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Abstract: The research proposes a hybrid machine learning model to predict a composite Air Quality 

Index (AQI) based on weather variables, pollutant concentrations, human mobility measures, and 

geospatial clusters. The models, trained using XGBoost, LightGBM, and CatBoost, showed excellent 

predictive performance, with CatBoost showing the lowest MSE and MAE. The study highlights the 

importance of temporal cross-validation in avoiding overfitting to time-series and CatBoost's strength in 

air quality prediction. This approach integrates interpretable machine learning into environmental 

policy-making, providing actionable recommendations for pollution reduction. Results exhibited 

excellent predictive performance for all models: CatBoost recorded lowest MSE (4.73) and MAE (1.68), 

implying highest stability, whereas XGBoost produced maximum R² (0.967), which depicts outstanding 

explanatory power. LightGBM lagged behind marginally (R²: 0.928), implying compromise between 

speed and precision. SHAP analysis indicated pollutant concentrations (PM2.5, O3), geospatial cluster 

labels, and the interaction factor Population_Not_Staying_at_Home × mil_miles were key drivers of AQI 

variation, with wind speed variance and humidity playing an important role. The research illustrates the 

importance of temporal cross-validation in avoiding overfitting to time-series and highlights CatBoost's 

strength in air quality prediction. These results move the field forward by integrating interpretable 

machine learning into environmental policy-making, providing actionable recommendations for reducing 

hotspots of pollution with spatially focused interventions. The adaptability of the framework to multi-

pollutant AQI systems makes it a scalable tool for urban air quality management 
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I. INTRODUCTION 

Air quality forecasting is a complex task due to the intricate interactions between pollutants, meteorological conditions, 

and human activities. This research proposes a hybrid machine learning model to predict a composite Air Quality Index 

(AQI) comprising PM2.5, O3, and NO2 using ensemble models and explainable AI. The model uses a feature set 

consisting of weather variables, pollutant concentrations, human mobility measures, and geospatial clusters. The 

models are trained with temporal cross-validation to overcome time-dependent relationships. 

Air pollution is a significant environmental and public health issue[1], with the World Health Organization estimating 

over 7 million premature deaths annually due to exposure to air pollutants. Standard AQIs focus on single pollutants, 

but they fail to capture the synergy of multi-pollutant interactions. The study addresses these deficits by introducing a 

hybrid machine learning approach that predicts a composite AQI from PM2.5, O3, and NO2. It incorporates 

spatiotemporal features, ensemble ML models, and SHAP analysis to provide temporal autocorrelation-robustness and 

measure feature contributions[2]. 

The research identifies CatBoost as the most stable model and XGBoost[3] as the optimal explanatory model, while 

SHAP highlights the essential contributions of PM2.5, mobility-activity interactions, and geospatial clusters in 
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determining pollution dynamics. This approach adds to the growing literature on interpretable ML for environmental 

science, balancing predictive accuracy with interpretability. The framework's adaptability across various geospatial 

contexts makes it a useful tool for urban planners and policymakers seeking to counteract pollution through data-driven 

action. 

Hybrid machine learning methods have become increasingly important for air quality index (AQI) and pollutant 

concentration prediction due to their ability to handle sophisticated spatiotemporal data. Recent works have integrated 

time series regression[4], multivariate generalized space-time autoregressive models[5], and advanced machine learning 

algorithms like Feedforward Neural Networks (FFNN)[6], Deep Learning Neural Networks (DLNN)[7], and Long 

Short-Term Memory (LSTM) networks[8], resulting in greater accuracy in predicting major pollutants like CO, PM₁₀, 

and NO₂ compared to traditional approaches. Mobile sensors and citizen science projects have also been used to 

enhance spatial resolution of PM₂.₅ forecasts, demonstrating the potential of community-generated data in air quality 

monitoring. The STEEP model, which leverages spatiotemporal co-occurrence patterns, enhances the precision of 

PM₂.₅ predictions. [9] proposed a spatial-temporal attention mechanism to predict AQI in areas without ground-based 

monitoring stations, highlighting the importance of spatial dependencies in predictive accuracy. These works highlight 

the increasing importance and performance of hybrid machine learning models in solving the multi-faceted problem of 

air pollution forecasting. 

 

Dataset 

This study uses the dataset, which was initially released by [10]. The dataset is one of the largest spatiotemporal air 

quality datasets available to date, with 35,596 distinct samples (date-city pairs) in 54 cities over 24 months. Every 

sample combines an array of features from air pollution, meteorology, traffic, power plant discharge, and population 

activity data sources. The pollutant data comprises species like PM2.5, PM10, NO₂, O₃, CO, and SO₂ with daily 

median, minimum, and maximum concentrations standardized in accordance with U.S. EPA standards.  

 
Fig. 1. Feature Importance Comparison Across Models 

Table 1. Dataset Feature relation to model 

Feature XGBoost LightGBM CatBoost Explanation 

PM2.5 High High High 
Primary pollutant driving AQI; 

consistent across all models. 

O3 (Ozone) High Moderate High 
Strong seasonal and diurnal patterns; 

CatBoost better captures non-linearities. 

NO2 High High High 
Critical for urban pollution; all models 

prioritize it. 



I J A R S C T    

    

 

               International Journal of Advanced Research in Science, Communication and Technology 

                          International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 5, Issue 10, June 2025 

Copyright to IJARSCT DOI: 10.48175/IJARSCT-28835   196 

www.ijarsct.co.in   

 

 

ISSN: 2581-9429 Impact Factor: 7.67 

 
Wind-speed Moderate Moderate Moderate 

Affects pollutant dispersion; moderate 

importance. 

Temperature Moderate High Moderate 
LightGBM better exploits temperature 

variance for splitting. 

Humidity Moderate Moderate Low 
Indirectly influences particle formation; 

CatBoost less sensitive. 

Pressure Low Low Low 
Weak correlation with AQI in this 

dataset. 

Dew Point Low Moderate Low 
LightGBM links it to fog/particle 

agglomeration. 

CO Moderate Low Moderate 
XGBoost and CatBoost use CO for 

traffic-related emissions. 

SO2 Low Low Low Sparse data limits impact. 

PM10 Moderate Moderate Moderate Coarser particles; secondary to PM2.5. 

Wind Gust Low Low Low 
Rarely exceeds threshold for significant 

dispersion changes. 

Population Not at 

Home 
High High High 

Strong interaction with mil_miles (proxy 

for traffic/activity). 

Population at Home Moderate Moderate Moderate 
Inverse correlation with emissions; 

moderate signal strength. 

mil_miles High High High 
Direct measure of vehicular emissions; 

critical for all models. 

Population × 

mil_miles 
High High High 

Interaction term amplifies traffic-

pollution linkage.v 

Latitude/Longitude Moderate Moderate High 
CatBoost better leverages geospatial 

clusters (K-means labels). 

pp_feat (Power 

Plants) 
Low Low Moderate 

CatBoost handles averaged monthly data 

better via ordered boosting. 

 

The inspection in table 1 shows that the pollutants PM2.5, O₃, and NO₂ always top the list of features across models 

due to their explicit involvement in calculating the composite AQI. Indicators of human activity like "Population Not at 

Home" and "mil_miles" and their interaction term also show up as high-impact features, highlighting the role of 

mobility in cities in determining emissions. Each model showcases distinct behavior when it comes to feature 

prioritization: XGBoost is good at capturing interaction terms because it has explicit regularization mechanisms; 

LightGBM enjoys GOSS sampling and is well-suited for dealing with weather variability such as temperature and dew 

point variance; and CatBoost excels at using geospatial features such as latitude and longitude, and sparse data through 

its ordered boosting framework.  

Weather attributes such as temperature and wind-speed have moderate effect, followed by humidity and pressure that 

have relatively lesser effect. Some of the variables, such as wind gust and SO₂, are of low significance, possibly 

because of the fact that measurements are scarce or there are low-strength relationships. The findings highlight how 

model design and considerate feature engineering, such as interaction terms, influence interpretability and performance 

over air quality forecasting tasks substantially. This visualization  shown in fig 2 process is crucial because it provides a 

preliminary understanding of the underlying spatiotemporal dynamics of air pollution data. It helps researchers detect 

missing values, assess volatility, identify outliers, and examine correlations or lags between variables. These insights 

are foundational for building reliable machine learning models for AQI prediction, especially in time series settings 

where feature behavior over time can heavily influence model performance. Ultimately, this code contributes to model 

readiness, interpretability, and scientific validity in environmental data science. 
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Proposed Method 

The suggested method uses three gradient-boosting ensemble models—XGBoost, LightGBM, and CatBoost—to 

forecast composite AQI based on spatiotemporal, meteorological, and human activity features. XGBoost uses a level-

wise tree growing strategy with L1 regularization (α = 0.5) and L2 regularization (λ = 0.5) to reduce overfitting, and the 

splits are optimized using gradient and Hessian-based gain calculation, with trees constrained to a depth of 5 and 

learning rate of 0.05. LightGBM focuses on computational efficiency with leaf-wise tree growth and Gradient-based 

One-Side Sampling (GOSS), keeping instances with high gradients and subsampling low-gradient data to speed up 

training, while capping trees at 31 leaves and applying uniform regularization penalties. CatBoost incorporates 

robustness through ordered boosting and symmetric oblivious trees, which minimize prediction shift through permuting 

training instances and using stronger L2 regularization (λ = 5) for leaf weights, in addition to early stopping at 20 non-

improving iterations. The models were trained for 1,000 iterations with temporal cross-validation to maintain temporal 

dependencies, and their predictions were explained using SHAP analysis to determine influential drivers such as 

pollutant interactions and mobility patterns. Although XGBoost scored the best explanatory power (R² = 0.967), 

CatBoost outperformed others in terms of stability (MSE = 4.73), highlighting the balance between interpretability and 

generalization for spatiotemporal air quality modeling. This visualization  shown in fig 2 process is crucial because it 

provides a preliminary understanding of the underlying spatiotemporal dynamics of air pollution data. It helps 

researchers detect missing values, assess volatility, identify outliers, and examine correlations or lags between 

variables. These insights are foundational for building reliable machine learning models for AQI prediction, especially 

in time series settings where feature behavior over time can heavily influence model performance. Ultimately, this code 

contributes to model readiness, interpretability, and scientific validity in environmental data science. 

The suggested method uses three gradient-boosting ensemble models—XGBoost, LightGBM, and CatBoost—to 

forecast composite AQI based on spatiotemporal, meteorological, and human activity features. XGBoost uses a level-

wise tree growing strategy with L1 regularization (α = 0.5) and L2 regularization (λ = 0.5) to reduce overfitting, and the 

splits are optimized using gradient and Hessian-based gain calculation, with trees constrained to a depth of 5 and 

learning rate of 0.05. LightGBM focuses on computational efficiency with leaf-wise tree growth and Gradient-based 

One-Side Sampling (GOSS), keeping instances with high gradients and subsampling low-gradient data to speed up 

training, while capping trees at 31 leaves and applying uniform regularization penalties. CatBoost incorporates 

robustness through ordered boosting and symmetric oblivious trees, which minimize prediction shift through permuting 

training instances and using stronger L2 regularization (λ = 5) for leaf weights, in addition to early stopping at 20 non-

improving iterations. The models were trained for 1,000 iterations with temporal cross-validation to maintain temporal 

dependencies, and their predictions were explained using SHAP analysis to determine influential drivers such as 

pollutant interactions and mobility patterns. Although XGBoost scored the best explanatory power (R² = 0.967), 

CatBoost outperformed others in terms of stability (MSE = 4.73), highlighting the balance between interpretability and 

generalization for spatiotemporal air quality modeling. Above fig 3 illustrates a comprehensive pipeline for predicting 

composite AQI based on multiple pollutants (PM2.5, O₃, NO₂). The process begins with data preprocessing, including 

handling missing values, encoding categorical variables, and normalization. Features are categorized into weather, 

pollutants, human activity, and geospatial attributes (e.g., temperature, pollutant medians, mobility data, and location 

clusters from K-means). The validation strategy employs temporal cross-validation to preserve the time-series nature of 

air quality data. Three gradient boosting models—XGBoost, LightGBM, and CatBoost—are trained with 

hyperparameters tailored for robust performance. Finally, SHAP (SHapley Additive exPlanations) analysis is used to 

interpret model outputs, helping identify the most influential features and offering transparency in prediction reasoning. 

Fig.4 shows XGBoost, LightGBM, and CatBoost, emphasizing their gradient-boosting frameworks, regularization 

strategies, and unique optimization techniques. 

1. XGBoost : XGBoost sequentially constructs an ensemble of decision trees, where each new tree corrects residuals 

from previous iterations. 

Prediction Model: For input features � and target �, the predicted value ��� for instance � is:  

 ��� = ∑����
��� ��(��), (1) 

where �� is the �-th decision tree. 
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Optimization: At iteration �: 1. Compute gradients �� and Hessians ℎ�:  

 �� =
��(��,���

(���)
)

���
�
(���) ,    ℎ� =

���(��,���
(���)

)

�(��
�
(���)

)�
, (2) 

where the loss � is the squared error: �(��,���)= (�� − ���)
�. 

 

2. For a tree structure � with � leaves, the optimal weight ��  for leaf �:  

 �� = −
∑�∈��

��

∑�∈��
����

, (3) 

where � = 0.5 (L2 regularization). 

 

3. Split Gain Calculation:  

 Gain =
�

�
�

��
�

����
+

��
�

����
−

(�����)
�

�������
� − �, (4) 

��� = ∑����
��� ��(��). (5)  

where ��,�� and ��,�� are summed gradients and Hessians for left/right splits, and � penalizes leaf complexity. 

Regularization: - L1 (reg_alpha): �∑ |��| (� = 0.5). - L2 (reg_lambda): � ∑ ��
� (� = 0.5). 

Parameters: - Learning rate � = 0.05: Scales tree contributions: ���
(�)

= ���
(���)

+ ���(��). - Max tree depth: (5)   . - 

Trees: 1000. 

 

2. LightGBM:  LightGBM employs leaf-wise tree growth and Gradient-based One-Side Sampling (GOSS) for 

efficiency. 

Prediction Model: Identical additive structure as XGBoost:  

Split Gain:  

 Gain =
�

�
�

��
�

����
+

��
�

����
−

��

���
�, (6) 

where � is the node’s instance count, and � = 0.5. 

 

Regularization: - L1 (reg_alpha): � = 0.5. - L2 (reg_lambda): � = 0.5. 

Parameters: - Learning rate � = 0.05. - Max leaves: 31 (constrained by ‘max_depth=5‘). 

 

 3. CatBoost : CatBoost uses ordered boosting and symmetric trees to handle categorical features and reduce prediction 

shift. 

Prediction Model:  

 ��� = ∑����
��� ��(��). (7) 

Ordered Target Statistics: For categorical features, the target statistic �� is:  

 �� =
∑���,�������

�����

∑���,�������
���

, (8) 

where � is a smoothing parameter and � is the prior (e.g., mean target). 

Split Objective:  

 ℒ����� = ∑��∈�����
(�� − ������)

� + ∑��∈������
(�� − �������)

�, (9) 

where ������,������� are mean target values in child nodes. 

Regularization: - L2 (leaf regularization): � = 5. 

Parameters: - Learning rate � = 0.05. - Symmetric trees with ‘depth=5‘. - Early stopping after 20 non-improving 

rounds. 

All machine learning algorithms—XGBoost, LightGBM, and CatBoost—are unique in that they provide varying levels 

of precision, efficiency, and interpretability. CatBoost is unique concerning stability as it has the best Mean Squared 
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Error (MSE) by virtue of being symmetric, oblivious trees with superior built-in regularization (L2 with λ=5), resulting 

in a significantly robust model, particularly in handling categorical 

 
Fig. 2. exploratory data analysis of dataset 
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Fig. 3. Illustration Of System Model 

GOSS Sampling: 1. Sort instances by gradient magnitude. 2. Retain top-� × 100% (large gradients) and randomly 

sample � × 100% (small gradients). 3. Compensate small-gradient instances with multiplier 
���

�
. and sparse data using 

ordered target statistics. XGBoost is moderately efficient, but its strongest suit lies in explanatory power where it 

records the highest R² score due to its level-wise tree growth feature and adaptable L1/L2 regularization that makes 

effective capture of complex feature relationships possible. LightGBM shines with the lead in computational efficiency 

due to leaf-wise tree growth with Gradient-based One-Side Sampling (GOSS) enabled, which produces speed with 

performance intact. In contrast to XGBoost, LightGBM and CatBoost both natively support categorical features, 

making them even more efficient and performant on real-world datasets. In general, CatBoost has the most stable 

predictions, XGBoost the most interpretability, and LightGBM has the best speed, each of which is appropriate for 

different priorities of optimization. 

 

II. RESULT 

The performance summary shows in fig 5 reveals key insights into the comparative effectiveness of the three gradient 

boosting frameworks—XGBoost, LightGBM, and CatBoost—in predicting composite AQI. Among them, CatBoost 

achieves the lowest Mean Absolute Error (MAE) of 1.6817, indicating the most consistent prediction accuracy across 

samples, while also maintaining a low Mean Squared Error (MSE) of 4.7330, suggesting fewer large deviations in 

prediction. XGBoost, however, delivers the highest R² score of 0.9670, reflecting its strong ability to explain the 

variance in the data, making it the most interpretable model. Although its MAE is slightly higher than CatBoost’s, it 

balances precision and generalization well. In contrast, LightGBM, while known for its computational speed, records 

the highest error values—MSE of 17.6944 and MAE of 3.7052—and a relatively lower R² of 0.9279, indicating weaker 

predictive performance on this particular dataset. These results  as shown in fig.6 underline how model architecture and 

regularization impact predictive accuracy: XGBoost’s deep interaction modeling and CatBoost’s robust handling of 

categorical and sparse data give them a clear edge over LightGBM in this AQI prediction task. 

 

 



I J A R S C T    

    

 

               International Journal of Advanced Research in Science, Communication and Technology 

                          International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 5, Issue 10, June 2025 

Copyright to IJARSCT DOI: 10.48175/IJARSCT-28835   201 

www.ijarsct.co.in   

 

 

ISSN: 2581-9429 Impact Factor: 7.67 

 
SHAP Analysis 

the SHAP Analysis fig 7,8,& 9 shows   offers interpretability into feature contributions. XGBoost emerges as 

particularly effective in explaining model behavior due to its explicit feature interaction modeling, showing high SHAP 

values for interaction terms like Population_Not_Staying_at_Home × mil_miles. CatBoost leverages its native handling 

of categorical and geospatial features (like latitude/longitude) via ordered boosting to highlight spatial influence on 

AQI. LightGBM, while fast, demonstrates lower explanatory power in SHAP values, often focusing more on weather 

features, possibly due to its GOSS-based sampling which can underrepresent rare but impactful cases. This 

comprehensive analysis affirms that CatBoost leads in stability and balanced accuracy, XGBoost in interpretability and 

variance explanation, and LightGBM in speed, albeit with slightly lower accuracy for AQI prediction tasks. 

Residuals vs Predicted Value around zero. This behavior reflects their strong capacity for capturing nonlinear and 

interaction effects in the data. In contrast, LightGBM shows slight curvature in residuals, which may indicate model 

bias or insufficient learning of complex dependencies, potentially due to its aggressive leaf-wise splitting strategy.                 

 
Fig. 4. Comparison algorithm of 3 models 

Table 2. Summary of Key Differences 

Aspect XGBoost LightGBM CatBoost 

Tree Growth Level-wise Leaf-wise with GOSS Symmetric, oblivious splits 

Categorical Handling Requires encoding Built-in Ordered target statistics 

Regularization L1/L2 (α,λα,λ) L1/L2 (α,λα,λ) Strong L2 (λ=5λ=5) 

Efficiency Moderate High (via sampling) High (ordered boosting) 
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Fig. 5. performance summary of ML Models 

 
Fig. 6. ML Model performance Comparison 
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Fig. 7. SHAP Analysis on Dataset Feauter 

 

 
Fig. 8. Mean SHAP value average impact on model output 
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Distribution: Actual vs. Predicted 

The fig 6 shows  Comparing the distributions of actual and predicted AQI values assesses how well the models capture 

the overall structure of the target variable. CatBoost most closely replicates the actual AQI distribution, evidencing its 

capability to model the target distribution effectively using ordered boosting and symmetric tree structures. XGBoost 

follows closely, with minor deviations in peak densities. LightGBM, while computationally efficient, demonstrates a 

broader distribution mismatch, possibly due to sampling-induced biases or reduced performance on less frequent AQI 

ranges. 

mil_miles, which significantly influenced AQI variability. LightGBM lagged slightly (MSE: 17.69, R²: 0.928), as its 

leaf-wise growth and GOSS sampling prioritized computational speed over precision, though it better captured 

temperature variance and dew point effects. SHAP analysis universally identified PM2.5, O3, and NO2 as top pollutant 

drivers, while geospatial clusters (latitude/longitude) and 

 
Fig.9. SHAP value impact on model output 

mobility metrics (mil_miles) were critical for spatial-temporal patterns. Temporal cross-validation ensured robustness 

against time-dependent biases, revealing CatBoost’s superiority in handling longitudinal data. These results underscore 

the trade-offs between stability (CatBoost), interpretability (XGBoost), and efficiency (LightGBM), positioning the 

framework as a versatile tool for urban air quality management, particularly in designing targeted interventions for 

pollution hotspots 

 

III. CONCLUSION 

In this research, we constructed and tested a hybrid machine learning model to forecast composite Air Quality Index 

(AQI) by combining spatiotemporal patterns from meteorological, pollutant, human activity, and geospatial factors. Our 

solution used three advanced ensemble models—XGBoost, LightGBM, and CatBoost—to capture the interactive and 

nonlinear relationships between multiple air pollutants, such as PM2.5, O₃, and NO₂, which are important elements in 

calculating AQI. Robust preprocessing operations were applied, such as missing value replacement, feature 

standardization, and category encoding. Temporal cross-validation was followed to maintain model generalization 

stability over time. Performance metrics calculated with various multiple regression metrics (MSE, MAE, R²) indicated 

that CatBoost provided the minimum mean squared error, ensuring excellent stability and generalization capability. 
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XGBoost produced the highest R² score, establishing higher explanatory capabilities, especially while modeling feature 

interaction. LightGBM, though effective, showed comparatively lower predictive accuracy because of its aggressive 

sampling approach and data imbalance sensitivity. 

Residual and distribution analyses also confirmed model behaviors, with CatBoost and XGBoost displaying balanced 

error distribution and low heteroscedasticity. SHAP-based interpretability tests highlighted major domain findings: 

pollutant concentrations, particularly PM2.5 and O₃, were leading predictors, whereas human mobility indicators—like 

Population Not Staying at Home and its interaction with mil_miles—played a significant role in explaining emission 

variability. Geospatial features also had substantial impacts on predictions, especially under CatBoost's ordered 

boosting scheme. In general, this work illustrates the utility of integrating ensemble learning with spatiotemporal 

feature engineering to improve AQI prediction. The hybrid approach not only enhances predictive accuracy but also 

improves interpretability, thus facilitating data-driven environmental policy-making and urban planning. Future 

research can investigate multimodal data fusion (e.g., satellite images, traffic flow), real-time model updating, and 

deployment in edge computing platforms for scalable, localized air quality monitoring. 
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