Telecommunication Engineering, for providing the required facilities, resources and inspiration in completing this work. Life is a journey; I would also like to thank all the faculty members & staff of the department for their valuable suggestions and technical assistance. Their guidance has been a crucial factor in developing the understanding of the subject and the quality work produced in this project.

REFERENCES

- [1]. Altaf O. Mulani, ArtiVasant Bang, Ganesh B. Birajadar, Amar B. Deshmukh, and HemlataMakarandJadhav, (2024). IoT Based Air, Water, and Soil Monitoring System for Pomegranate Farming, *Annals of Agri-Bio Research*. 29 (2): 71-86, 2024.
- [2]. BhawanaParihar, AjmeeraKiran, SabithaValaboju, Syed Zahidur Rashid, and Anita Sofia Liz D R. (2025). Enhancing Data Security in Distributed Systems Using Homomorphic Encryption and Secure Computation Techniques, *ITM Web Conf.*, 76 (2025) 02010. DOI: https://doi.org/10.1051/itmconf/20257602010
- [3]. C. Veena, M. Sridevi, K. K. S. Liyakat, B. Saha, S. R. Reddy and N. Shirisha,(2023). HEECCNB: An Efficient IoT-Cloud Architecture for Secure Patient Data Transmission and Accurate Disease Prediction in

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

9001:201

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Impact Factor: 7.67

- Healthcare Systems, 2023 Seventh International Conference on Image Information Processing (ICIIP), Solan, India, 2023, pp. 407-410, doi: 10.1109/ICIIP61524.2023.10537627. Available at: https://ieeexplore.ieee.org/document/10537627
- [4]. D. A. Tamboli, V. A. Sawant, M. H. M. and S. Sathe, (2024). AI-Driven-IoT(AIIoT) Based Decision-Making- KSK Approach in Drones for Climate Change Study, 2024 4th International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS), Gobichettipalayam, India, 2024, pp. 1735-1744, doi: 10.1109/ICUIS64676.2024.10866450.
- [5]. H. T. Shaikh, (2025). Empowering the IoT: The Study on Role of Wireless Charging Technologies, *Journal of Control and Instrumentation Engineering*, vol. 11, no. 2, pp. 29-39, Jul. 2025.
- [6]. H. T. Shaikh, (2025b). Pre-Detection Systems Transfiguring Intoxication and Smoking Using Sensor and AI, *Journal of Instrumentation and Innovation Sciences*, vol. 10, no. 2, pp. 19-31, Jul. 2025.
- [7]. K. Rajendra Prasad, Santoshachandra Rao Karanam et al. (2024). AI in public-private partnership for IT infrastructure development, *Journal of High Technology Management Research*, Volume 35, Issue 1, May 2024, 100496. https://doi.org/10.1016/j.hitech.2024.100496
- [8]. KKS Liyakat. (2023). Detecting Malicious Nodes in IoT Networks Using Machine Learning and Artificial Neural Networks, 2023 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 2023, pp. 1-5, doi:10.1109/ESCI56872.2023.10099544. Available at: https://ieeexplore.ieee.org/document/10099544/
- [9]. KKS Liyakat, (2024). Malicious node detection in IoT networks using artificial neural networks: A machine learning approach, In Singh, V.K., Kumar Sagar, A., Nand, P., Astya, R., &Kaiwartya, O. (Eds.). Intelligent Networks: Techniques, and Applications (1st ed.). CRC Press. https://doi.org/10.1201/9781003541363
- [10]. K. Kasat, N. Shaikh, V. K. Rayabharapu, and M. Nayak. (2023). Implementation and Recognition of Waste Management System with Mobility Solution in Smart Cities using Internet of Things, 2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS), Trichy, India, 2023, pp. 1661-1665, doi: 10.1109/ICAISS58487.2023.10250690 . Available at: https://ieeexplore.ieee.org/document/10250690/
- [11]. K S K, (2024c). Vehicle Health Monitoring System (VHMS) by Employing IoT and Sensors, *Grenze International Journal of Engineering and Technology*, Vol 10, Issue 2, pp- 5367-5374. Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=3371&id=8
- [12]. K S K, (2024e). A Novel Approach on ML based Palmistry, Grenze International Journal of Engineering and Technology, Vol 10, Issue 2, pp- 5186-5193. Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=3344&id=8
- [13]. K S K, (2024f).IoT based Boiler Health Monitoring for Sugar Industries, Grenze International Journal of Engineering and Technology, Vol 10, Issue 2, pp. 5178 -5185. Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=3343&id=8
- [14]. Keerthana, R., K, V., Bhagyalakshmi, K., Papinaidu, M., V, V., & Liyakat, K. K. S. (2025). Machine learning based risk assessment for financial management in big data IoT credit. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.5086671
- [15]. KKS Liyakat, (2024a). Explainable AI in Healthcare. In: Explainable Artificial Intelligence in healthcare System, editors: *A. AnithaKamaraj, Debi PrasannaAcharjya*. ISBN: 979-8-89113-598-7. **DOI**: https://doi.org/10.52305/GOMR8163
- [16]. KKS Liyakat, (2024b). Machine Learning (ML)-Based Braille Lippi Characters and Numbers Detection and Announcement System for Blind Children in Learning, In GamzeSart (Eds.), Social Reflections of Human-Computer Interaction in Education, Management, and Economics, IGI Global. https://doi.org/10.4018/979-8-3693-3033-3.ch002
- [17]. Kulkarni S G, (2025). Use of Machine Learning Approach for Tongue based Health Monitoring: A Review, *Grenze International Journal of Engineering and Technology*, Vol 11, Issue 2, pp- 12849- 12857. Grenze ID:

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Impact Factor: 7.67

at:

01.GIJET.11.2.311_22 Available https://thegrenze.com/index.php?display=page&view=journalabstract&absid=6136&id=8

- [18]. Kutubuddin, KSK Approach in LOVE Health: AI-Driven- IoT(AIIoT) based Decision Making System in LOVE Health for Loved One, GRENZE International Journal of Engineering and Technology, 2025, 11(1), pp. 4628-4635. Grenze ID: 01.GIJET.11.1.371 1
- [19]. Liyakat, K.K.S. (2023a). Machine Learning Approach Using Artificial Neural Networks to Detect Malicious Nodes in IoT Networks. In: Shukla, P.K., Mittal, H., Engelbrecht, A. (eds) Computer Vision and Robotics. CVR 2023. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-99-4577-1 3
- [20]. Liyakat K. S. (2024). ChatGPT: An Automated Teacher's Guide to Learning. In R. Bansal, A. Chakir, A. HafazNgah, F. Rabby, & A. Jain (Eds.), AI Algorithms and ChatGPT for Student Engagement in Online Learning (pp. 1-20). IGI Global. https://doi.org/10.4018/979-8-3693-4268-8.ch001
- [21]. Liyakat. (2024a). Machine Learning Approach Using Artificial Neural Networks to Detect Malicious Nodes in IoT Networks. *In: Udgata, S.K., Sethi, S., Gao, XZ. (eds) Intelligent Systems. ICMIB 2023. Lecture Notes in Networks and Systems, vol 728. Springer, Singapore.* https://doi.org/10.1007/978-981-99-3932-9_12 available at: https://link.springer.com/chapter/10.1007/978-981-99-3932-9_12
- [22]. Liyakat, K. K. (2025a). Heart Health Monitoring Using IoT and Machine Learning Methods. In A. Shaik (Ed.), *AI-Powered Advances in Pharmacology* (pp. 257-282). IGI Global. https://doi.org/10.4018/979-8-3693-3212-2.ch010
- [23]. Liyakat. (2025c). IoT Technologies for the Intelligent Dairy Industry: A New Challenge. In S. Thandekkattu& N. Vajjhala (Eds.), *Designing Sustainable Internet of Things Solutions for Smart Industries* (pp. 321-350). IGI Global. https://doi.org/10.4018/979-8-3693-5498-8.ch012
- [24]. Liyakat. (2025d). AI-Driven-IoT(AIIoT)-Based Decision Making in Kidney Diseases Patient Healthcare Monitoring: KSK Approach for Kidney Monitoring. In L. ÖzgürPolat& O. Polat (Eds.), AI-Driven Innovation in Healthcare Data Analytics (pp. 277-306). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7277-7.ch009
- [25]. Liyakat. (2026). Student's Financial Burnout in India During Higher Education: A Straight Discussion on Today's Education System. In S. Hai-Jew (Ed.), *Financial Survival in Higher Education* (pp. 359-394). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3373-0407-6.ch013
- [26]. M Pradeepa, et al. (2022). Student Health Detection using a Machine Learning Approach and IoT, 2022 IEEE 2nd Mysore sub section International Conference (MysuruCon), 2022. Available at: https://ieeexplore.ieee.org/document/9972445
- [27]. Mahant, M. A. (2025). Machine Learning-Driven Internet of Things (MLIoT)-Based Healthcare Monitoring System. In N. Wickramasinghe (Ed.), *Digitalization and the Transformation of the Healthcare Sector* (pp. 205-236). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9641-4.ch007
- [28]. Mulani AO, Liyakat KKS, Warade NS, et al. (2025). ML-powered Internet of Medical Things Structure for Heart Disease Prediction. *Journal of Pharmacology and Pharmacotherapeutics*. 2025; 0(0). doi:10.1177/0976500X241306184
- [29]. N. R. Mulla, (2025). Pipeline Pressure and Flow Rate Monitoring Using IoT Sensors and ML Algorithms to Detect Leakages, *Int. J. Artif. Intell. Mech. Eng.*, vol. 1, no. 1, pp. 20–30, Jun. 2025.
- [30]. N. R. Mulla, (2025a). Nuclear Energy: Powering the Future or a Risky Relic, *International Journal of Sustainable Energy and Thermoelectric Generator*, vol. 1, no. 1, pp. 52–63, Jun. 2025.
- [31]. NikatRajakMulla, (2025b). Sensor-based Aircraft Wings Design Using Airflow Analysis, *International Journal of Image Processing and Smart Sensors*, vol. 1, no. 1, pp. 55-65, Jun. 2025.
- [32]. N. R. Mulla, (2025c). A Study on Machine Learning for Metal Processing: A New Future, *International Journal of Machine Design and Technology*, vol. 1, no. 1, pp. 56–69, Jun. 2025.
- [33]. NikatRajakMulla, (2025d). Sensor-based Aircraft Wings Design Using Airflow Analysis, *International Journal of Image Processing and Smart Sensors*, vol. 1, no. 1, pp. 55-65, Jun. 2025.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 1, October 2025

- [34]. N. R. Mulla, (2025e). Node MCU and IoT Centered Smart Logistics, *International Journal of Emerging IoT Technologies in Smart Electronics and Communication*, vol. 1, no. 1, pp. 20-36, Jun-2025.
- [35]. NikatRajakMulla,(2025f). Air Flow Analysis in Sensor-Based Aircraft Wings Design. *Recent Trends in Fluid Mechanics*. 2025; 12(2): 29–39p.
- [36]. NikatRajakMulla,(2025g). IoT Sensors To Monitor Pipeline Pressure and Flow Rate Combined with Ml-Algorithms to Detect Leakages. *Recent Trends in Fluid Mechanics*. 2025; 12(2): 40–48p.
- [37]. NikatRajakMulla, (2025h). Nano-Materials in Vaccine Formation and Chemical Formulae's for Vaccination. *Journal of Nanoscience, NanoEngineering& Applications*. 2025; 15(03).
- [38]. Odnala, S., Shanthy, R., Bharathi, B., Pandey, C., Rachapalli, A., & Liyakat, K. K. S. (2025). Artificial Intelligence and Cloud-Enabled E-Vehicle Design with Wireless Sensor Integration. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.5107242
- [39]. P. Neeraja, R. G. Kumar, M. S. Kumar, K. K. S. Liyakat and M. S. Vani. (2024), DL-Based Somnolence Detection for Improved Driver Safety and Alertness Monitoring. 2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT), Greater Noida, India, 2024, pp. 589-594, doi: 10.1109/IC2PCT60090.2024.10486714. Available at: https://ieeexplore.ieee.org/document/10486714
- [40]. Prashant K Magadum (2024). Machine Learning for Predicting Wind Turbine Output Power in Wind Energy Conversion Systems, *Grenze International Journal of Engineering and Technology*, Jan Issue, Vol 10, Issue 1, pp. 2074-2080. Grenze ID: 01.GIJET.10.1.4_1Available at:https://thegrenze.com/index.php?display=page&view=journalabstract&absid=2514&id=8
- [41]. PriyaMangeshNerkar, BhagyarekhaUjjwalganeshDhaware. (2023). Predictive Data Analytics Framework Based on Heart Healthcare System (HHS) Using Machine Learning, *Journal of Advanced Zoology*, 2023, Volume 44, Special Issue -2, Page 3673:3686. Available at: https://jazindia.com/index.php/jaz/article/view/1695
- [42]. PriyaNerkar and Sultanabanu, (2024). IoT-Based Skin Health Monitoring System, International Journal of Biology, Pharmacy and Allied Sciences (IJBPAS). 2024, 13(11): 5937-5950. https://doi.org/10.31032/IJBPAS/2024/13.11.8488
- [43]. S. B. Khadake, A. B. Chounde, A. A. Suryagan, M. H. M. and M. R. Khadatare, (2024). AI-Driven-IoT(AIIoT) Based Decision Making System for High-Blood Pressure Patient Healthcare Monitoring, 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA), Theni, India, 2024, pp. 96-102, doi: 10.1109/ICSCNA63714.2024.10863954.
- [44] S. B. Khadake, P. S. More, R. J. Shinde, K. P. Kondubhairi and S. S. Kamble, (2025). AI-Driven IoT based Decision Making for Hepatitis Diseases Patient's Healthcare Monitoring: KSK Approach for Hepatitis Patient Monitoring, 2025 7th International Conference on Intelligent Sustainable Systems (ICISS), India, 2025, pp. 256-263, doi: 10.1109/ICISS63372.2025.11076213.
- [45]. S. B. Khadake, K. Galani, K. B. Patil, A. Dhavale and S. D. Sarik, (2025a). AI-Powered-IoT (AIIoT) based Bridge Health Monitoring using Sensor Data for Smart City Management- A KSK Approach, 2025 7th International Conference on Intelligent Sustainable Systems (ICISS), India, 2025, pp. 296-305, doi: 10.1109/ICISS63372.2025.11076329.
- [46]. S. B. Khadake, B. R. Ingale, D. D. D., S. S. Sudake and M. M. Awatade, (2025b). Kidney Diseases Patient Healthcare Monitoring using AI-Driven-IoT(AIIoT) An KSK1 Approach, 2025 7th International Conference on Intelligent Sustainable Systems (ICISS), India, 2025, pp. 264-272, doi: 10.1109/ICISS63372.2025.11076397.
- [47]. Sayyad. (2025a). AI-Powered-IoT (AIIoT)-Based Decision-Making System for BP Patient's Healthcare Monitoring: KSK Approach for BP Patient Healthcare Monitoring. In S. Aouadni & I. Aouadni (Eds.), Recent Theories and Applications for Multi-Criteria Decision-Making (pp. 205-238). IGI Global. https://doi.org/10.4018/979-8-3693-6502-1.ch008

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Impact Factor: 7.67

- [48]. Sayyad (2025b). AI-Powered IoT (AI IoT) for Decision-Making in Smart Agriculture: KSK Approach for Smart Agriculture. In S. Hai-Jew (Ed.), *Enhancing Automated Decision-Making Through AI* (pp. 67-96). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6230-3.ch003
- [49]. Sayyad (2025c). KK Approach to Increase Resilience in Internet of Things: A T-Cell Security Concept. In D. Darwish& K. Charan (Eds.), Analyzing Privacy and Security Difficulties in Social Media: New Challenges and Solutions (pp. 87-120). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9491-5.ch005
- [50]. Sayyad, (2025). KK Approach for IoT Security: T-Cell Concept. In Rajeev Kumar, Sheng-Lung Peng, & Ahmed Elngar (Eds.), *Deep Learning Innovations for Securing Critical Infrastructures*. IGI Global Scientific Publishing. DOI: 10.4018/979-8-3373-0563-9.ch022
- [51]. Sayyad (2025d). Healthcare Monitoring System Driven by Machine Learning and Internet of Medical Things (MLIoMT). In V. Kumar, P. Katina, & J. Zhao (Eds.), Convergence of Internet of Medical Things (IoMT) and Generative AI (pp. 385-416). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6180-1.ch016
- [52]. Shinde, S. S., Nerkar, P. M., SLiyakat, S. S., &SLiyakat, V. S. (2025). Machine Learning for Brand Protection: A Review of a Proactive Defense Mechanism. *In M. Khan & M. Amin UlHaq (Eds.), Avoiding Ad Fraud and Supporting Brand Safety: Programmatic Advertising Solutions* (pp. 175-220). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7041-4.ch007
- [53]. SilpaRaj M, Senthil Kumar R, Jayakumar K, Gopila M, Senthilkumar S. (2025). Scalable Internet of Things Enabled Intelligent Solutions for Proactive Energy Engagement in Smart Grids Predictive Load Balancing and Sustainable Power Distribution, In S. Kannadhasan et al. (eds.), Proceedings of the International Conference on Sustainability Innovation in Computing and Engineering (ICSICE 24), Advances in Computer Science Research 120, https://doi.org/10.2991/978-94-6463-718-2 85
- [54]. SLiyakat, K. (2024a). AI-Driven IoT (AIIoT) in Healthcare Monitoring. In T. Nguyen & N. Vo (Eds.), *Using Traditional Design Methods to Enhance AI-Driven Decision Making* (pp. 77-101). IGI Global. https://doi.org/10.4018/979-8-3693-0639-0.ch003 available at: https://www.igi-global.com/chapter/ai-driven-iot-aiiot-in-healthcare-monitoring/336693
- [55]. SLiyakat, K. (2024b). Modelling and Simulation of Electric Vehicle for Performance Analysis: BEV and HEV Electrical Vehicle Implementation Using Simulink for E-Mobility Ecosystems. In L. D., N. Nagpal, N. Kassarwani, V. Varthanan G., & P. Siano (Eds.), E-Mobility in Electrical Energy Systems for Sustainability (pp. 295-320). IGI Global. https://doi.org/10.4018/979-8-3693-2611-4.ch014 Available at: https://www.igi-global.com/gateway/chapter/full-text-pdf/341172
- [56]. SLiyakat, S. (2024c). Machine Learning-Based Pomegranate Disease Detection and Treatment. *In M. Zia UlHaq& I. Ali (Eds.), Revolutionizing Pest Management for Sustainable Agriculture* (pp. 469-498). IGI Global. https://doi.org/10.4018/979-8-3693-3061-6.ch019
- [57]. SLiyakat, S. (2024d). Computer-Aided Diagnosis in Ophthalmology: A Technical Review of Deep Learning Applications. In M. Garcia & R. de Almeida (Eds.), *Transformative Approaches to Patient Literacy and Healthcare Innovation* (pp. 112-135). IGI Global. https://doi.org/10.4018/979-8-3693-3661-8.ch006 Available at: https://www.igi-global.com/chapter/computer-aided-diagnosis-in-ophthalmology/342823
- [58]. SLiyakat, S. (2024e). IoT Driven by Machine Learning (MLIoT) for the Retail Apparel Sector. *In T. Tarnanidis, E. Papachristou, M. Karypidis, & V. Ismyrlis (Eds.), Driving Green Marketing in Fashion and Retail* (pp. 63-81). IGI Global. https://doi.org/10.4018/979-8-3693-3049-4.ch004
- [59]. SLiyakat, S. (2024f). Artificial Intelligence (AI)-Driven IoT (AIIoT)-Based Agriculture Automation. In S. Satapathy& K. Muduli (Eds.), *Advanced Computational Methods for Agri-Business Sustainability* (pp. 72-94). IGI Global. https://doi.org/10.4018/979-8-3693-3583-3.ch005
- [60]. SLiyakat, K. (2025). Machine Learning-Powered IoT (MLIoT) for Retail Apparel Industry. In T. Tarnanidis, E. Papachristou, M. Karypidis, & V. Manda (Eds.), *Sustainable Practices in the Fashion and Retail Industry* (pp. 345-372). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9959-0.ch015

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Impact Factor: 7.67

- [61]. SLiyakat, K. S. (2025a). Braille-Lippi Numbers and Characters Detection and Announcement System for Blind Children Using KSK Approach: AI-Driven Decision-Making Approach. In T. Murugan, K. P., & A. Abirami (Eds.), Driving Quality Education Through AI and Data Science (pp. 531-556). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8292-9.ch023
- [62]. SLiyakat, K. S. (2025b). AI-Driven IoT (AIIoT)-Based Decision-Making System for High BP Patient Healthcare Monitoring: KSK1 Approach for BP Patient Healthcare Monitoring. In T. Mzili, A. Arya, D. Pamucar, & M. Shaheen (Eds.), Optimization, Machine Learning, and Fuzzy Logic: Theory, Algorithms, and Applications (pp. 71-102). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7352-1.ch003
- [63]. SLiyakat, K. S. (2025c). Advancing Towards Sustainable Energy With Hydrogen Solutions: Adaptation and Challenges. In F. Özsungur, M. ChaychiSemsari, & H. KüçükBayraktar (Eds.), Geopolitical Landscapes of Renewable Energy and Urban Growth (pp. 357-394). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8814-3.ch013
- [64]. SLiyakat, K. S. (2025d). AI-Driven-IoT (AIIoT) Decision-Making System for Hepatitis Disease Patient Healthcare Monitoring: KSK1 Approach for Hepatitis Patient Monitoring. In S. Agarwal, D. Lakshmi, & L. Singh (Eds.), *Navigating Innovations and Challenges in Travel Medicine and Digital Health* (pp. 431-450). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8774-0.ch022
- [65]. SLiyakat, K. S. (2025e). AI-Driven-IoT (AIIoT)-Based Jawar Leaf Disease Detection: KSK Approach for Jawar Disease Detection. In U. Bhatti, M. Aamir, Y. Gulzar, & S. UllahBazai (Eds.), Modern Intelligent Techniques for Image Processing (pp. 439-472). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9045-0.ch019
- [66] SLiyakat, K. S. (2025f). AI-Powered-IoT (AIIoT)-Based Decision-Making System for BP-Patient Healthcare Monitoring: BP-Patient Health Monitoring Using KSK Approach. In M. Lytras& S. Alajlan (Eds.), Transforming Pharmaceutical Research With Artificial Intelligence (pp. 189-218). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6270-9.ch007
- [67]. SLiyakat, K. S. (2025g). A Study on AI-Driven Internet of Battlefield Things (IoBT)-Based Decision Making: KSK Approach in IoBT. In M. Tariq (Ed.), Merging Artificial Intelligence With the Internet of Things (pp. 203-238). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8547-0.ch007
- [68]. SLiyakat, K. S. (2025h). KK Approach to Increase Resilience in Internet of Things: A T-Cell Security Concept. In M. Almaiah& S. Salloum (Eds.), Cryptography, Biometrics, and Anonymity in Cybersecurity Management (pp. 199-228). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8014-7.ch010
- [69]. SLiyakat, K. S. (2025i). KK Approach for IoT Security: T-Cell Concept. In R. Kumar, S. Peng, P. Jain, & A. Elngar (Eds.), *Deep Learning Innovations for Securing Critical Infrastructures* (pp. 369-390). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3373-0563-9.ch022
- [70]. SLiyakat, K. S. (2025j). Hydrogen Energy: Adaptation and Challenges. In J. Mabrouki (Ed.), *Obstacles Facing Hydrogen Green Systems and Green Energy* (pp. 205-236). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8980-5.ch013
- [71]. SLiyakat, K. S. (2025k). Roll of Carbon-Based Supercapacitors in Regenerative Breaking for Electrical Vehicles. In M. Mhadhbi (Ed.), *Innovations in Next-Generation Energy Storage Solutions* (pp. 523-572). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9316-1.ch017
- [72]. SLiyakat, S. (20251). AI-Driven-IoT (AIIoT)-Based Decision Making in Drones for Climate Change: KSK Approach. *In S. Aouadni& I. Aouadni (Eds.), Recent Theories and Applications for Multi-Criteria Decision-Making* (pp. 311-340). IGI Global. https://doi.org/10.4018/979-8-3693-6502-1.ch011
- [73]. SLiyakat, S. (2025m). Machine Learning-Driven Internet of Medical Things (ML-IoMT)-Based Healthcare Monitoring System. In B. Soufiene& C. Chakraborty (Eds.), *Responsible AI for Digital Health and Medical Analytics* (pp. 49-86). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6294-5.ch003

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Impact Factor: 7.67

- [74]. SLiyakat, S. (2025n). Transformation of Agriculture Effectuated by Artificial Intelligence-Driven Internet of Things (AIIoT). In J. Garwi, M. Dzingirai, & R. Masengu (Eds.), *Integrating Agriculture, Green Marketing Strategies, and Artificial Intelligence* (pp. 449-484). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6468-0.ch015
- [75]. Upadhyaya, A. N., Surekha, C., Malathi, P., Suresh, G., Suriyan, K., & Liyakat, K. K. S. (2025). Pioneering cognitive computing for transformative healthcare innovations. *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.5086894.
- [76]. Vaishnavi Ashok Desai, (2025). AI and Sensor Systems Revolutionizing Intoxication and Smoking Pre-Detection. *Journal of Control & Instrumentation*. 2025; 16(3): 15–26p

