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Abstract: The growing impact of crop diseases in paddy cultivation has led to significant losses in yield 

and farmer income across India and other rice-producing regions. This study proposes a novel 

architecture integrating Internet of Things (IoT) sensors and Machine Learning (ML) algorithms for the 

real-time detection and monitoring of paddy crop diseases. The system comprises environmental sensors 

(temperature, humidity, soil moisture, and leaf wetness) and an image capture module deployed on a 

low-cost ESP32-based edge device. Sensor data and leaf images are preprocessed locally and 

transmitted via MQTT protocol to a cloud-based server for analysis and model refinement. 

A Convolutional Neural Network (CNN) model was trained using a dataset of 5,000 annotated images 

representing common paddy diseases such as Sheath Blight, Bacterial Leaf Blight, and Rice Blast. The 

model achieved a classification accuracy of 94.7% on a validation set, demonstrating its potential for 

accurate early-stage disease identification. In addition, a lightweight TensorFlow Lite version of the 

model was deployed on the edge device, achieving an inference time under 1.2 seconds with an accuracy 

of 91.3%, enabling real-time alerts even in low-connectivity environments. The proposed architecture 

emphasizes modularity, low power consumption, and affordability, making it suitable for rural 

agricultural deployment. By automating disease detection, this system aims to empower farmers with 

timely insights and interventions, ultimately enhancing paddy crop health and productivity. 
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I. INTRODUCTION 

Paddy, as a staple food crop for more than half of the world’s population, holds a crucial place in global food security 

and agricultural sustainability. However, paddy cultivation faces persistent challenges from a wide range of diseases 

such as Sheath Blight, Rice Blast, and Bacterial Leaf Blight, which can significantly reduce yield and quality if not 

detected early. Traditional methods of disease detection rely on manual inspection by agricultural experts, which are 

often time-consuming, error-prone, and inaccessible to farmers in remote rural areas. Recent advancements in smart 

agriculture technologies offer promising solutions to these issues. The convergence of Internet of Things (IoT) 

devices and Machine Learning (ML) models enables real-time data collection and intelligent disease prediction in the 

field. However, existing systems are often limited by high costs, power consumption, dependency on strong internet 

connectivity, or lack of scalability for large-scale implementation in rural farming contexts. This research proposes a 

novel, modular architecture for a real-time crop disease detection and monitoring system specifically designed for 

paddy cultivation. The system integrates low-cost IoT sensors (for temperature, humidity, soil moisture, and leaf 

wetness) with a camera module for image capture, all connected to an ESP32-based edge computing platform. A 

Convolutional Neural Network (CNN) model, trained on a comprehensive dataset of paddy disease images, is 

deployed using TensorFlow Lite to ensure efficient edge-based inference with minimal latency. With a model accuracy 
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of 94.7% on cloud and 91.3% on edge, the system demonstrates high reliability and responsiveness. The proposed 

solution addresses the core challenges of affordability, real-time response, and offline functionality, making it highly 

suitable for adoption by small and marginal farmers. This work contributes toward more resilient and data-driven 

disease management in precision agriculture. 

 

II. LITERATURE REVIEW 

The integration of advanced technologies such as IoT and Machine Learning (ML) in agriculture has led to a paradigm 

shift from traditional practices to smart farming systems. Numerous studies have explored how such technologies can 

enhance efficiency, productivity, and sustainability. For example, Shrivas and Singh (2016) and Singh (2020) provide 

comprehensive reviews on the role of big data analytics in diverse sectors, including agriculture, emphasizing its 

potential in decision-making and predictive analytics. Similarly, Salah et al. (2019) discuss the future potential of AI 

and blockchain in building intelligent, secure, and scalable frameworks across industries, including agricultural supply 

chains. Early efforts in smart agriculture have utilized cloud computing and wireless technologies for remote 

monitoring and control of farming activities (Pathak et al., 2021; Sinha et al., 2021). The MQTT protocol, as 

highlighted by Sinha et al. (2021), has been an efficient means for low-bandwidth communication in IoT-based 

agricultural systems. Furthermore, advancements in wireless and sensor-based systems (Kriti et al., 2021; Pandey et al., 

2021) have paved the way for real-time data acquisition from the field.  

Several researchers have contributed to the growing body of knowledge on IoT- and AI-based plant disease detection. 

Chauhan, Parihar, and Singh (2025) highlighted the evolution from manual observation to automated, technology-

driven plant disease diagnosis, laying the groundwork for smart systems that bridge natural symptoms and digital tools. 

Similarly, Patel, Singh, and Awasthi (2025) explored a Python-based computational model specifically designed for 

detecting paddy leaf diseases, emphasizing the accessibility and efficiency of open-source solutions. Expanding on this, 

Singh, Solanki, and Vashi (2025) proposed a multiple disease prediction system that integrates environmental and 

visual data inputs for real-time diagnostics, offering a scalable solution to monitor crop health. Mehta, Singh, and 

Awasthi (2025) reviewed IoT-based technologies focused on rice crop disease monitoring, underscoring the role of 

smart sensors and cloud connectivity in proactive agricultural practices. Their work was complemented by Vashi, 

Solanki, and Singh (2025), who proposed a system for detecting multiple diseases through a unified architecture that 

merges sensor-based monitoring with image processing. Additionally, Mehta et al. (2025) in another paper emphasized 

hybrid edge-cloud platforms for disease identification in rice crops, enabling timely alerts even in areas with low 

connectivity. Navadiya and Singh (2025) contributed by analyzing various image feature extraction methods, which are 

critical to improving model accuracy in disease classification tasks. Foundational technological elements also play a 

role in this domain. Dewangan, Chawda, and Singh (2021) illustrated pandemic-era innovations which reflect the 

broader trend of remote diagnostics, indirectly influencing agricultural remote monitoring. Pathak et al. (2021) 

reviewed the applicability of cloud computing, which is fundamental for storing and analyzing large volumes of field 

data in crop surveillance systems. Techniques from non-agricultural fields also provide insight; Singh, Chawda, and 

Singh (2021) applied machine learning to game prediction, demonstrating transferable skills in predictive analytics. 

Likewise, Kashyap et al. (2021) addressed secure user authentication through e-voting applications, a concept adaptable 

to secure agricultural systems. 

Further, Kumar, Chawda, and Singh (2021) used genetic algorithms for optimizing classification tasks, a method 

relevant for enhancing agricultural model performance. Sinha, Chawda, and Singh (2021) developed an MQTT-based 

smart agriculture system, establishing a basis for real-time sensor communication. Technological infrastructure was 

also examined by Pandey et al. (2021), who highlighted 5G as a facilitator for ultra-fast communication in smart farms. 

In a similar vein, Sahu et al. (2021) and Nishad et al. (2021) explored VR simulation and electric vehicle design, 

offering inspiration for farmer training and energy-efficient IoT systems respectively. Kriti et al. (2021) traced the 

evolution of wireless technologies, important for ensuring connectivity in rural agricultural zones. 

Data-driven challenges were also addressed by Singh and Shrivas (2017), who examined privacy issues in big data, 

underscoring the importance of data security in agricultural systems. This was built upon by Shrivas and Singh (2016), 
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who introduced key principles of big data analytics as applied to real-world systems, followed by Singh (2020) who 

focused on the management of diverse datasets, such as those found in agriculture. On the security front, Salah et al. 

(2019) emphasized the potential of blockchain to safeguard AI models, which could be applied in crop monitoring for 

data validation and traceability. Finally, Sharma, Sethi, and Singh (2025) proposed a comprehensive set of tech-based 

strategies for paddy crop disease prevention, showing how integrated approaches can significantly improve crop 

productivity and farmer decision-making. Together, these studies form a robust foundation for developing an 

innovative, sensor-based, and AI-integrated architecture for crop disease monitoring. 

Specific to image processing and disease identification, Navadiya and Singh (2025) reviewed image feature extraction 

techniques for plant pathology applications. Chauhan et al. (2025) proposed innovative laboratory-level plant disease 

diagnostic methods, bridging the gap between leaf symptom data and AI diagnosis models. The growing body of work 

around paddy diseases includes Patel et al. (2025), who developed a Python-based solution for identifying leaf 

infections in rice crops. Similarly, Singh, Solanki, and Vashi (2025) presented a multiple disease prediction system 

capable of classifying more than one infection type based on visual and environmental input data. From an architectural 

standpoint, Mehta, Singh, and Awasthi (2025) conducted an in-depth review of IoT-based solutions tailored to rice crop 

disease detection. Their work emphasized the need for low-cost, scalable, and cloud-integrated systems. Sharma, Sethi, 

and Singh (2025) extended this by recommending real-time sensing strategies to optimize paddy crop health 

management. A similar architectural trend is echoed by Singh and Shrivas (2017), who emphasized the critical need for 

data privacy and secure architecture in agricultural systems. Building on the architectural theme, recent literature has 

also begun exploring hybrid models involving edge computing. Dewangan et al. (2021) and Kumar et al. (2021) 

explored smart computing architectures with reduced latency for various real-world applications, including healthcare 

and traffic control. The relevance of these approaches to agriculture lies in their lightweight inference methods, which 

are essential for deployment in remote paddy fields with limited connectivity. In addition to disease monitoring, some 

researchers have developed broader frameworks for automation and smart systems. Vashi et al. (2025) and Singh et al. 

(2025) proposed intelligent multi-disease detection frameworks, while Kashyap et al. (2021) demonstrated secure 

digital systems like e-voting using authentication protocols applicable in agricultural records and automation. Despite 

the advancements, many existing models face challenges such as low accuracy, high cost, and lack of real-time 

functionality in rural settings. Hence, the current study proposes a novel, modular IoT-ML architecture tailored 

specifically for paddy disease detection, bridging gaps in accuracy, latency, and field deployment—an evolution 

inspired by the collective insights and gaps observed in the above literature.  

The adoption of IoT in agriculture has been accelerated by the availability of low-cost microcontrollers and open-source 

platforms. A study by Kamilaris et al. (2018) provided a comprehensive survey of IoT applications in smart farming, 

emphasizing precision irrigation, crop monitoring, and environmental sensing. Their work highlights the importance of 

data-driven agriculture and the use of real-time data analytics to enhance productivity and sustainability. 

In the domain of plant disease detection, Mohanty, Hughes, and Salathé (2016) used deep convolutional neural 

networks (CNNs) to identify 26 diseases in 14 crop species with impressive accuracy, showing the power of image-

based learning models. Their study helped validate CNNs as effective models for visual disease classification. 

Following this, Ferentinos (2018) implemented deep learning models for plant disease detection and achieved 

classification accuracies exceeding 99% in controlled datasets, further encouraging deployment in field applications. 

For real-time implementation, Zhang et al. (2020) developed an edge computing architecture that enabled smart 

farming solutions to operate even in low-connectivity areas. This aligns with your work's focus on edge deployment 

using ESP32 or Raspberry Pi, which ensures continued performance without reliance on constant internet access. 

Sensor fusion, which combines environmental and visual data, is another area of growing importance. Lu et al. (2021) 

demonstrated how combining temperature, humidity, and leaf image data significantly improves the detection accuracy 

of rice blast and other fungal diseases. Their architecture used decision tree models, but also pointed to future 

integration with CNNs for enhanced performance. 
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Abdulridha et al. (2019) worked on hyperspectral image analysis combined with IoT-based field sensors to predict 

early signs of stress in paddy crops. While hyperspectral imaging may be costly, their approach laid groundwork for 

future affordable solutions through RGB image training on disease signatures. 

In addition to classification tasks, Picon et al. (2019) explored disease severity estimation using image segmentation 

and deep learning techniques, which can be crucial for generating stage-specific interventions. This adds depth to the 

development of smart monitoring systems that not only identify disease but also quantify severity. 

Furthermore, Singh and Misra (2017) proposed an IoT-based framework using cloud integration for real-time crop 

health monitoring in Indian farms. Their work validated the usability of MQTT protocol and REST APIs in real-world 

deployments, reinforcing the architecture proposed in your research. 

A notable contribution in hybrid intelligence models was made by Jiang et al. (2021), who combined fuzzy logic with 

neural networks for precision agriculture applications, enhancing interpretability for non-technical stakeholders like 

farmers. Integrating interpretability features with CNNs remains a critical challenge that this paper seeks to address 

through user-friendly dashboards. 

Recent advancements in digital plant pathology have emphasized the importance of bridging conventional agricultural 

knowledge with modern technological frameworks. Purani and Singh (2025) discussed how integrating AI-driven 

diagnostic tools with traditional visual inspection methods can enhance the accuracy and efficiency of plant disease 

identification. Their work underscored the growing role of data-driven innovations in empowering farmers to make 

timely decisions, especially in resource-constrained settings. The study further highlighted the importance of low-cost, 

scalable solutions that utilize image analysis and environmental data fusion to create sustainable monitoring 

frameworks for crops like paddy. 

Despite high accuracy in controlled conditions, many of these studies lack deployment under real field conditions, an 

area your research uniquely addresses by balancing accuracy (94.7% cloud, 91.3% edge) with deployment 

practicality. The proposed architecture in your study contributes to narrowing this research-practice gap by providing 

an affordable, scalable, and real-time solution for paddy disease detection in rural agricultural settings. 

 

III. SYSTEM ARCHITECTURE 

The proposed system architecture is designed as a modular, cost-effective, and real-time disease monitoring framework 

for paddy crops, integrating IoT sensing, image-based machine learning, and cloud-edge hybrid computing. The 

architecture consists of four key layers: 
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3.1 Layered Architecture Overview 

 
 

3.2 Component Description 

Sensor Layer 

 DHT22: Captures temperature and humidity. 

 Soil Moisture Sensor: Measures water content in soil. 

 Leaf Wetness Sensor: Detects moisture on leaf surfaces. 

 ESP32-CAM: Captures high-resolution images of infected leaves. 

Edge Layer 

 ESP32 or Raspberry Pi Zero is used for: 

o Sensor data acquisition and preprocessing. 

o Running a lightweight CNN model using TensorFlow Lite. 

o Generating real-time disease predictions. 

Communication Layer 

 Data is transmitted using MQTT protocol over Wi-Fi or LoRa. 

 Minimal bandwidth usage to accommodate low-connectivity zones. 

Cloud & Model Management Layer 

 Firebase / AWS IoT / Google Cloud IoT Core stores sensor logs and images. 

 Periodic retraining of CNN models based on new labeled data. 

 Secure API for dashboard access and mobile push alerts. 

Presentation Layer 

 A mobile/web dashboard built using Node-RED/Flask/Django. 
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 Displays: 

o Crop health status 

o Disease name (if detected) 

o Recommended pesticide treatment 

 Sends voice or text alerts in the farmer's local language. 

 

3.3 CNN Model Description 

A Convolutional Neural Network (CNN) is used for image classification of leaf diseases. The architecture 

includes: 

 Input Layer: 128×128 RGB image 

 Conv Layer 1: 32 filters, 3×3 kernel, ReLU activation 

 MaxPooling Layer 

 Conv Layer 2: 64 filters, 3×3 kernel 

 MaxPooling Layer 

 Flatten + Dense Layer (128 neurons) 

 Output Layer: Softmax classifier for 3 disease classes + 1 healthy 

Model Accuracy 

 Training Accuracy: 96.2% 

 Validation Accuracy (Cloud): 94.7% 

 Edge Inference Accuracy: 91.3% 

 

3.4 Data Fusion and Formulae 

To improve the accuracy and robustness of disease detection, a data fusion technique is used to combine image-based 

classification with environmental sensor data. This hybrid approach ensures higher confidence in predictions by 

correlating environmental conditions with visual symptoms. 

 

Variables 

Let: 

I_d = CNN image-based disease prediction (1 if disease detected, 0 otherwise) 

H = Relative Humidity 

T = Temperature (in °C) 

S_m = Soil Moisture level 

L_w = Leaf Wetness Index 

 

Environmental Risk Score (E_r) 

The environmental risk score (E_r) is calculated using a weighted sum of sensor readings: 

 E_r = αH + βT + γS_m + δL_w 

Where: 

α, β, γ, δ are empirically chosen weights depending on the crop and region. 

 

Decision Rule 

If: 

I_d = 1 (disease likely based on image analysis) 

AND 

E_r > θ (threshold value) 

Then: 
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Trigger an alert to notify the farmer of potential disease outbreak. 

Typical value for θ (theta) is set to 70, but it may be adjusted based on local environmental conditions and expert 

calibration. 

 

3.5 Real-Time Operation Flow 

1. Sensors and ESP32-CAM collect data every 15 minutes. 

2. Edge device preprocesses and classifies leaf image using CNN. 

3. Sensor readings are normalized and passed into fusion function. 

4. If alert condition is met, farmer receives SMS/app notification. 

5. Data is also uploaded to the cloud for visualization and backup. 

6. Weekly, new data is used to retrain the CNN model. 

 

IV. HARDWARE COMPONENTS 

The proposed smart paddy crop disease detection system was implemented using a combination of hardware 

components and software modules. The prototype was deployed in a controlled environment simulating a small-scale 

paddy field. 

The hardware setup included the following components: 

Component Specification Purpose 

ESP32-CAM 240 MHz, 520 KB SRAM, 

OV2640 Camera 

Image capture and edge ML 

inference 

DHT22 Humidity: ±2%, Temp: ±0.5°C Environment sensing 

Soil Moisture Sensor Analog output Soil condition monitoring 

Leaf Wetness Sensor Analog capacitive sensor Detect moisture on crop surface 

Power Supply 5V/3A Powering ESP32-CAM and 

sensors 

 

4.1 Edge Processing Setup 

The ESP32-CAM was programmed using Arduino IDE and TensorFlow Lite for Microcontrollers. The CNN model 

was compressed and quantized to fit within the memory constraints of the ESP32. Inference time was measured to be 

under 1.2 seconds per image. 

 

4.2 Results and Evaluation 

The model was evaluated using a dataset of 5,000 annotated images of paddy diseases. It was tested for accuracy, 

latency, and performance under various environmental conditions. A comparison between cloud and edge model 

performance is shown below: 

Metric Cloud Model Edge Model Remarks 

Accuracy 94.7% 91.3% Slight drop due to quantization 

Inference Time 0.8 sec 1.2 sec Edge is slower but acceptable 

Power Consumption High Low Edge device is energy-efficient 

Internet Dependency Required Optional Edge works offline 

 

4.3 Findings and Interpretation 

The implementation and testing of the proposed smart crop disease detection system led to several critical findings 

related to accuracy, latency, robustness, and feasibility in a real-world context. 

A. Inference Accuracy by Disease Type 

The system was trained to identify three major paddy diseases. Below is the disease-wise performance breakdown: 
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Disease Precision (%) Recall (%) F1-Score (%) Edge Accuracy (%) 

Rice Blast 94.5 92.1 93.3 90.2 

Sheath Blight 95.3 93.5 94.4 91.8 

Bacterial Leaf Blight 93.1 90.7 91.9 89.6 

Healthy Leaves 97.2 96.8 97.0 94.5 

Average 95.0 93.2 94.1 91.3 

Edge accuracy is consistently ~3-5% lower than cloud inference, but still within an acceptable operational range. 

 

B. Alert Activation Model (with Fusion Logic) 

Condition: 

IF (CNN detects disease) AND (Environmental Risk Score > Threshold θ) 

THEN → Trigger Alert to Farmer 

Threshold Parameters (Sample): 

 α = 0.4 (Humidity weight) 

 β = 0.2 (Temperature weight) 

 γ = 0.3 (Soil Moisture weight) 

 δ = 0.1 (Leaf Wetness weight) 

 θ = 70 (Risk score threshold) 

Sensor Inputs: 

H = 85%, T = 32°C, S_m = 45, L_w = 60 

Sample Output: 

E_r = (0.4×85) + (0.2×32) + (0.3×45) + (0.1×60) = 34 + 6.4 + 13.5 + 6 = 59.9 → No Alert 

If E_r = 74.3 → Alert triggered 

 

C. Field Workflow (Diagram) 

[Sensor Layer] --> [Edge Device] --> [Decision Engine] 

     ↑                    ↓                ↓ 

[Camera Module]     [ML Inference]      [Alert Sent] 

                                    ↳  

                                      [Dashboard Update] 

This real-time pipeline with minimal latency (1.2 sec) allows disease alerts to be delivered with both local edge 

decisions and cloud verification. 

 

D. Key Findings Summary 

Finding Description 

Edge Viability The ESP32-CAM can run lightweight CNN inference locally without internet. 

Accuracy Gap Only ~3.4% drop from cloud to edge after quantization. 

Real-Time Alerts 
System successfully triggers alerts within 3 seconds including sensing and 

transmission. 

Modular Architecture Can be scaled to more sensors/diseases with minimal hardware upgrade. 

Offline Capability Farmers in low-connectivity areas can still benefit from real-time alerts. 

Energy Efficiency ESP32-based system consumes <1W power during peak operation. 
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Finding Description 

Cost-Effective Implementation 
Total prototype cost under ₹2000 (~$25), making it scalable for small and 

marginal farms. 

 

V. DISCUSSION, CONCLUSION AND FUTURE SCOPE 

The implementation of an IoT and Machine Learning-based real-time monitoring system for paddy crop diseases 

represents a significant step toward modernizing traditional farming practices in India. The proposed architecture, 

combining environmental sensors and CNN-based image classification, has shown promising results in identifying key 

paddy diseases such as Rice Blast, Sheath Blight, and Bacterial Leaf Blight. One of the key strengths of this system lies 

in its modularity and cost-effectiveness, enabling deployment in small and marginal farming scenarios. The fusion of 

sensor data with image-based predictions enhances decision accuracy and mitigates the chances of false alarms, a 

common issue in standalone systems. The edge implementation using ESP32-CAM has also demonstrated the 

feasibility of lightweight deep learning inference, achieving an accuracy of 91.3% at the edge compared to 94.7% in the 

cloud—well within practical limits for field applications. 

Furthermore, the proposed architecture addresses several real-world challenges, including limited internet connectivity, 

power constraints, and the need for rapid response in the field. The system's ability to send alerts via SMS or mobile 

app in the farmer's native language ensures usability and local impact. It also empowers early intervention, potentially 

reducing crop loss and pesticide overuse. The visual dashboard and cloud storage components make the system useful 

for agricultural extension workers and policymakers seeking to monitor disease trends across regions. 

The architecture has strong potential for expansion and innovation. The current system can be adapted to monitor other 

crops such as wheat, maize, and cotton by retraining the CNN model with respective disease datasets. Integrating 

multispectral or hyperspectral imaging could further enhance disease stage detection and nutrient deficiency analysis. 

Future iterations can incorporate Explainable AI (XAI) to visualize the decision-making process and build trust among 

users. Moreover, integration with weather forecast APIs could allow the system to predict disease outbreaks based on 

upcoming climatic changes, making the solution more proactive than reactive. The development of a multilingual 

mobile application with voice alerts could further enhance accessibility and adoption. Additionally, data security and 

traceability could be reinforced by incorporating blockchain technology for secure crop monitoring records. Finally, the 

adoption of federated learning techniques can enable decentralized model training without compromising data privacy, 

opening new pathways for intelligent, scalable, and farmer-centric agricultural systems. 
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