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Abstract: This review presents a comprehensive analysis of recent advancements in agricultural image 

classification using deep learning, emphasizing three key innovations: feature compression via 

autoencoders, spatial attention mech- anisms, and model interpretability. Autoencoders efficiently 

reduce high-dimensional agricultural imagery, while attention modules like CBAM and PAM enhance 

spatial focus and feature refinement. YOLOv8, known for its lightweight design, is explored for crop 

classification tasks, with added interpretability through Grad-CAM and SHAP. Through an extensive 

literature survey, we compare model architectures, datasets, and performance out- comes across tasks 

like disease detection, crop type classification, and weed identification. The review identifies current 

research gaps, including the limited integration of compression and interpretability in unified 

frameworks. We conclude by proposing future directions toward efficient, interpretable, and real-time 

deployable deep learning systems for precision agriculture. 
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I. INTRODUCTION 

The advent of deep learning has revolutionized agricultural image analysis, offering unprecedented accuracy and 

automation in tasks like crop classification, disease detection, and weed identification. However, the high dimen- 

sionality of remote sensing and UAV-acquired images, combined with the need for interpretability and real-time 

processing, presents unique challenges. Traditional convolutional neural networks (CNNs), though effective, often 

struggle with overfitting, large memory footprints, and lack of transparency in decision-making. To address these 

limitations, researchers have turned to a synergistic integration of three key techniques: feature compression using 

autoencoders, spatial attention mechanisms, and interpretable machine learning models. 

Autoencoders provide robust dimensionality reduction, enabling efficient training on high-resolution data. Spa- tial 

attention modules such as CBAM and PAM enhance feature focus by guiding the model to attend to discrimi- native 

regions, especially in complex agricultural scenes. Additionally, interpretability techniques like Grad-CAM and SHAP 

are gaining traction for unveiling the inner workings of these models—ensuring trust and transparency in decision-

critical environments. This review aims to comprehensively explore the latest innovations and compar- ative 

performance of these components, highlighting their individual and combined potential in building accurate, 

lightweight, and interpretable systems for modern precision agriculture. 
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II. AUTOENCODERS FOR FEATURE COMPRESSION IN AGRICULTURE 

Autoencoders (AEs) have gained significant traction in agricultural image analysis as a means to reduce data 

dimensionality, denoise images, and generate compressed yet informative feature representations. In high-resolution 

agricultural imaging tasks such as hyperspectral analysis, plant disease detection, and remote sensing the abundance of 

redundant or noisy pixel information creates challenges for efficient and accurate classification. Autoencoders, 

particularly their advanced variants like VariationalAutoencoders (VAEs) and Graph-Regularized AEs, offer a solution 

by learning compact, latent representations that capture essential patterns while discarding noise and irrelevant details.A 

prominent application of VariationalAutoencoders in agriculture was demonstrated by [1], who tackled the lack of 

explainability in plant disease classification.  Using a disentangled VAE  on  the PlantVillage dataset, they achieved not 

only high classification accuracy on crops like potato virus Y but also enabled visual interpretability without relying on 

external heatmaps. Their approach allowed the generation of image variants controlled by specific latent features, 

thereby bridging classification performance and interpretability a rare achievement in agricultural deep learning models. 

In the hyperspectral domain, [2] employed stacked autoencoders to compress high-dimensional hyperspectral images 

(HSIs) from datasets like Salinas and Botswana. These images, while rich in information, are computationally 

expensive to process. The authors used autoencoder-based compression followed by a 3D-2D CNN classifier, resulting 

in peak signal-to-noise ratios (PSNR) exceeding 60 and classification accuracies above 99%. Their dual emphasis on 

reconstruction fidelity and classification efficiency demonstrated how AEs can enhance both robustness and practicality 

for real-world deployment.The foundational work by [3] was among the first to integrate autoencoders in hyperspectral 

remote sensing. They applied PCA on spectral dimensions and deep autoencoders on spatial features, improving 

classification accuracy over SVM and PCA-SVM baselines. Similarly, [4] introduced graph-regularized autoencoders 

to preserve the spatial continuity inherent in agricultural landscapes. By encoding spatial–spectral relationships, they 

achieved superior classification performance compared to classical AEs, especially in tasks like land cover 

identification. 

[5] investigated the stability of various feature extraction methods and confirmed that VAEs produced more consistent 

and meaningful representations than PCA and traditional AEs. Their findings emphasized the importance of 

probabilistic encoding, particularly when dealing with normalization-sensitive agricultural datasets. Beyond 

classification, [6] proposed an autoencoder-augmented OFDM (Orthogonal Frequency Division Multiplexing) 

framework to accelerate image transmission in IoT-enabled smart agriculture. Their approach reduced latency and 

congestion while preserving image integrity, showing that autoencoders can serve not only as learning modules but also 

as communication optimizers in agricultural cyber-physical systems. In unsu- pervised classification, [7] leveraged 

convolutional autoencoders with K-means clustering, achieving strong results on general-purpose datasets like MNIST 

and CIFAR-10. While not agriculture-specific, the architecture offers transferable insights for crop clustering or 

anomaly detection. Meanwhile, [8] improved spatial coherence in hyperspectral AEs by modifying the loss function to 

enforce neighborhood similarity, thereby producing smoother and semantically rich latent features for land cover 

classification. 

Despite these advances, a critical research gap remains: most autoencoder-based studies stop at feature extraction or 

dimensionality reduction, rarely integrating AEs into full classifier pipelines especially with modern lightweight models 

like YOLOv8. This disconnection limits the full potential of AEs as pre-classification modules, especially in spatially 

rich agricultural contexts. 

 

III. YOLOV8 AND LIGHTWEIGHT CLASSIFICATION NETWORKS IN AGRICULTURAL 

APPLICATIONS 

YOLOv8, the latest in the You Only Look Once family of object detection models, has expanded beyond detection into 

the realm of classification with the introduction of its classifier variant (e.g., yolov8n-cls.pt). Originally optimized for 

speed and accuracy in real-time object detection, recent adaptations of YOLOv8 now address the growing demand for 

lightweight, interpretable, and mobile-friendly deep learning models especially in agriculture, where devices deployed 

in fields and farms require computational efficiency without compromising accuracy. This section reviews recent work 

focused on tailoring YOLOv8 and its lightweight variants to agricultural and environmental tasks. In the domain of 



I J A R S C T    

    

 

               International Journal of Advanced Research in Science, Communication and Technology 

                            International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 5, Issue 1, August 2025 

Copyright to IJARSCT DOI: 10.48175/IJARSCT-28606   40 

www.ijarsct.co.in  

 
 

ISSN: 2581-9429 Impact Factor: 7.67 

 
plant disease recognition, [9] proposed a lightweight YOLOv8 architecture enhanced with ODConv and Wise-IoU 

(WIoU) loss for accurate rice blast disease detection. Their model achieved a 66.6% reduction in parameters and a 

61.9% decrease in model size, while also improving mAP by 5.2% over the baseline YOLOv8n. This design was 

explicitly optimized for mobile deployment, highlighting YOLOv8’s adaptability to resource-constrained agricultural 

settings. 

In industrial agriculture, [10] applied YOLOv8n in combination with MobileNetV3 and SimAM attention to detect 

defects in power transmission insulators. Although not a crop-focused application, the insights are transferable to 

agricultural sensor networks. With a 90.6% mAP@50 and a 40.54% increase in training speed, this hybrid architecture 

showed how integrating YOLOv8 with lightweight backbones and efficient attention mod- ules can drastically improve 

detection speed and accuracy under real-time constraints. Real-time classification of agricultural products has also 

benefitted from YOLOv8 innovations. [11] developed a cascaded YOLOv8 system enhanced by SRGAN (for super-

resolution) and Siamese data augmentation to classify star anise varieties. Their system achieved a remarkable 96.37% 

mAP at 146 FPS while using only 7.4% of the YOLOv3 model size, validating YOLOv8’s efficiency for classification 

tasks in resource-limited environments. 

For aerial agricultural monitoring, [12] introduced YOLOv8-LD, incorporating pruning techniques, an ASBiFPN neck, 

and MPDIoU loss for drone-based object detection. With an 81% reduction in parameters and a 67% smaller model 

size, they retained high accuracy (mAP@0.5 ↑21%), demonstrating that YOLOv8 can be pruned and still perform 

competitively for high-resolution aerial tasks. Pest detection, a critical problem  in precision agriculture, was addressed 

by [13] using LP-YOLO, a YOLOv8 derivative enhanced with Efficient Channel and Spatial Attention (ECSA) and 

pruning strategies. Their system reduced parameters by 70.2% and improved FPS by 40.7%, with only a minor 0.8% 

drop in mAP, offering an optimal balance between accuracy and efficiency for on-field pest monitoring. 

In crop-level weed detection, [14] improved the YOLOv8s backbone with D-PP-HGNet and novel dual downsampling 

techniques, raising accuracy from 91.2% to 95.8% while cutting model size by nearly 60%. These optimizations make 

embedded deployment in agricultural robots more feasible without compromising model precision. Addressing disease 

detection in tea leaves, [15] introduced YOLOv8-RCAA, which uses a RepVGG backbone combined with CBAM 

attention. Achieving 98.14% mAP, this anchor-free model out- performed YOLOv5, SSD, and Faster-RCNN, 

underscoring YOLOv8’s dominance in lightweight, real-time crop disease classification. Finally, [12] developed 

YOLOv8-PG for detecting pigeon eggs in poultry farms. The integration of EMA attention and Fasternet Block yielded 

a 4.45% mAP75 improvement, while reducing parameters by 24.69% and compute costs by 22.89%, reinforcing 

YOLOv8’s role in robotic automation and animal farming. 

Collectively, these studies underscore the flexibility and efficiency of YOLOv8 when customized for agricultural use 

cases. However, despite growing applications in detection, its use in classification pipelines especially in conjunction 

with autoencoders or attention modules remains sparse. This gap suggests significant opportunities for future 

exploration into fully integrated, lightweight classification systems for agricultural intelligence. 

 

IV. SPATIAL ATTENTION MECHANISMS IN CROP CLASSIFICATION 

The growing complexity and diversity of agricultural imagery driven by high-resolution remote sensing, drone 

surveillance, and ground-level imaging have introduced new challenges in crop classification. Traditional convolutional 

neural networks (CNNs), while effective at general feature extraction, often lack the ability to selectively emphasize 

spatially relevant features, especially when dealing with subtle visual cues such as small lesions, overlapping plant 

structures, or heterogeneity in plant morphology. Spatial attention mechanisms have emerged as a powerful tool to 

address these challenges by allowing models to focus on informative regions of input images, enhancing both 

classification accuracy and interpretability. This section reviews key developments in spatial attention modules 

including CBAM, SE, Dual Attention, and custom attention within the context of crop classification. [16] introduced a 

Geo-CBAM module that fused spatial and channel attention with geographic contextual information for crop 

classification using Sentinel-2 satellite imagery. Their model achieved 97.82% classification accuracy across six 

counties in the U.S., significantly outperforming both CNN and Random Forest baselines. Notably, the attention 
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module adapted well to spatial heterogeneity between different regions, demonstrating how geo-aware spatial attention 

enhances robustness in large-scale agricultural mapping. 

Similarly, [17] focused on crop-type identification from multi-spectral satellite imagery. Their model employed a Dual 

Attention Module (DAM) that jointly leveraged spectral and spatial attention streams    to refine feature representations. 

Using over 200,000 Sentinel-2 image samples across six crop categories, they reported an impressive 98.54% accuracy 

surpassing strong baselines such as XGBoost and standard CBAM. The dual-stream design enabled better modeling of 

textural patterns and reflectance variations unique to each crop type, especially in high-dimensional data. 

At the leaf level, [18] applied CBAM to ResNet50 for cassava disease classification. The spatial attention component 

helped isolate lesion-affected regions from healthy leaf areas, resulting in a 97% classification accuracy and clear 

improvements over standard CNNs. This work highlighted the role of spatial attention in disease localization, 

particularly for crops where visual symptoms are subtle and spatially dispersed.In segmentation based tasks, [19] 

incorporated CBAM with CARAFE (Content-Aware Re- Assembly of FEatures) into a DeepLabv3+ architecture to 

tackle overlapping disease regions in rice leaves. Their model significantly outperformed baseline DeepLabv3+ in 

pixel-wise accuracy, with CBAM improving spatial focus and CARAFE enhancing boundary resolution. This 

combination proved especially effective in distinguishing between closely related diseases such as bacterial blight and 

brown spot. 

For real-time agricultural applications, [20] developed ECENet a lightweight model combining CBAM with 

EfficientNetB0. Their design introduced parallel spatial and channel attention pathways optimized for low-resource 

deployment. Tested on a corn weed classification dataset, ECENet achieved 99.92% accuracy with minimal 

computational overhead, making it ideal for mobile and embedded systems in precision farming.Expanding beyond 

generic attention modules, [21] proposed a novel bit-plane and correlation- based spatial attention mechanism within 

ResNet101. Designed specifically for plant disease detection, the module captured localized lesion patterns by 

modeling feature correlations across spatial neighborhoods. Evaluated on the AI Challenger and PlantVillage datasets, 

their model reached up to 99.82% accuracy, outperforming SE and CBAM in small lesion detection. 

[22] tackled tomato disease severity classification using SEV-Net a network embedding spatial and channel attention 

within ResNet blocks. With 97.59% accuracy, the model supported real-time inference on Android platforms and 

provided visual explanations through Grad-CAM and saliency maps. This made it both performant and interpretable a 

crucial combination for practical agricultural diagnostics.Finally, [23] designed the Global Spatial Coordinate Attention 

Module (GSCAM), which com- bines the strengths of SE and CBAM while preserving computational efficiency. 

Though tested on fine-grained benchmarks like birds and flowers, its emphasis on global location-aware cues has direct 

applicability to detailed crop classification tasks, especially when precise spatial information is critical. 

In summary, spatial attention mechanisms have significantly advanced crop classification by enhancing feature 

localization, improving generalization across geographies, and enabling lightweight real-time models. However, most 

of these approaches remain centered around segmentation or disease detection. The integration of spatial attention 

within end-to-end classification pipelines particularly when combined with dimensionality-reduction modules like 

autoencoders and lightweight classifiers such as YOLOv8 remains underexplored. This opens a promising frontier for 

future research into compact, interpretable, and spatially aware agricultural AI systems. 

 

V. INTERPRETABLE DEEP LEARNING IN AGRICULTURE 

As deep learning becomes increasingly integral to agriculture, particularly in tasks like crop classification, disease 

detection, and yield prediction, a critical challenge has emerged: interpretability. For agricultural practitioners  and 

stakeholders to trust and adopt AI-driven insights, models must offer transparent reasoning. The movement toward 

interpretable deep learning, although widely studied in medical domains, offers valuable lessons that are transferrable to 

agriculture. 

Medical imaging research provides a strong foundation for interpretability techniques. [24] examined the transparency 

of deep learning models in chest radiography. Their comparative study of SHAP, LIME, GradCAM, and LRP revealed 

that Grad-CAM excelled quantitatively, while LIME delivered semantically rich explanations. The study highlighted 

the potential of multimodal interpretability a concept that could be extended to agricultural settings where multispectral 
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or multimodal sensor data is often used. Similarly, [25] explored CNNs applied to breast mammograms and emphasized 

how Grad-CAM could reliably identify malignant regions, offering visual correlation with pathology types. These 

insights mirror the challenges in plant disease classification, where distinct regions of leaves or crops may exhibit 

disease symptoms that demand explain- able localization. 

Grad-CAM, in particular, emerges as a recurring tool for making convolutional models interpretable. [26] successfully 

integrated Grad-CAM with CNNs like ResNet and EfficientNet for COVID-19 X-ray detection, enabling medical 

professionals to validate predictions with saliency maps. In agriculture, such integration could aid agronomists in 

visually verifying regions affected by pest infestations or nutrient deficiencies. Similarly, [27] used Grad-CAM++ and 

SHAP with DenseNet201 to explain multiclass lung disease classifications, deploying their model on Android for field 

diagnostics an approach highly relevant to mobile agricultural advisory systems in rural regions. 

Beyond visual explanations, hybrid interpretability methods improve trust in time-series and signal-based data, which is 

also applicable in precision agriculture. [28] combined SHAP, Grad-CAM, and Partial Dependence Plots to analyze 

CNN and LSTM models on ECG signals, highlighting the importance of both global and local interpretation. [29] 

further demonstrated that interpretable models could achieve high accuracy without sacrificing explainability by 

combining Grad-CAM and SHAP for arrhythmia classification, leading to improved clinician trust. This dual strategy 

can be extended to interpret spectral signatures in remote sensing based crop analysis or time-series data from soil 

sensors. 

The robustness and generalizability of interpretability tools are equally critical. [30] emphasized this by proposing the 

Forward Backward Interpretability framework and identifying the stability of Grad-CAM under data perturbations. [31] 

broadened the scope by applying Grad-CAM across architectures CNNs, ViTs, and Swin Transformers demonstrating 

its utility beyond traditional networks. With Transformer-based models gaining popularity in agricultural image 

analysis, such visual tools become increasingly vital. 

Interpretability tools like Grad-CAM, SHAP, and LIME have proven effective across domains for rendering black-box 

models more transparent. Drawing parallels from medical and signal processing domains, these methods can 

significantly enhance trust and usability of deep learning in agriculture. Ensuring explainability will not only improve 

user confidence but also foster adoption in mission-critical applications like disease diagnostics, soil health assessment, 

and yield forecasting, where human oversight remains essential. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1 :Overview of Key Deep Learning Enhancements in Agricultural Image Classification 
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VI. COMPARATIVE EVALUATION OF INTERPRETABILITY TECHNIQUES FOR DEEP LEARNING IN 

AGRICULTURE-INSPIRED HEALTHCARE CONTEXTS 

Table 1: Comparative Summary of Interpretability Techniques 

The integration of autoencoders, attention mechanisms, lightweight classification backbones, and interpretability tools 

like t-SNE or Grad-CAM forms a robust pipeline for agricultural classification. These components work synergistically 

to address challenges such as noise, scale variance, and model transparency. An overview of this integrated approach is 

illustrated in Figure 1 , highlighting the complementary nature of compression, attention, classification, and 

interpretability in precision agriculture. Interpretability is a pivotal factor for deploying deep learning models in critical 

domains such as agriculture and healthcare, where decisions must be explainable to domain experts. This section 

presents a comparative evaluation of widely used interpretability methods Grad- CAM, SHAP, LIME, and others across 

recent studies (2023–2025) that deal with medical and pathology-oriented image datasets. These works serve as analogs 

for developing interpretable models in agriculture, particularly in scenarios involving plant disease diagnosis, yield 

prediction, or remote sensing. 

From the review as suggested in Table 1 , Grad-CAM emerged as the most widely adopted method across various 

CNN-based architectures including DenseNet, ResNet, and EfficientNet. It demonstrated robust performance in 

visualizing relevant image regions (e.g., lesions in lungs, QRS complexes in ECGs) while maintaining consistency 

under model and data perturbations [30]. Studies such as [26] and [19] found Grad-CAM particularly effective in high-

stakes scenarios like COVID-19 and cardiac diagnostics, boosting expert confidence.LIME, though less quantitatively 

dominant, proved useful in generating class-discriminative and medically intuitive explanations [24], [25]. SHAP 

offered a global-local interpretability balance, as seen in [27], [28], and performed well when paired with saliency-

based methods like Grad-CAM++.Interestingly, [31] extended Grad-CAM utility beyond CNNs to transformer based 

models, indicating its adaptability for newer architectures. Collectively, these findings advocate for a hybrid 

interpretabilitypipeline, combining spatial heatmaps (e.g., Grad-CAM++) with feature attribution techniques (e.g., 

SHAP/LIME), especially for field-deployed applications in agriculture where model trustworthiness is essential. 

 

VII. COMPARATIVE EVALUATION OF INTERPRETABILITY TECHNIQUES FOR DEEP LEARNING IN 

AGRICULTURE-INSPIRED HEALTHCARE CONTEXTS 

Despite recent advancements, significant gaps remain in the integration of interpretability, attention mechanisms, and 

compression techniques within agricultural deep learning pipelines. Most studies focus on either classification accuracy 

or model efficiency, often neglecting explainability and generalizability in real-world agricultural scenarios. While 

spatial attention modules like CBAM have improved disease localization and multiscale feature extraction, they are 

rarely embedded within lightweight, interpretable classifiers such as YOLOv8. Similarly, autoencoders are widely used 

for feature compression but are seldom integrated in end-to-end classification models. Additionally, although Grad-

CAM and SHAP have shown promise in healthcare, their adoption in agricultural image analysis particularly in UAV 

or hyperspectral data is still limited. A lack of benchmarking datasets and standardized evaluation protocols further 

impedes reproducibility and progress. These gaps underscore the need for unified, hybrid frameworks that combine 

interpretability, efficiency, and accuracy in a scalable and agriculturally relevant manner. 

 

Study Method Unique Insight 

Alam et al., 2023 SHAP, LIME, Grad-CAM, LRP Multimodal interpretability enhanced trust 

Balve& Hendrix, 2024 SHAP, LIME, Grad-CAM Strong visual correlation with pathology 

Ali, 2025 Grad-CAM with CNNs Clinically validated explanations 

Verma, 2022 SHAP, PDP, Grad-CAM QRS highlighting increased interpretability 

Zeng, 2024 Grad-CAM, SHAP Full accuracy + visual saliency 

Mahamud, 2024 SHAP, Grad-CAM++, LIME Android-based interpretable model deployment 

Kokate, 2018 Grad-CAM vs F-B Interpretability Identified robustness gaps 

Shen & Huang, 2024 Grad-CAM on CNNs/Transformers Transformer explainability validated 
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VIII. CONCLUSION AND FUTURE SCOPE 

This review synthesizes recent developments in feature compression, spatial attention, and interpretability techniques 

highlighting their individual strengths and their potential synergy in advancing agricultural deep learning. Autoencoders 

have demonstrated powerful denoising and dimensionality reduction capabilities, especially in hyper- spectral and UAV 

datasets. YOLOv8, with its lightweight classification variant, has emerged as a strong candidate for mobile-friendly 

crop monitoring applications. When integrated with spatial attention modules like CBAM or PAM, these models show 

enhanced multi-scale learning and localized focus critical for precision agriculture. However, the black-box nature of 

such deep learning systems still hinders trust and adoption in real world farming scenarios. 

Future research should focus on developing unified pipelines that combine autoencoder-based compression, YOLO-

based classification, and attention-driven spatial modeling while embedding interpretability modules like Grad-CAM 

and SHAP for transparent decision-making. Benchmarking these hybrid models on large-scale, real-world agricultural 

datasets, including temporal and multispectral data, will be crucial. The incorporation of explainable AI on edge 

devices also presents exciting opportunities for real-time, farmer-friendly deployment. Such integrated, interpretable, 

and efficient systems will significantly propel the next generation of AI-powered precision agriculture. 
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