
I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 8, June 2025

 Copyright to IJARSCT DOI: 10.48175/568 637

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

Multiplayer Matchmaking Engine (Pong Game)
Omkumar Moury1 , Mayur There2, Prof. Vrushali Awale3

Students, Department of Computer Science1,2

Professor, Department of Computer Science3

Rajiv Gandhi College of Engineering, Research and Technology, Chandrapur

Abstract: This project presents a comprehensive multiplayer Pong game engine designed for real-time

gaming applications using serverless architecture. By leveraging Java for client-side implementation and

Amazon Web Services (AWS) cloud infrastructure including Lambda functions, DynamoDB, and API

Gateway, the system processes multiplayer matchmaking and game state management efficiently. The

implementation emphasizes scalable architecture, real-time synchronization, and cost-effective serverless

deployment. The system's design ensures automatic scaling and adaptability, making it suitable for

deployment across various platforms requiring efficient multiplayer gaming capabilities with minimal

infrastructure overhead.

Keywords: Multiplayer Gaming, Serverless Architecture, AWS Lambda, DynamoDB, Game Engine,

Real-time Systems, Matchmaking, Java.

I. INTRODUCTION

Multiplayer game development involves creating systems that can handle concurrent players, maintain game state

consistency, and provide real-time interaction capabilities. Using Java for client-side development combined with AWS

serverless architecture, this can be accomplished by implementing game logic, matchmaking algorithms, and persistent

storage solutions. Tools like AWS Lambda, DynamoDB, and API Gateway, along with Java frameworks facilitate this

process. Each player action is processed instantly through serverless functions, enabling the application of cloud-based

game engines to manage multiplayer sessions and maintain authoritative game state. This technology finds use in

various gaming domains, including casual multiplayer games, competitive gaming platforms, and educational game

development, serving as a powerful and innovative solution for scalable multiplayer gaming systems.

II. CONTENT DETAILS

A. Aims and Objectives.

1. Real-Time Multiplayer Gaming: Develop a system capable of handling concurrent players in real-time Pong

matches.

2. Efficient Matchmaking: Implement algorithms to pair players based on skill rating and geographic proximity.

3. Serverless Architecture: Utilize AWS Lambda functions for scalable, cost-effective backend processing.

4. State Synchronization: Maintain consistent game state across distributed clients.

B. Methodology.

The system follows these core steps:

 Environment Setup: Configure Java development environment and AWS services including Lambda,

DynamoDB, and API Gateway.

 Client Development: Create Java-based game client using Swing framework for UI and custom networking

components.

 Backend Architecture: Design serverless functions for matchmaking, game state management, and player

actions.

 Database Design: Implement DynamoDB schema for player profiles, game sessions, and match history.

 Real-time Communication: Establish WebSocket connections through API Gateway for live game updates.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 8, June 2025

 Copyright to IJARSCT DOI: 10.48175/568 638

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

 Game Logic Implementation: Develop collision detection, physics simulation, and scoring systems.

 Testing & Deployment: Conduct performance testing and deploy to AWS cloud infrastructure.

C. Module Description.

This module focuses on multiplayer game engine development using Java and AWS serverless architecture. It covers

the fundamentals of game development, cloud computing, and real-time systems with hands-on implementation using

Java, AWS Lambda, DynamoDB, and API Gateway. The module addresses client-server architecture, serverless

computing concepts, database design, and real-time communication protocols, enabling students to create scalable

multiplayer gaming applications.

Key topics include:

 Java Game Development Fundamentals

 AWS Lambda and Serverless Architecture

 DynamoDB Database Design and Operations

 API Gateway and WebSocket Communication

 Real-time Game State Synchronization

 Matchmaking Algorithm Implementation

 Performance Optimization and Cost Analysis

 Cloud Deployment and Monitoring

At the end of this module, students will be able to design and deploy scalable multiplayer game engines using modern

cloud technologies for applications such as casual gaming, educational platforms, and competitive gaming systems.

D. Algorithm Description

The game processing pipeline comprises:

 Client Initialization: Start Java application and establish connection to AWS API Gateway.

 Player Authentication: Authenticate player credentials and retrieve profile information from DynamoDB.

 Matchmaking Request: Submit matchmaking request to Lambda function with player skill rating and

preferences.

 Match Creation: Lambda function processes queue and creates game session when suitable opponent is

found.

 Game State Setup: Initialize game state in DynamoDB with player positions, ball location, and game

parameters.

 Real-time Updates: Process player inputs through WebSocket connections and update authoritative game

state.

 Collision Detection: Lambda function handles ball-paddle and ball-wall collision detection and physics.

 Score Management: Update player scores and broadcast changes to connected clients.

 Game Completion: Handle game end conditions and update player statistics and match history.

 Session Cleanup: Remove expired game sessions and release resources.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 8, June 2025

 Copyright to IJARSCT DOI: 10.48175/568 639

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

E. UML & ER Diagram

SYSTEM ARCHITECTURE DIAGRAM

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 8, June 2025

 Copyright to IJARSCT DOI: 10.48175/568 640

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

III. OUTPUT

Game lobby

After connecting one player

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 8, June 2025

 Copyright to IJARSCT DOI: 10.48175/568 641

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

After connecting 2 palyer

After click on start game (Game started)

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 8, June 2025

 Copyright to IJARSCT DOI: 10.48175/568 642

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

Console

IV. CONCLUSION

The developed multiplayer Pong game engine demonstrates the practical application of serverless architecture in real-

time gaming applications. By integrating AWS Lambda, DynamoDB, and API Gateway with Java client development,

the system achieves scalable, cost-effective multiplayer gaming capabilities with automatic scaling and minimal

operational overhead. The modular serverless architecture enables efficient matchmaking, real-time state

synchronization, and persistent game data management. Its cloud-native design supports global scalability, making it

suitable for applications in casual gaming, educational platforms, and competitive gaming environments. The use of

managed AWS services allows for reduced infrastructure complexity and pay-per-use cost optimization. Future

enhancements may involve implementing advanced matchmaking algorithms using machine learning, deploying edge

computing solutions for reduced latency, and integrating additional game modes and features. Additionally,

incorporating mobile client support, spectator functionality, and tournament management systems can further expand

the platform's capabilities and user engagement in practical gaming scenarios.

V. AKNOWLEDGEMENT

I would like to express my sincere gratitude to all those who supported me throughout the course of this project. First

and foremost, I am deeply thankful to our mentor, Prof. [Guide Name], for his invaluable guidance, encouragement,

and continuous support during the course of this work. His insights and expertise in cloud computing and game

development were instrumental in the successful completion of this project. I also extend my heartfelt thanks to the

Department of Computer Science, [College Name], [City], India, for providing the necessary resources and a conducive

environment for learning and development. Special appreciation goes to Amazon Web Services for providing the cloud

infrastructure and documentation that made this serverless implementation possible.

REFERENCES

[1]. Oracle Corporation, "Java Platform, Standard Edition Documentation," Oracle, 2023.

[2]. Amazon Web Services, "AWS Lambda Developer Guide," AWS Documentation, 2023.

[3]. Amazon Web Services, "Amazon DynamoDB Developer Guide," AWS Documentation, 2023.

[4]. Amazon Web Services, "Amazon API Gateway Developer Guide," AWS Documentation, 2023.

[5]. https://www.youtube.com

[6]. https://claude.ai/new (claude AI)

[7]. https://chatgpt.com/ (CHAT GPT)

