
IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, March 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2898 450
 www.ijarsct.co.in

 Impact Factor: 6.252

Deep Learning for Computer Vision: A Brief

Review
Ksheera R Shetty1, Vaibhav S Soorinje2, Prinson Dsouza3, Swasthik4

Department of Computer Science and Engineering1,2,3,4

Alva’s Institute Of Engineering and Technology, Mangalore, India

Abstract: Over the last years deep learning methods have been shown to outperform previous state-of-the-

art machine learning techniques in several fields, with computer vision being one of the most prominent cases.

This review paper provides a brief overview of some of the most significant deep learning schemes used in

computer vision problems, that is, Convolutional Neural Networks, Deep Boltzmann Machines and Deep

Belief Networks, and Stacked Denoising Autoencoders. A brief account of their history, structure, advantages,

and limitations is given, followed by a description of their applications in various computer vision tasks, such

as object detection, face recognition, action and activity recognition, and human pose estimation. Finally, a

brief overview is given of future directions in designing deep learning schemes for computer vision problems

and the challenges involved therein.

Keywords: Convolutional Neural Networks, Stacked Denoising Autoencoders, Deep Belief Networks

I. INTRODUCTION

 Deep learning is a family of techniques that allows computational models to learn and represent large-scale data sets with

varying levels of abstraction. This type of learning allows them to mimic the human brain's natural response to large-scale

data sets. The rapid emergence of deep learning methods has been largely due to the large amount of data that they can

handle. The ambition to create a system that simulates the human brain fueled the initial development of neural networks.

In 1943, McCulloch and Pitts [1] tried to understand how the brain could produce highly complex patterns by using

interconnected basic cells, called neurons. The McCulloch and Pitts model of a neuron, called a MCP model, has made an

important contribution to the development of artificial neural networks. A series of major contributions in the field is

presented in Table 1, including LeNet [2] and Long Short-Term Memory [3], leading up to today’s “era of deep learning.”

One of the most substantial breakthroughs in deep learning came in 2006, when Hinton et al. [4] introduced the Deep Belief

Network, with multiple layers of Restricted Boltzmann Machines, greedily training one layer at a time in an unsupervised

way. Guiding the training of intermediate levels of representation using unsupervised learning, performed locally at each

level, was the main principle behind a series of developments that brought about the last decade’s surge in deep architectures

and deep learning algorithms. Developing effective representations of intermediate levels of complexity using unsupervised

learning was the main principle behind many of the recent developments in artificial intelligence.

 Among the most prominent factors that contributed to the huge boost of deep learning are the appearance of large, high-

quality, publicly available labelled datasets, along with the empowerment of parallel GPU computing, which enabled the

transition from CPU-based to GPU-based training thus the idea that the brain can produce complex patterns inspired the

development of neural networks. In 1943, scientists James McCulloch and Geoffrey Pitts explained how the brain works by

studying the interconnected cells known as neurons. allowing for significant acceleration in deep models’ training.

Additional factors may have played a lesser role as well, such as the alleviation of the vanishing gradient problem owing to

the disengagement from saturating activation functions (such as hyperbolic tangent and the logistic function), the proposal

of new regularization techniques (e.g., dropout, batch normalization, and data augmentation), and the appearance of

powerful frameworks like TensorFlow [5], theano [6], and mxnet [7], which allow for faster prototyping.

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, March 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2898 451
 www.ijarsct.co.in

 Impact Factor: 6.252

Table 1: Important milestones in the history of neural networks and machine learning, leading up to the era of deep

learning.

Milestone/contribution Contributor, year

MCP model, regarded as the ancestor of the Artificial Neural Network McCulloch & Pitts, 1943

Hebbian learning rule Hebb, 1949

First perceptron Rosenblatt, 1958

Backpropagation Werbos, 1974

Neocognitron, regarded as the ancestor of the Convolutional Neural Network Fukushima, 1980

Boltzmann Machine Ackley, Hinton &Sejnowski, 1985

Restricted Boltzmann Machine (initially known as Harmonium) Smolensky, 1986

Recurrent Neural Network Jordan, 1986

Autoencoders
Rumelhart, Hinton & Williams, 1986

Ballard, 1987

LeNet, starting the era of Convolutional Neural Networks LeCun, 1990

LSTM Hochreiter&Schmidhuber, 1997

Deep Belief Network, ushering the “age of deep learning” Hinton, 2006

Deep Boltzmann Machine Salakhutdinov& Hinton, 2009

AlexNet, starting the age of CNN used for ImageNet classification Krizhevsky, Sutskever, & Hinton, 2012

 Deep learning has fueled great strides in a variety of computer vision problems, such as object detection (e.g., [8, 9]),

motion tracking (e.g., [10, 11]), action recognition (e.g., [12, 13]), human pose estimation (e.g., [14, 15]), and semantic

segmentation (e.g., [16, 17]). In this overview, we will concisely review the main developments in deep learning

architectures and algorithms for computer vision applications. In this context, we will focus on three of the most important

types of deep learning models with respect to their applicability in visual understanding, that is, Convolutional Neural

Networks (CNNs), the “Boltzmann family” including Deep Belief Networks (DBNs) and Deep Boltzmann Machines

(DBMs) and Stacked (Denoising) Autoencoders. Needless to say, the current coverage is by no means exhaustive; for

example, Long Short-Term Memory (LSTM), in the category of Recurrent Neural Networks, although of great significance

as a deep learning scheme, is not presented in this review, since it is predominantly applied in problems such as language

modeling, text classification, handwriting recognition, machine translation, speech/music recognition, and less so in

computer vision problems. The overview is intended to be useful to computer vision and multimedia analysis researchers,

as well as to general machine learning researchers, who are interested in the state of the art in deep learning for computer

vision tasks, such as object detection and recognition, face recognition, action/activity recognition, and human pose

estimation.

 The remainder of this paper is organized as follows. In Section 2, the three aforementioned groups of deep learning model

are reviewed: Convolutional Neural Networks, Deep Belief Networks and Deep Boltzmann Machines, and Stacked

Autoencoders. The basic architectures, training processes, recent developments, advantages, and limitations of each group

are presented. In Section 3, we describe the contribution of deep learning algorithms to key computer vision tasks, such as

object detection and recognition, face recognition, action/activity recognition, and human pose estimation; we also provide

a list of important datasets and resources for benchmarking and validation of deep learning algorithms. Finally, Section 4

concludes the paper with a summary of findings.

II. DEEP LEARNING METHODS AND DEVELOPMENTS

2.1. Convolutional Neural Networks

 Convolutional Neural Networks (CNNs) were inspired by the visual system’s structure, and in particular by the models of

it proposed in [18]. The first computational models based on these local connectivities between neurons and on hierarchically

organized transformations of the image are found in Neocognitron [19], which describes that when neurons with the same

parameters are applied on patches of the previous layer at different locations, a form of translational invariance is acquired.

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, March 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2898 452
 www.ijarsct.co.in

 Impact Factor: 6.252

Yann LeCun and his collaborators later designed Convolutional Neural Networks employing the error gradient and attaining

very good results in a variety of pattern recognition tasks [20– 22].

A CNN comprises three main types of neural layers, namely, (i) convolutional layers, (ii) pooling layers, and (iii) fully

connected layers. Each type of layer plays a different role. Figure 1 shows a CNN architecture for an object detection in

image task. Every layer of a CNN transforms the input volume to an output volume of neuron activation, eventually leading

to the final fully connected layers, resulting in a mapping of the input data to a 1D feature vector. CNNs have been extremely

successful in computer vision applications, such as face recognition, object detection, powering vision in robotics, and self-

driving cars.

Figure: Example architecture of a CNN for a computer vision task (object detection).

A. Convolutional Layers

 In the convolutional layers, a CNN utilizes various kernels to convolve the whole image as well as the intermediate feature

maps, generating various feature maps. Because of the advantages of the convolution operation, several works (e.g., [23,

24]) have proposed it as a substitute for fully connected layers with a view to attaining faster learning times.

B. Pooling Layers

 Pooling layers are in charge of reducing the spatial dimensions (width × height) of the input volume for the next

convolutional layer. The pooling layer does not affect the depth dimension of the volume. The operation performed by this

layer is also called subsampling or downsampling, as the reduction of size leads to a simultaneous loss of information.

However, such a loss is beneficial for the network because the decrease in size leads to less computational overhead for the

upcoming layers of the network, and also it works against overfitting. Average pooling and max pooling are the most

commonly used strategies. In [25] a detailed theoretical analysis of max pooling and average pooling performances is given,

whereas in [26] it was shown that max pooling can lead to faster convergence, select superior invariant features, and improve

generalization. Also there are a number of other variations of the pooling layer in the literature, each inspired by different

motivations and serving distinct needs, for example, stochastic pooling [27], spatial pyramid pooling [28, 29], and def-

pooling [30].

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, March 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2898 453
 www.ijarsct.co.in

 Impact Factor: 6.252

C. Fully Connected Layers

 Following several convolutional and pooling layers, the high-level reasoning in the neural network is performed via fully

connected layers. Neurons in a fully connected layer have full connections to all activation in the previous layer, as their

name implies. Their activation can hence be computed with a matrix multiplication followed by a bias offset. Fully connected

layers eventually convert the 2D feature maps into a 1D feature vector. The derived vector either could be fed forward into

a certain number of categories for classification [31] or could be considered as a feature vector for further processing [32].

 The architecture of CNNs employs three concrete ideas: (a) local receptive fields, (b) tied weights, and (c) spatial

subsampling. Based on local receptive field, each unit in a convolutional layer receives inputs from a set of neighboring

units belonging to the previous layer. This way neurons are capable of extracting elementary visual features such as edges

or corners. These features are then combined by the subsequent convolutional layers in order to detect higher order features.

Furthermore, the idea that elementary feature detectors, which are useful on a part of an image, are likely to be useful across

the entire image is implemented by the concept of tied weights. The concept of tied weights constraints a set of units to have

identical weights. Concretely, the units of a convolutional layer are organized in planes. All units of a plane share the same

set of weights. Thus, each plane is responsible for constructing a specific feature. The outputs of planes are called feature

maps. Each convolutional layer consists of several planes, so that multiple feature maps can be constructed at each location.

 During the construction of a feature map, the entire image is scanned by a unit whose states are stored at corresponding

locations in the feature map. This construction is equivalent to a convolution operation, followed by an additive bias term

and sigmoid function:

 y(�) = � (Wy(�−1) + b) , (1)

where � stands for the depth of the convolutional layer, W is the weight matrix, and b is the bias term. For fully connected

neural networks, the weight matrix is full, that is, connects every input to every unit with different weights. For CNNs, the

weight matrix W is very sparse due to the concept of tied weights. Thus, W has the form of

 [0…..oW]

where w are matrices having the same dimensions with the units’ receptive fields. Employing a sparse weight matrix reduces

the number of network’s tunable parameters and thus increases its generalization ability. Multiplying W with layer inputs is

like convolving the input with w, which can be seen as a trainable filter. If the input to �−1 convolutional layer is of

dimension � × � and the receptive field of units at a specific� � × � plane of convolutional layer is of dimension , then

the constructed feature map will be a matrix of dimensions (� − � + 1) × (�� � − � + 1). Specifically, the element of feature

map at (,) location will be

 y��(�) (3)

with

where the bias term � is scalar. Using (4) and (3) sequentially for all (�, �) positions of input, the feature map for the

corresponding plane is constructed.

 One of the difficulties that may arise with training of CNNs has to do with the large number of parameters that have to

be learned, which may lead to the problem of overfitting. To this end, techniques such as stochastic pooling, dropout, and

data augmentation have been proposed. Furthermore, CNNs are often subjected to pretraining, that is, to a process that

initializes the network with pretrained parameters instead of randomly set ones. Pretraining can accelerate the learning

process and also enhance the generalization capability of the network.

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, March 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2898 454
 www.ijarsct.co.in

 Impact Factor: 6.252

 Overall, CNNs were shown to significantly outperform traditional machine learning approaches in a wide range of

computer vision and pattern recognition tasks [33], examples of which will be presented in Section 3. Their exceptional

performance combined with the relative easiness in training are the main reasons that explain the great surge in their

popularity over the last few years.

2.2. Deep Belief Networks and Deep Boltzmann Machines

 Deep Belief Networks and Deep Boltzmann Machines are deep learning models that belong in the “Boltzmann family,”

in the sense that they utilize the Restricted Boltzmann Machine (RBM) as learning module. The Restricted Boltzmann

Machine (RBM) is a generative stochastic neural network. DBNs have undirected connections at the top two layers which

form an RBM and directed connections to the lower layers. DBMs have undirected connections between all layers of the

network. A graphic depiction of DBNs and DBMs can be found in Figure 2. In the following subsections, we will describe

the basic characteristics of DBNs and DBMs, after presenting their basic building block, the RBM.

A. Restricted Boltzmann Machines

 A Restricted Boltzmann Machine ([34, 35]) is an undirected graphical model with stochastic visible variables {0, 1}�k ∈

{0, 1}� and stochastic hidden variables h ∈ , where each visible variable is connected to each hidden variable. An RBM is a

variant of the Boltzmann Machine, with the restriction that the visible units and hidden units must form a bipartite graph.

This restriction allows for more efficient training algorithms, in particular the gradient-based contrastive divergence

algorithm [36].

{0, 1} The model defines the energy function� → R:�: {0, 1}�×

 � �, (5)

where r epresents the symmetric interaction term between visible� = {a, b, W} are the model parameters; that is, ��� unit

The joint distribution over the visible and hidden units is� and hidden unit �, and ��, �� are bias terms. given by

� (k, h; �) = Z1(�) exp (−� (k, h; �)) , (6)
Z (�) = ∑k ∑h

exp (−� (k, h; �)) ,

Where tributions over hiddenZ(�) is the normalizing constant. The conditional dis-h and visible v vectors can be derived by

(5) and (6) as

� � (ℎ� | k) ,

 � (7)

Given a set of observations likelihood with respect to the model parameters can be de-{k
�}��=1 the derivative of the logrived

by (6) as

 �1 �=1∑� � log��� (��k�; �) = E�data [V�ℎ�] − E�model [V�ℎ�] , (8)

(1/�) ∑�

model is an expectation with respect to the distribution denotes an expectation with respect to the data(nh), k representing

the empirical distribution; �) = �(h | k; �)�data(k), with � data(k) = defined by the model, as in (6).

A detailed explanation along with the description of a practical way to train RBMs was given in [37], whereas [38] discusses

the main difficulties of training RBMs and their underlying reasons and proposes a new algorithm with an adaptive learning

rate and an enhanced gradient, so as to

B. Deep Belief Networks

 Deep Belief Networks (DBNs) are probabilistic generative models which provide a joint probability distribution over

observable data and labels. They are formed by stacking RBMs and training them in a greedy manner, as was proposed in

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, March 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2898 455
 www.ijarsct.co.in

 Impact Factor: 6.252

[39]. A DBN initially employs an efficient layer-by-layer greedy learning strategy to initialize the deep network, and, in the

sequel, fine-tunes all weights jointly with the desired outputs. DBNs are graphical models which learn to extract a deep

hierarchical representation of the training data. They model the joint distribution between observed vector x and the � hidden

layers h� as follows:

 � (x, h1, . . . ,h�) (h� | h�+1)) � (h�−1, h�) , (9)

where x = h0, �(� + 1h� | h��+1)�(is a conditional distribution for�−1 | �) the visible units at level conditioned on the hidden

units of the RBM at level , and h his the visible-hidden joint distribution in the top-level RBM.

The principle of greedy layer-wise unsupervised training can be applied to DBNs with RBMs as the building blocks for

each layer [33, 39]. A brief description of the process follows: (1) Train the first layer as an RBM that models the raw input

x = h0 as its visible layer.

(2) Use that first layer to obtain a representation of the input that will be used as data for the second layer. Two common

solutions exist. This representation can be chosen as being the mean activation�(1| 0) �(h1 = 1 | h0) or samples of h h.

(3) Train the second layer as an RBM, taking the transformed data (samples or mean activation) as training examples (for

the visible layer of that RBM).

(4) Iterate steps ((2) and (3)) for the desired number of layers, each time propagating upward either samples or mean values.

(5) Fine-tune all the parameters of this deep architecture with respect to a proxy for the DBN log- likelihood, or with respect

to a supervised training criterion (after adding extra learning machinery to convert the learned representation into supervised

predictions, e.g., a linear classifier).

There are two main advantages in the above-described greedy learning process of the DBNs[40]. First, it tackles the

challenge of appropriate selection of parameters, which in some cases can lead to poor local optima, thereby ensuring that

the network is appropriately initialized. Second, there is no requirement for labelled data since the process is unsupervised.

Nevertheless, DBNs are also plagued by a number of shortcomings, such as the computational cost associated with training

a DBN and the fact that the steps towards further optimization of the network based on maximum likelihood training

approximation are unclear [41]. Furthermore, a significant disadvantage of DBNs is that they do not account for the two-

dimensional structure of an input image, which may significantly affect their performance and applicability in computer

vision and multimedia analysis problems. However, a later variation of the DBN, the Convolutional Deep Belief Network

(CDBN) ([42, 43]), uses the spatial information of neighboring pixels by introducing convolutional RBMs, thus producing

a translation invariant generative model that successfully scales when it comes to high dimensional images, as is evidenced

in [44].

 Deep Belief Network Deep Boltzmann Machine

Figure 2: Deep Belief Network (DBN) and Deep Boltzmann Machine (DBM). The top two layers of a DBN form an

undirected graph and the remaining layers form a belief network with directed, top-down connections. In a DBM, all

connections are undirected.

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, March 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2898 456
 www.ijarsct.co.in

 Impact Factor: 6.252

C. Deep Boltzmann Machines

 Deep Boltzmann Machines (DBMs) [45] are another type of deep model using RBM as their building block. The difference

in architecture of DBNs is that, in the latter, the top two layers form an undirected graphical model and the lower layers

form a directed generative model, whereas in the DBM all the connections are undirected. DBMs have multiple layers of

hidden units, where units in odd-numbered layers are conditionally independent of even-numbered layers, and vice versa.

As a result, inference in the DBM is generally intractable. Nonetheless, an appropriate selection of interactions between

visible and hidden units can lead to more tractable versions of the model. During network training, a DBM jointly trains all

layers of a specific unsupervised model, and instead of maximizing the likelihood directly, the DBM uses a stochastic

maximum likelihood (SML) [46] based algorithm to maximize the lower bound on the likelihood. Such a process would

seem vulnerable to falling in poor local minima [45], leaving several units effectively dead. Instead, a greedy layer-wise

training strategy was proposed [47], which essentially consists in pretraining the layers of the DBM, similarly to DBN,

namely, by stacking RBMs and training each layer to independently model the output of the previous layer, followed by a

final joint finetuning.

 Regarding the advantages of DBMs, they can capture many layers of complex representations of input data and they are

appropriate for unsupervised learning since they can be trained on unlabeled data, but they can also be finetuned for a

particular task in a supervised fashion. One of the attributes that sets DBMs apart from other deep models is that the

approximate inference process of DBMs includes, apart from the usual bottom-up process, a top-down feedback, thus

incorporating uncertainty about inputs in a more effective manner. Furthermore, in DBMs, by following the approximate

gradient of a variational lower bound on the likelihood objective, one can jointly optimize the parameters of all layers, which

is very beneficial especially in cases of learning models from heterogeneous data originating from different modalities [48].

 As far as the drawbacks of DBMs are concerned, one of the most important ones is, as mentioned above, the high

computational cost of inference, which is almost prohibitive when it comes to joint optimization in sizeable datasets. Several

method shaves been proposed to improve the effectiveness of DBMs. These include accelerating inference by using separate

models to initialize the values of the hidden units in all layers [47, 49], or other improvements at the pretraining stage [50,

51] or at the training stage [52, 53].

2.3. Stacked (Denoising) Autoencoders

 Stacked Autoencoders use the autoencoder as their main building block, similarly to the way that Deep Belief Networks

use Restricted Boltzmann Machines as component. It is therefore important to briefly present the basics of the autoencoder

and its denoising version, before describing the deep learning architecture of Stacked (Denoising) Autoencoders.

A. Autoencoders

 An autoencoder is trained to encode the input x into a representation ()r(x) in a way that input can be reconstructed from

r x [33]. The target output of the autoencoder is thus the autoencoder input itself. Hence, the output vectors have the same

dimensionality as the input vector. In the course of this process, the reconstruction error is being minimized, and the

corresponding code is the learned feature. If there is one linear hidden layer and the mean squared error criterion is used to

train the network, then the � hidden units learn to project the input in the span of the first � principal components of the data

[54]. If the hidden layer is nonlinear, the autoencoder behaves differently from PCA, with the ability to capture multimodal

aspects of the input distribution [55]. The parameters of the model are optimized so that the average reconstruction error is

minimized. There are many alternatives to measure the reconstruction error, including the traditional squared error:

Figure 3: Denoising autoencoder [56]. � = ‖x − f (r (x))‖2 , (10)

 Input

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, March 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2898 457
 www.ijarsct.co.in

 Impact Factor: 6.252

where function f is the decoder and f(r(x)) is the reconstruction produced by the model.

If the input is interpreted as bit vectors or vectors of bit probabilities, then the loss function of the reconstruction could be

represented by cross-entropy; that is,

 � = −∑� x� log f� (r (x)) + (1 − x�) log (1 − f� (r (x))) . (11)

 The goal is for the representation (or code) r(x) to be a distributed representation that manages to capture the coordinates

along the main variations of the data, similarly to the principle of Principal Components Analysis (PCA). Given that r(x) is

not lossless, it is impossible for it to constitute a successful compression for all input x. The aforementioned optimization

process results in low reconstruction error on test examples from the same distribution as the training examples but generally

high reconstruction error on samples arbitrarily chosen from the input space.

B. Denoising Autoencoders

 The denoising autoencoder [56] is a stochastic version of the autoencoder where the input is stochastically corrupted, but

the uncorrupted input is still used as target for the reconstruction. In simple terms, there are two main aspects in the function

of a denoising autoencoder: first it tries to encode the input (namely, preserve the information about the input), and second

it tries to undo the effect of a corruption process stochastically applied to the input of the autoencoder (see Figure 3). The

latter can only be done by capturing the statistical dependencies between the inputs. It can be shown that the denoising

autoencoder maximizes a lower bound on the log-likelihood of a generative model.

 In [56], the stochastic corruption process arbitrarily sets a number of inputs to zero. Then the denoising autoencoder is

trying to predict the corrupted values from the uncorrupted ones, for randomly selected subsets of missing patterns. In

essence, the ability to predict any subset of variables from the remaining ones is a sufficient condition for completely

capturing the joint distribution between a set of variables. It should be mentioned that using autoencoders for denoising was

introduced in earlier works (e.g., [57]), but the substantial contribution of [56] lies in the demonstration of the successful

use of the method for unsupervised pretraining of a deep architecture and in linking the denoising autoencoder to a generative

model.

C. Stacked (Denoising) Autoencoders

 It is possible to stack denoising autoencoders in order to form a deep network by feeding the latent representation (output

code) of the denoising autoencoder of the layer below as input to the current layer. The unsupervised pretraining of such an

architecture is done one layer at a time. Each layer is trained as a denoising autoencoder by minimizing the error in

reconstructing its input (which is the output code of the previous layer). When the first � layers are trained, we can train the

(� + 1)th layer since it will then be possible compute the latent representation from the layer underneath.

 When pretraining of all layers is completed, the network goes through a second stage of training called fine-tuning. Here

supervised fine-tuning is considered when the goal is to optimize prediction error on a supervised task. To this end, a logistic

regression layer is added on the output code of the output layer of the network. The derived network is then trained like a

multilayer perceptron, considering only the encoding parts of each autoencoder at this point. This stage is supervised, since

the target class is taken into account during training.

 As is easily seen, the principle for training stacked autoencoders is the same as the one previously described for Deep

Belief Networks, but using autoencoders instead of Restricted Boltzmann Machines. A number of comparative experimental

studies show that Deep Belief Networks tend to outperform stacked autoencoders ([58, 59]), but this is not always the case,

especially when DBNs are compared to Stacked Denoising Autoencoders [56].

 One strength of autoencoders as the basic unsupervised component of a deep architecture is that, unlike with RBMs, they

allow almost any parametrization of the layers, on condition that the training criterion is continuous in the parameters. In

contrast, one of the shortcomings of SAs is that they do not correspond to a generative model, when with generative models

like RBMs and DBNs, samples can be drawn to check the outputs of the learning process.

2.4. Discussion

 Some of the strengths and limitations of the presented deep learning models were already discussed in the respective

subsections. In an attempt to compare these models (for a summary see Table 2), we can say that CNNs have generally

performed better than DBNs in current literature on benchmark computer vision datasets such as MNIST. In cases where

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, March 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2898 458
 www.ijarsct.co.in

 Impact Factor: 6.252

the input is nonvisual, DBNs often outperform other models, but the difficulty in accurately estimating joint probabilities as

well as the computational cost in creating a DBN constitutes drawbacks. A major positive aspect of CNNs is “feature

learning,” that is, the bypassing of handcrafted features, which are necessary for other types of networks; however, in CNNs

features are automatically learned. On the other hand, CNNs rely on the availability of ground truth, that is, labelled training

data, whereas DBNs/DBMs and SAs do not have this limitation and can work in an unsupervised manner. On a different

note, one of the disadvantages of autoencoders lies in the fact that they could become ineffective if errors are present in the

first layers. Such errors may cause the network to learn to reconstruct the average of the training data. Denoising

autoencoders [56], however, can retrieve the correct input from a corrupted version, thus leading the network to grasp the

structure of the input distribution. In terms of the efficiency of the training process, only in the case of SAs is real-time

training possible, whereas CNNs and DBNs/DBMs training processes are time-consuming. Finally, one of the strengths of

CNNs is the fact that they can be invariant to transformations such as translation, scale, and rotation. Invariance to translation,

rotation, and scale is one of the most important assets of CNNs, especially in computer vision problems, such as object

detection, because it allows abstracting an object’s identity or category from the specifics of the visual input (e.g., relative

positions/orientation of the camera and the object), thus enabling the network to effectively recognize a given object in cases

where the actual pixel values on the image can significantly differ.

Table 2: Comparison of CNNs, DBNs/DBMs, and SdAs with respect to a number of properties. + denotes a good

performance in the property and − denotes bad performance or complete lack thereof.

Model properties CNNs DBNs/DBMs SdAs

Unsupervised learning

Training efficiency

Feature learning

Scale/rotation/translation

invariance

Generalization

−−++ +−−− ++−−

 + + +

III. APPLICATIONS IN COMPUTER VISION

 In this section, we survey works that have leveraged deep learning methods to address key tasks in computer vision, such

as object detection, face recognition, action and activity recognition, and human pose estimation.

3.1. Object Detection

 Object detection is the process of detecting instances of semantic objects of a certain class (such as humans, airplanes, or

birds) in digital images and video (Figure 4). A common approach for object detection frameworks includes the creation of

a large set of candidate windows that are in the sequel classified using CNN features. For example, the method described in

[32] employs selective search [60] to derive object proposals, extracts CNN features for each proposal, and then feeds the

features to an SVM classifier to decide whether the windows include the object or not. A large number of works is based on

the concept of Regions with CNN features proposed in [32]. Approaches following the Regions with CNN paradigm usually

have good detection accuracies (e.g., [61, 62]); however, there is a significant number of methods trying to further improve

the performance of Regions with CNN approaches, some of which succeed in finding approximate object positions but often

cannot precisely determine the exact position of the object [63]. To this end, such methods often follow a joint object

detection—semantic segmentation approach [64–66], usually attaining good results.

 A vast majority of works on object detection using deep learning apply a variation of CNNs, for example, [8, 67, 68]

obtained with [66]. (in which a new def-pooling layer and new learning strategy are proposed), [9] (weakly supervised

cascaded CNNs), and [69] (subcategory-aware CNNs). However, there does exist a relatively small number of object

detection attempts using other deep models. For example, [70] proposes a coarse object locating method based on a saliency

mechanism in conjunction with a DBN for object detection in remote sensing images; [71] presents a new DBN for 3D

object recognition, in which the top-level model is a third-order Boltzmann machine, trained using a hybrid algorithm that

combines both generative and discriminative gradients; [72] employs a fused deep learning approach, while [73] explores

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, March 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2898 459
 www.ijarsct.co.in

 Impact Factor: 6.252

the representation capabilities of a deep model in a semi supervised paradigm. Finally, [74] leverages stacked autoencoders

for multiple organ detection in medical images, while [75] exploits saliency-guided stacked autoencoders for video based

salient object detection.

3.2. Face Recognition

 Face recognition is one of the hottest computer vision applications with great commercial interest as well. A variety of

face recognition systems based on the extraction of handcrafted features have been proposed [76– 79]; in such cases, a

feature extractor extracts features from an aligned face to obtain a low-dimensional representation, based on which a

classifier makes predictions. CNNs brought about a change in the face recognition field, thanks to their feature learning and

transformation invariance properties. The first work employing CNNs for face recognition was [80]; today light CNNs [81]

and VGG Face Descriptor [82] are among the state of the art. In [44] a Convolutional DBN achieved a great performance

in face verification.

 Moreover, Google’s FaceNet [83] and Facebook’s DeepFace [84] are both based on CNNs. DeepFace [84] models a face

in 3D and aligns it to appear as a frontal face. Then, the normalized input is fed to a single convolution-poolingconvolution

filter, followed by three locally connected layers and two fully connected layers used to make final predictions. Although

DeepFace attains great performance rates, its representation is not easy to interpret because the faces of the same person are

not necessarily clustered during the training process. On the other hand, FaceNet defines a triplet loss function on the

representation, which makes the training process learn to cluster the face representation of the same person. Furthermore,

CNNs constitute the core of OpenFace [85], an open-source face recognition tool, which is of comparable (albeit a little

lower) accuracy, is open-source, and is suitable for mobile computing, because of its smaller size and fast execution time.

3.3. Action and Activity Recognition

 Human action and activity recognition is a research issue that has received a lot of attention from researchers [86, 87].

Many works on human activity recognition based on deep learning techniques have been proposed in the literature in the

 (a) (b) (c)

Figure 4: Object detection results comparison from [66]. (a) Ground truth; (b) bounding boxes obtained with [32]; (c)

bounding boxes

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, March 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2898 460
 www.ijarsct.co.in

 Impact Factor: 6.252

last few years [88]. In [89] deep learning was used for complex event detection and recognition in video sequences: first,

saliency maps were used for detecting and localizing events, and then deep learning was applied to the pretrained features

for identifying the most important frames that correspond to the underlying event. In [90] the authors successfully employ

a CNN-based approach for activity recognition in beach volleyball, similarly to the approach of [91] for event classification

from large-scale video datasets; in [92], a CNN model is used for activity recognition based on smartphone sensor data. The

authors of [12] incorporate a radius–margin bound as a regularization term into the deep CNN model, which effectively

improves the generalization performance of the CNN for activity classification. In [13], the authors scrutinize the

applicability of CNN as joint feature extraction and classification model for fine-grained activities; they find that due to the

challenges of large intraclass variances, small interclass variances, and limited training samples per activity, an approach

that directly uses deep features learned from ImageNet in an SVM classifier is preferable.

 Driven by the adaptability of the models and by the availability of a variety of different sensors, an increasingly popular

strategy for human activity recognition consists in fusing multimodal features and/or data. In [93], the authors mixed

appearance and motion features for recognizing group activities in crowded scenes collected from the web. For the

combination of the different modalities, the authors applied multitask deep learning. The work of [94] explores combination

of heterogeneous features for complex event recognition. The problem is viewed as two different tasks: first, the most

informative features for recognizing events are estimated, and then the different features are combined using an AND/OR

graph structure. There is also a number of works combining more than one type of model, apart from several data modalities.

In [95], the authors propose a multimodal multistream deep learning framework to tackle the egocentric activity recognition

problem, using both the video and sensor data and employing a dual CNNs and Long Short-Term Memory architecture.

Multimodal fusion with a combined CNN and LSTM architecture is also proposed in [96]. Finally, [97] uses DBNs for

activity recognition using input video sequences that also include depth information.

3.4. Human Pose Estimation

The goal of human pose estimation is to determine the position of human joints from images, image sequences, depth images,

or skeleton data as provided by motion capturing hardware [98]. Human pose estimation is a very challenging task owing

to the vast range of human silhouettes and appearances, difficult illumination, and cluttered background. Before the era of

deep learning, pose estimation was based on detection of body parts, for example, through pictorial structures.

 Moving on to deep learning methods in human pose estimation, we can group them into holistic and part-based methods,

depending on the way the input images are processed. The holistic processing methods tend to accomplish their task in a

global fashion and do not explicitly define a model for each individual part and their spatial relationships. DeepPose [14] is

a holistic model that formulates the human pose estimation method as a joint regression problem and does not explicitly

define the graphical model or part detectors for the human pose estimation. Nevertheless, holistic based methods tend to be

plagued by inaccuracy in the high-precision region due to the difficulty in learning direct regression of complex pose vectors

from images.

 On the other hand, the part-based processing methods focus on detecting the human body parts individually, followed by

a graphic model to incorporate the spatial information. In[15], the authors, instead of training the network using the whole

image, use the local part patches and background patches to train a CNN, in order to learn conditional probabilities of the

part presence and spatial relationships. In [100] the approach trains multiple smaller CNNs to perform independent binary

body-part classification, followed with a higher-level weak spatial model to remove strong outliers and to enforce global

pose consistency. Finally, in [101], a multire solution CNN is designed to perform heat-map likelihood regression for each

body part, followed with an implicit graphic model to further promote joint consistency.

3.5. Datasets

 The applicability of deep learning approaches has been evaluated on numerous datasets, whose content varied greatly,

according the application scenario. Regardless of the investigated case, the main application domain is (natural) images. A

brief description of utilized datasets (traditional and new ones) for benchmarking purposes is provided below.

1. Grayscale Images. The most used grayscale images dataset is MNIST [20] and its variations, that is, NIST and

perturbed NIST. The application scenario is the recognition of handwritten digits.

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, March 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2898 461
 www.ijarsct.co.in

 Impact Factor: 6.252

2. RGB Natural Images. Caltech RGB image datasets, for example, Caltech 101/Caltech 256 and the Caltech

Silhouettes, contain pictures of objects belonging to 101/256 categories. CIFAR datasets consist of thousands of

32 32 × color images in various classes. COIL datasets consist of different objects imaged at every angle in a 360

rotation.

3. Hyperspectral Images. SCIEN hyperspectral image data and AVIRIS sensor-based datasets, for example, contain

hyperspectral images.

4. Facial Characteristics Images. Adience benchmark dataset can be used for facial attributes identification, that is,

age and gender, from images of faces. Face recognition in unconstrained environments is another commonly used

dataset.

5. Medical Images. Chest X-ray dataset comprises 112120 frontal-view X-ray images of 30805 unique patients with

the text-mined fourteen disease image labels (where each image can have multi labels). Lymph Node Detection

and Segmentation datasets consist of Computed Tomography images of the mediastinum and abdomen.

6. Video Streams. The WR datasets [111, 112] can be used for video-based activity recognition in assembly lines

[113], containing sequences of 7 categories of industrial tasks. YouTube-8M [114] is a dataset of 8 million

YouTube video URLs, along with video-level labels from a diverse set of 4800 Knowledge Graph entities.

IV. CONCLUSION

 The surge of deep learning over the last years is to a great extent due to the strides it has enabled in the field of computer

vision. The three key categories of deep learning for computer vision that have been reviewed in this paper, namely, CNNs,

the “Boltzmann family” including DBNs and DBMs, and SdAs, have been employed to achieve significant performance

rates in a variety of visual understanding tasks, such as object detection, face recognition, action and activity recognition,

human pose estimation, image retrieval, and semantic segmentation. However, each category has distinct advantages and

disadvantages. CNNs have the unique capability of feature learning, that is, of automatically learning features based on the

given dataset. CNNs are also invariant to transformations, which is a great asset for certain computer vision applications.

On the other hand, they heavily rely on the existence of labelled data, in contrast to DBNs/DBMs and SdAs, which can work

in an unsupervised fashion. Of the models investigated, both CNNs and DBNs/DBMs are computationally demanding when

it comes to training, whereas SdAs can be trained in real time under certain circumstances.

 As a closing note, in spite of the promising—in some cases impressive—results that have been documented in the

literature, significant challenges do remain, especially as far as the theoretical groundwork that would clearly explain the

ways to define the optimal selection of model type and structure for a given task or to profoundly comprehend the reasons

for which a specific architecture or algorithm is effective in a given task or not. These are among the most important issues

that will continue to attract the interest of the machine learning research community in the years to come.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest regarding the publication of this paper.

ACKNOWLEDGMENTS

 This research is implemented through IKY scholarships programme and cofinanced by the European Union (European

Social Fund—ESF) and Greek national funds through the action titled “Reinforcement of Postdoctoral Researchers,” in the

framework of the Operational Programme “Human Resources Development Program, Education and Lifelong Learning” of

the National Strategic Reference Framework (NSRF) 2014–2020.

REFERENCES

[1]. W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” Bulletin of

Mathematical Biology, vol. 5, no. 4, pp. 115–133, 1943.

[2]. Y. LeCun, B. Boser, J. Denker et al., “Handwritten digit recognition with a back-propagation network,” in

Advances in Neural Information Processing Systems 2 (NIPS*89), D. Touretzky, Ed., Denver, CO, USA, 1990.

[3]. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780,

1997.

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, March 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2898 462
 www.ijarsct.co.in

 Impact Factor: 6.252

[4]. G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural Computation,

vol. 18, no. 7, pp. 1527–1554, 2006.

[5]. TensorFlow, Available online: https://www.tensorflow.org.

[6]. B. Frederic, P. Lamblin, R. Pascanu et al., “Theano: new features and speed improvements,” in Deep Learning and

Unsupervised Feature Learning NIPS 2012 Workshop, 2012, http://deeplearning.net/software/theano/.

[7]. Mxnet, Available online: http://mxnet.io.

[8]. W. Ouyang, X. Zeng, X. Wang et al., “DeepID-Net: Object Detection with Deformable Part Based Convolutional

Neural Networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 7, pp. 1320–

1334, 2017.

[9]. A. Diba, V. Sharma, A. Pazandeh, H. Pirsiavash, and L. V. Gool, “Weakly Supervised Cascaded Convolutional

Networks,” in Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 5131–5139, Honolulu, HI, July 2017.

[10]. N. Doulamis and A. Voulodimos, “FAST-MDL: Fast Adaptive Supervised Training of multi-layered deep

learning models for consistent object tracking and classification,” in Proceedings of the 2016 IEEE International

Conference on Imaging Systems and Techniques, IST 2016, pp. 318–323, October 2016.

[11]. N. Doulamis, “Adaptable deep learning structures for object labeling/tracking under dynamic visual

environments,” Multimedia Tools and Applications, pp. 1–39, 2017.

[12]. L. Lin, K. Wang, W. Zuo, M. Wang, J. Luo, and L. Zhang, “A deep structured model with radius-margin bound

for 3D human activity recognition,” International Journal of Computer Vision, vol. 118, no. 2, pp. 256–273, 2016.

[13]. S. Cao and R. Nevatia, “Exploring deep learning based solutions in fine grained activity recognition in the wild,”

in Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 384–389, Cancun,

December 2016.

[14]. A. Toshev and C. Szegedy, “DeepPose: Human pose estimation via deep neural networks,” in Proceedings of the

27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, pp. 1653–1660, USA, June

2014.

[15]. X. Chen and A. L. Yuille, “Articulated pose estimation by a graphical model with image dependent pairwise

relations,” in Proceedings of the NIPS, 2014.

[16]. H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic segmentation,” in Proceedings of

the 15th IEEE International Conference on Computer Vision, ICCV 2015, pp. 1520–1528, Santiago, Chile,

December 2015.

[17]. J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’15), pp. 3431–3440, IEEE, Boston,

Mass, USA, June 2015.

[18]. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction, and functional architecture in the cat’s

visual cortex,” The Journal of Physiology, vol. 160, pp. 106–154, 1962.

[19]. K. Fukushima, “Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition

unaffected by shift in position,” Biological Cybernetics, vol. 36, no. 4, pp. 193–202, 1980.

[20]. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,”

Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2323, 1998.

[21]. Y. LeCun, B. Boser, J. S. Denker et al., “Backpropagation applied to handwritten zip code recognition,” Neural

Computation, vol. 1, no. 4, pp. 541–551, 1989.

[22]. M. Tygert, J. Bruna, S. Chintala, Y. LeCun, S. Piantino, and A. Szlam, “A mathematical motivation for complex-

valued convolutional networks,” Neural Computation, vol. 28, no. 5, pp. 815– 825, 2016.

[23]. M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Is object localization for free? - Weakly-supervised learning with

convolutional neural networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2015, pp. 685– 694, June 2015.

[24]. C. Szegedy, W. Liu, Y. Jia et al., “Going deeper with convolutions,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR ’15), pp. 1–9, Boston, Mass, USA, June 2015.

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, March 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2898 463
 www.ijarsct.co.in

 Impact Factor: 6.252

[25]. Y. L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature pooling in visual recognition,” in

Proceedings of the ICML, 2010.

[26]. D. Scherer, A. Muller, and S. Behnke, “Evaluation of pooling¨ operations in convolutional architectures for object

recognition,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics): Preface, vol. 6354, no. 3, pp. 92–101, 2010.

[27]. H. Wu and X. Gu, “Max-Pooling Dropout for Regularization of Convolutional Neural Networks,” in Neural

Information Processing, vol. 9489 of Lecture Notes in Computer Science, pp. 46– 54, Springer International

Publishing, Cham, 2015

[28]. K. He, X. Zhang, S. Ren, and J. Sun, “Spatial Pyramid Pooling in Deep Convolutional Networks for Visual

Recognition,” in Computer Vision – ECCV 2014,vol.8691of Lecture Notes in Computer Science, pp. 346–361,

Springer International Publishing, Cham, 2014.

