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Abstract: Ensuring worker safety through compliance with Personal Protective Equipment (PPE) 

mandates, particularly the use of safety helmets, is a critical concern in the construction industry. 

Automated surveillance systems leveraging advanced object detection models offer a promising solution 

to enhance monitoring and reduce accidents. This paper presents a comparative performance evaluation 

of two promi- nent YOLO (You Only Look Once) variants, YOLOv8 and YOLOv9, for the specific task of 

safety helmet detection. Utilizing a publicly available hard-hat dataset featuring diverse construction site 

scenarios, both models were trained for 7 epochs and rigorously evaluated. Performance metrics, 

including precision, recall, mean Average Precision (mAP), F1-score, and confusion matrices, were 

analyzed. The experimental results indicate that YOLOv9 exhibits a marginal but consistent performance 

advantage over YOLOv8, achieving an mAP@0.5 of 66.70% compared to YOLOv8’s 65.73%, and an F1-

score of 76.15% versus 75.66%. This study underscores the incremental improvements in the YOLO 

architecture and provides valuable insights for selecting robust models for real-world safety monitoring 

applications. While both models demonstrate high precision, the relatively lower recall suggests areas 

for future improvement through more extensive training or model fine-tuning to enhance detection rates 

in safety-critical environments. 
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I. INTRODUCTION 

The construction industry consistently ranks among the most hazardous sectors globally, with head injuries from falling 

objects or impacts posing a significant threat to worker safety [1]. Safety helmets are fundamental Personal Pro- tective 

Equipment (PPE) designed to mitigate such risks. However, ensuring consistent helmet usage across dynamic and often 

sprawling construction sites remains a challenge. Traditional manual supervision methods are often resource-intensive, 

inconsistent, and prone to human oversight [2]. 

The advent of Artificial Intelligence (AI), particularly deep learning-based computer vision, has opened new avenues 

for automating safety compliance monitoring. Object de- tection algorithms, which can identify and localize specific 

objects within images or video streams, are particularly well- suited for tasks like helmet detection. The You Only Look 

Once (YOLO) family of algorithms has gained widespread adoption due to its excellent balance of detection speed and 

accuracy, making it suitable for real-time applications [3]. Each successive version of YOLO, from YOLOv7 [4] and 

YOLOv8 [5] to the more recent YOLOv9 [6], has introduced architectural innovations and training refinements aimed 

at pushing the performance envelope. 

Given the rapid evolution of these models, a direct and cur- rent comparison is essential for practitioners and 

researchers looking to implement effective AI-driven safety solutions. This research focuses on a comparative 

performance evalua- tion of YOLOv8 and YOLOv9 specifically for safety helmet detection in construction 

environments. By training and eval- uating these models on a relevant dataset under identical con- ditions, this study 
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aims to quantify their respective strengths and weaknesses, thereby providing actionable insights for the development 

and deployment of automated safety surveil- lance systems. 

 

II. LITERATURE REVIEW 

The YOLO (You Only Look Once) series has been a dominant force in real-time object detection, with continuous 

improve- ments in architecture and performance. 

YOLOv7 [4] marked a significant step forward by intro- ducing concepts like Extended Efficient Layer Aggregation 

Network (E-ELAN) and model scaling techniques. It focused on optimizing the training process with "trainable bag-of- 

freebies," achieving a new state-of-the-art in real-time object detection accuracy and speed at the time of its release. 

How- ever, like its predecessors, detecting very small or heavily occluded objects, which are common in busy 

construction sites, could still pose challenges. 

YOLOv8 [5], developed by Ultralytics, continued this evo- lutionary trend. It introduced a new backbone (C2f module, 

an evolution of YOLOv7’s ELAN), an anchor-free detec- tion head, and a decoupled head architecture. These changes 

aimed to improve the accuracy-speed trade-off and over- all model flexibility. YOLOv8 supports various computer 

vision tasks beyond detection, including segmentation and classification. Despite these advancements, studies such as 

Lin’s work on helmet detection [7] demonstrated that even YOLOv8n (the smallest variant) could benefit from further 

modifications for specific challenging scenarios. Lin et al. improved YOLOv8n by incorporating mosaic data augmen- 

tation, a coordinate attention mechanism, a slim-neck struc- ture, and an additional small target detection layer, 

resulting in their YOLOv8n-SLIM-CA model. This improved model showed notable gains in precision (1.462%), recall 

(2.969%), mAP50 (2.151%), and mAP50-95 (3.549%) over the baseline YOLOv8n, highlighting that while YOLOv8 

provided a solid base, domain-specific enhancements were valuable for tasks like detecting small or occluded helmets 

in complex back- grounds. The limitations identified were often related to lower detection accuracy for small targets 

and in environments with significant visual clutter. 

YOLOv9 [6] represents the latest iteration at the time of this study, introducing groundbreaking concepts such as 

Programmable Gradient Information (PGI) and the General- ized Efficient Layer Aggregation Network (GELAN). PGI 

is designed to address the information bottleneck problem often encountered in deep neural networks, where essential 

information can be lost as data propagates through layers. By allowing auxiliary reversible branches, PGI ensures that 

the main network can access complete input information to cal- culate objective functions, thus generating reliable 

gradients for network updates. This addresses issues like information loss in deep supervisions and identity 

connections. GELAN is a new network architecture that combines the principles of CSPNet (Cross Stage Partial 

Network) with ELAN, leverag- ing gradient path planning for improved parameter utilization and computational 

efficiency. It is designed to be lightweight yet powerful, enabling better feature aggregation and learning capabilities. 

These architectural innovations in YOLOv9 aim to enhance both the accuracy and efficiency of object detec- tion, 

particularly in scenarios where robust feature learning and information preservation are critical. The goal is to enable 

the model to "learn what you want to learn," effectively cap- turing comprehensive information for improved 

performance across diverse detection challenges. 

The evolution from YOLOv7 to YOLOv9 reflects a con- tinuous drive towards more efficient architectures, better in- 

formation flow within the network, and improved learning strategies. While YOLOv8 offered significant 

improvements, particularly with its anchor-free approach, specialized ap- plications like safety helmet detection still 

revealed areas where targeted enhancements could yield better results, as demonstrated by Lin [7]. YOLOv9, with its 

fundamental architectural changes like PGI and GELAN, is hypothesized to offer more robust and accurate 

performance out-of-the- box, especially in handling the complexities inherent in con- struction site imagery. 

 

III. METHODOLOGY 

A. DATASET 

This study utilized the "Hard Hat Detection" dataset, which is publicly available and commonly employed for 

evaluating safety helmet detection models. The dataset consists of images depicting construction workers in various 

real-world scenarios. Annotations are provided for three primary classes: ’helmet’ (a worker wearing a helmet), ’head’ 
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(a worker’s head without a helmet), and ’person’. The images capture a range of complexities, including variations in 

lighting conditions, worker poses, distances from the camera (object scale), and levels of occlusion. Figure 1 presents 

the overall distribution of annotated instances per class, indicating a significantly higher number of ’helmet’ instances 

compared to ’head’ and ’person’. Figure 2 provides a correlogram illustrating the spatial distribution (x, y coordinates) 

and size (width, height) characteristics of the annotated objects, showing a concentra- tion of objects towards the center 

of the images and a wide range of object sizes. 

 

B. DATA PREPROCESSING AND ANNOTATION FORMAT 

All images were resized to a standard input dimension of 640x640 pixels prior to training, a common resolu- tion for 

many YOLO models. The annotations were pro- vided in the standard YOLO text file format for each im- age. Each 

line in an annotation file corresponds to one bounding box and is formatted as: <class_index> 

<x_center_normalized> <y_center_normalized> 

<width_normalized> <height_normalized>. The class index is an integer (0 for ’head’, 1 for ’helmet’, 2 for ’person’ 

based on typical YOLO conventions, though the exact mapping depends on the names file). The bounding box 

coordinates and dimensions are normalized to be between 0 and 1, relative to the image width and height. 

During training, standard data augmentation techniques, integral to the Ultralytics YOLO training pipeline, were 

employed. These typically include mosaic augmentation (com- bining four images into one), color space adjustments 

(e.g., hue, saturation, value), geometric transformations (e.g., ran- dom flips, scaling, translation), and potentially others 

like mixup or copy-paste. Figure 3 illustrates an example of a training batch with augmentations applied. 

 

 
FIGURE 1: Dataset label distribution (from YOLOv9 training). 

 
FIGURE 2: Dataset label correlogram showing object size and location distribution (from YOLOv9 training). 
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C. MODEL TRAINING 

Both YOLOv8 and YOLOv9 models were trained using the Ultralytics framework. Based on the provided results.csv 

files, the training was conducted for 7 epochs for both models. Other key training parameters were inferred from the 

results.csv files or assumed to be standard defaults for the Ultralytics training scripts: 

 Optimizer: Typically SGD (Stochastic Gradient Descent) or AdamW. 

 Learning Rate Schedule: A cyclic or cosine annealing learning rate schedule is common, with initial learning 

rates specified (e.g., lr/pg0, lr/pg1, lr/pg2 columns in results1.csv show varying LRs for different parameter 

groups). 

 Batch Size: While not explicitly stated, typical batch sizes for such datasets range from 16 to 64, depending on 

GPU memory. 

 Hardware: Training was likely performed on GPU(s) to achieve reasonable training times. 

 
FIGURE 3: Example training batch with augmentations (from YOLOv9 training). 

 

D. EVALUATION METRICS 

The performance of the trained YOLOv8 and YOLOv9 mod- els was evaluated using the following standard object 

detec- tion metrics: 

• Precision (P): The proportion of correctly predicted pos- itive detections among all positive detections made by the 

model. 

P =   True Positives 

  True Positives + False Positives   (1) 

 

• Recall (R): The proportion of actual positive instances that were correctly detected by the model. 

R =   True Positives 

 True Positives + False Negatives   (2) 

• F1-Score: The harmonic mean of Precision and Recall, providing a single score that balances both. 

F 1 =  2 × Precision × Recall 

    Precision + Recall    (3) 

 

• mean Average Precision (mAP): 

-- mAP@0.5 (or mAP50): The mAP calculated using an Intersection over Union (IoU) threshold of 0.5. This metric 

indicates how well the model performs when a 50% overlap between the predicted and ground truth bounding box is 

considered a correct detection. 
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-- mAP@0.5:0.95: The average mAP calculated over a range of IoU thresholds, from 0.5 to 0.95 with a step of 0.05. 

This provides a more comprehensive measure of localization accuracy across different levels of overlap. 

• Confusion Matrix: A table that visualizes the perfor- mance of the classification aspect of the detector. It shows the 

number of correct and incorrect predictions for each class, including misclassifications between classes and detections 

of background as an object (false positives). 

 

IV. EXPERIMENTAL SETUP AND RESULTS 

The experiments were conducted using the Ultralytics Python library. YOLOv8 and YOLOv9 models were trained for 

7 epochs on the "Hard Hat Detection" dataset. The performance metrics were recorded at the end of each epoch, with 

the final epoch’s results used for comparison. 

 

A. QUANTITATIVE RESULTS 

The performance metrics for YOLOv8 and YOLOv9 after 7 epochs of training are presented in Table 1. The values are 

extracted from the results1.csv for YOLOv8 and results2.csv for YOLOv9. 

TABLE 1: Performance Comparison of YOLOv8 and YOLOv9 (Epoch 7). 

Metric YOLOv8 (Epoch 7) YOLOv9 (Epoch 6) 

Precision (Overall) 0.96287 0.96626 

Recall (Overall) 0.62305 0.62834 

mAP@0.5 (mAP50) 0.65725 0.66696 

mAP@0.5:0.95 0.45030 0.45711 

Note: YOLOv9 results are from epoch 6 as the CSV shows 0-6 epochs, totaling 7 data points. 

Figure 4 and Figure 5 show the progression of key training and validation metrics over the epochs for YOLOv8 and 

YOLOv9 respectively. 

 
FIGURE 4: YOLOv8 Training Metrics Progression (Epoch 1-7). 

 
FIGURE 5: YOLOv9 Training Metrics Progression (Epoch 0-6). 

 

1) Confusion Matrices 

Confusion matrices provide a class-wise breakdown of detection performance. 
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FIGURE 6: YOLOv8 Confusion Matrix. 

 
              

FIGURE 7: YOLOv9 Confusion Matrix. (Labels in Y-axis are "Head", "Helmet", "Person", "background"; X-axis are 

"Head", "Helmet", "Person", "background"). 

 

Performance Curves 

These curves illustrate model performance across different confidence thresholds. 

2) Example Detections on Validation Set 

Qualitative results from validation batches show the models’ detection capabilities. 

 

V. DISCUSSION 

The experimental results from 7 epochs of training indicate that YOLOv9 holds a slight but consistent performance 

edge 

 
FIGURE 8: YOLOv8 F1-Score vs. Confidence Curve (Max F1 for all classes: 0.63 at 0.459 confidence). 
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FIGURE 9: YOLOv8 Precision-Recall Curve (mAP@0.5: 0.657). 

 
FIGURE 10: YOLOv9 Precision-Recall Curve (mAP@0.5: 0.667). 

 
FIGURE 11: YOLOv9 F1-Score vs. Confidence Curve (Max F1 for all classes: 0.63 at 0.397 confidences. 

 
FIGURE 12: YOLOv8 Precision vs. Confidence Curve. 

 
FIGURE 13: YOLOv9 Precision vs. Confidence Curve 

The experimental results from 7 epochs of training indicate that YOLOv9 holds a slight but consistent performance 

edge over YOLOv8 for the task of safety helmet detection on the given dataset. YOLOv9 achieved higher overall 
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precision (0.966 vs. 0.963), recall (0.628 vs. 0.623), mAP@0.5 (0.667 vs. 0.657), and mAP@0.5:0.95 (0.457 vs. 0.450). 

The architectural improvements in YOLOv9, particularly the introduction of Programmable Gradient Information (PGI) 

and the Generalized Efficient Layer Aggregation Network (GELAN) [6], are likely contributors to this enhanced 

performance. PGI aims to mitigate information loss during the forward pass, allowing for more reliable gradient 

generation for weight updates. GELAN, building upon concepts from CSPNet and ELAN, provides an efficient and 

effective architecture for feature aggregation across different network stages. These mechanisms likely enable YOLOv9 

to learn more robust and discriminative features, even with a limited number of training epochs. A critical observation 

from the performance curves and metrics is the disparity between precision and recall for both models. While precision 

is notably high (around 0.96), indicating that the detected helmets are very likely to be actual helmets, the recall is 

comparatively low (around 0.62-0.63). This means that both models are failing to detect a significant proportion 

(approximately 37-38%) of the actual helmets present in the images. For a safety-critical application like helmet 

detection, a high recall rate is paramount to minimize missed violations (false negatives). The current recall levels 

suggest that neither model, after only 7 epochs, is sufficiently reliable for standalone deployment without further 

improvements. 

The F1-score curves (Figures 11 and 12) show that the optimal F1-score for both models is around 0.63, achieved at 

confidence thresholds of 0.459 for YOLOv8 and a slightly lower 0.397 for YOLOv9. This suggests that YOLOv9 

might achieve its best balance of precision and recall at a lower con- fidence threshold, potentially capturing more true 

positives. 

The confusion matrices (Figures 6, 7, 8) reveal that most errors occur as false negatives (missed detections of ’helmet’ 

or ’head’) rather than misclassifications between ’helmet’ and ’head’. For YOLOv8 (Normalized, Figure 7), when the 

true class is ’helmet’, it is correctly predicted 96% of the time, but 2% of ’helmet’ instances are missed (predicted as 

background). When the true class is ’head’, it is correctly predicted 95% of the time, with 3% missed. The ’person’ 

class seems to be the most challenging, with only a small fraction of true ’person’ instances being correctly identified, 

and many being missed or confused with the background. 

The limited number of training epochs (7) is a significant factor. Deep learning models typically require more extensive 

training to converge and generalize effectively. The observed performance is likely an early-stage indication, and 

further training could lead to substantial improvements in recall for both models. 

In terms of specific visual scenarios, the provided valida- tion batch images (Figures 17 through 22) show varying de- 

grees of success. For instance, in Figure 17 (YOLOv8), some occluded heads are missed in the prediction. In Figure 20 

(YOLOv9), detections appear generally accurate for the pre- sented batch. A more detailed qualitative analysis across a 

wider range of challenging images (e.g., severe occlusion, poor lighting, very small helmets) would be necessary to 

draw firm conclusions about their robustness in specific adverse conditions. 

 

VI. CONCLUSION 

This paper presented a comparative performance evaluation of YOLOv8 and YOLOv9 for safety helmet detection in 

construction environments, based on 7 epochs of training. YOLOv9 demonstrated a marginal but consistent 

improvement over YOLOv8 across key metrics, including mAP@0.5 (66.70% for YOLOv9 vs. 65.73% for YOLOv8) 

and overall F1-score (76.15% for YOLOv9 vs. 75.66% for YOLOv8). 

The architectural innovations in YOLOv9, namely Programmable Gradient Information (PGI) and the Generalized 

Efficient Layer Aggregation Network (GELAN), are likely responsible for its slightly superior learning capability  

ob- served even with limited training. Both models exhibited 

 high precision, but their recall rates were found to be relatively low (around 0.62-0.63), indicating a significant number 

of missed helmet detections. This is a critical concern for safety applications and underscores the necessity for more 

extensive training to improve detection reliability. 

Future work should prioritize training both models for a substantially larger number of epochs to allow for full 

convergence. A thorough error analysis is recommended to identify specific scenarios where detections are missed 

(e.g., occlusion, scale, lighting) to guide further model fine-tuning or dataset augmentation. Furthermore, evaluating 
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inference speed (FPS) on hardware relevant to deployment scenarios is crucial for assessing real-time applicability. 

Ultimately, for practical deployment in construction safety, models must achieve higher recall rates  

Future work should prioritize training both models for a substantially larger number of epochs to allow for full 

convergence. A thorough error analysis is recommended to identify specific scenarios where detections are missed 

(e.g., occlusion, scale, lighting) to guide further model fine-tuning or dataset augmentation. Furthermore, evaluating 

inference speed (FPS) on hardware relevant to deployment scenarios is crucial for assessing real-time applicability. 

Ultimately, for practical deployment in construction safety, models must achieve to ensure minimal missed violations  
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