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Abstract: This study explores the preparation and morphological analysis of FAPbI₃ perovskite films for 

photovoltaic applications, focusing on defect engineering along grains and grain boundaries. Scanning 

electron microscopy (SEM) images of the films were categorized into five distinct types: pure 3D 

perovskite, 3D perovskite with PbI₂ excess, 3D perovskite with pinholes, 3D-2D mixed perovskite, and 

3D-2D mixed perovskite with pinholes. To enhance defect analysis, we developed a comprehensive deep 

learning framework, benchmarking nine architectures—YOLOv8, ResNet50V2, DenseNet169, 

EfficientNetB3, MobileNetV3 Large, Vision Transformer, CoCa, YOLOv9, and InceptionV3—on a 

curated dataset of these defect types. Despite challenges posed by limited SEM image availability due to 

specialized laboratory requirements, our framework, supported by data augmentation and transfer 

learning, achieved robust performance, with YOLOv8 attaining 100% test accuracy. The models were 

integrated into a user-friendly Streamlit web application, facilitating practical defect identification. This 

work provides valuable insights into optimizing perovskite film quality for improved solar cell 

performance and stability 
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I. INTRODUCTION 

The global demand for renewable energy has surged, driven by the need to address climate change and reduce fossil 

fuel dependence. In 2024, solar photovoltaics (PV) accounted for over 30% of new renewable capacity additions 

worldwide, per the International Energy Agency. Perovskite solar cells (PSCs), particularly those based on 

formamidinium lead iodide (FAPbI₃), have emerged as a promising alternative to silicon-based systems due to their 

elevated power conversion efficiencies (PCEs) exceeding 25%, low-cost fabrication, and tunable optoelectronic 

properties such as high electron mobility, low exciton binding energy and high absorption coefficient [1,2]. However, 

defects such as pinholes, PbI₂ excess, and grain boundary irregularities compromise the stability and efficiency of 

FAPbI₃-based PSCs, necessitating advanced defect analysis to enhance performance. 

Recent PSC research has focused on improving stability and efficiency through compositional engineering, such as 

mixed-cation or 3D-2D hybrid structures. Studies like Zhang et al. [3] used computational modeling to predict defect 

formation in FAPbI₃, while Chen et al. [4] highlighted pinholes’ impact on device performance. Mixed-dimensionality 

perovskites, combining 3D and 2D phases, have gained attention for their moisture resistance, as noted by Xu et al. [5]. 

Yet, defect analysis via scanning electron microscopy (SEM) remains labor-intensive, prompting the integration of 

machine learning (ML) for automated defect detection. 

ML has transformed materials science by enabling rapid analysis of complex datasets. In PSC research, ML predicts 

material properties and detects defects, as seen in Li et al., who applied CNNs to silicon solar cells, and Sun et al., who 

explored SEM-based defect identification in perovskites [6,7]. YOLO-based models [8] and transformers Liu et al. have 
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shown promise for real-time and small-object detection, respectively, though dataset scarcity remains a challenge due to 

specialized SEM imaging requirements [9]. 

Recent literature has advanced ML applications for PSC defect detection, particularly addressing dataset limitations. 

Bansal et al. reviewed ML’s role in PSC development, emphasizing data preprocessing to handle missing or noisy SEM 

data, which enhances model accuracy [4,6]. Li et al.  demonstrated ML’s ability to predict PCE and stability using the 

Perovskite Database, though only 5% of its 43,000 entries include stability data, highlighting the need for standardized 

datasets. Fukasawa et al. used process informatics to incorporate fabrication conditions into ML models, achieving 

improved PCE predictions despite data degeneracy [10,11]. For defect-specific studies, edge detection algorithms, as 

explored by Deng et al. automated grain boundary identification in perovskite films, though limited by small SEM 

datasets [12]. To mitigate this, researchers have employed transfer learning and data augmentation, as seen in predictive 

models for double perovskites achieving high R² scores (0.934 for bandgap) with limited data. These studies underscore 

the potential of ML to overcome dataset scarcity through innovative data strategies, yet comprehensive SEM-based 

defect datasets for FAPbI₃ remain scarce [13,14,8,4]. 

Our work addresses these challenges by developing a multi-model deep learning framework for automated defect 

detection in mixed-dimensionality FAPbI₃ perovskite films, categorized into five defect types: pure 3D perovskite, 3D 

perovskite with PbI₂ excess, 3D perovskite with pinholes, 3D-2D mixed perovskite, and 3D-2D mixed perovskite with 

pinholes [15,16,17,18]. Key contributions include benchmarking nine architectures-YOLOv8, ResNet50V2, 

DenseNet169, EfficientNetB3, MobileNetV3 Large, Vision Transformer, CoCa, YOLOv9, and InceptionV3with 

YOLOv8 achieving 100% test accuracy; employing data augmentation and transfer learning to address limited SEM 

image availability; and deploying the framework in a user-friendly Streamlit web application for real-time defect 

analysis. By enabling precise identification of morphological issues, our approach guides fabrication improvements, 

enhances PSC stability and efficiency, and supports scalable quality control, with open-sourced code to foster 

collaborative dataset expansion [19,20,21,22]. 

 

II. MATERIALS AND METHODS 

Chemicals and Materials 

Dimethylformamide (DMF, 99.8%), dimethyl sulfoxide (DMSO, 99.8%), ethyl acetate (anhydrous, 99.5%), hexane 

(anhydrous, 99.5%), acetonitrile (99.8%), ethanol (anhydrous, 99%), and 2-propanol (IPA, anhydrous, 99.9%) were 

sourced from Sigma Aldrich. Lead (II) iodide (PbI2, 99.99%) was obtained from Tokyo Chemical Industry. 

Formamidinium iodide (FAI, >98%), methylammonium bromide (MABr, >98%), phenethylammonium iodide (PEAI, 

>99%), n-dodecylammonium iodide (DDAI, >99%), cyclohexylmethylammonium iodide (CMAI, >99%), 2-

thiophenemethylammonium iodide (TMAI, >99%), and methylammonium chloride (MACl, >98%) were procured from 

GreatCell Solar and used as received [23]. 

 

Fabrication of Perovskite Films 

ITO-coated or plain glass substrates were cleaned by sequential sonication in acetone, ethanol, and 2-propanol, 

followed by 15-minute UV–ozone treatment. High-purity δ-FAPbI3 powder was synthesized via a one-pot method per 

literature [23], washed three times with ethyl acetate and acetonitrile, dried in a vacuum oven for over 24 hours, and 

stored in an N2-filled glovebox. For pristine α-FAPbI3 films, a 1.8 M precursor solution was prepared by dissolving 

1139 mg δ-FAPbI3 and 40 mg MACl in 1 mL DMF: DMSO (9:1 v/v). This solution was spin-coated on substrates in 

two steps: 1000 rpm for 10 s, then 5000 rpm for 30 s. During the second step, 100 µL of ethyl acetate-hexane (7:3 v/v) 

antisolvent was applied at 10 s intervals (30-40% RH). Films were annealed at 150 °C for 20 min to form α-FAPbI3. 

For 2D perovskite layers on 3D perovskite, 4 mM solutions of PEAI, TMAI, CMAI, or DDAI in IPA were sprayed at 

3.0 mL/min using N2 gas [23]. 

 

Film Characterization 

Crystallographic properties were analyzed using a Rigaku MiniFlex XRD with Cu Kα radiation (λ = 1.5405 Å). 

Absorption spectra were measured with a Shimadzu UV-3600 Plus UV–vis–NIR spectrophotometer. Steady-state 
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photoluminescence was recorded using an Edinburgh Instruments FS5 spectrofluorometer. Morphology was examined 

with a JEOL/JSM-F100 scanning electron microscope [22,23]. 

 

Data preprocessing and model validation 

The data preprocessing and model validation process for this study began with the collection and categorization of SEM 

images as illustrated in Figure 1.Perovskite solar cell (PSC) films were distributed into five defect types: pure 3D 

perovskite, 3D perovskite with PbI₂ excess, 3D perovskite with pinholes [22,23,24,25], 3D-2D mixed perovskite, and 

3D-2D mixed perovskite with pinholes [26], where non-YOLOv8 models utilized 452 training, 12 validation, and 12 

test images per class (totalling 2,380 images at 224×224 pixels), while YOLOv8 employed an expanded dataset with 

2,060 training images (154–500 per class) and 1,250 images each for validation and testing (250 per class), reflecting a 

significant effort given the labour-intensive nature of sample synthesis, preparation, microscopy operation, and expert 

labelling [8,9,10], which limits the dataset size compared to the 50,000+ images typically recommended for deep 

learning [14].  

 
Figure 1. Data processing and model validation pathway 

A balanced distribution was maintained across classes to prevent bias, with non-YOLOv8 models having 452 training 

images per category [1,10,11]and YOLOv8 ranging from 154 to 500, alongside 250 images per class for validation and 

testing, supported by a standardized image processing pipeline that included acquisition, normalization, resizing, expert 

labeling with consensus for ambiguous cases, and a  

 
Figure 2. Validation test accuracy comparing all nine models 
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prediction workflow with normalization. To address the limited data, comprehensive augmentation was applied using 

Keras’sImageDataGenerator (horizontal/vertical flips, ±15° rotations, ±10% zoom, brightness shifts, random shearing) 

for non-YOLOv8 models and Ultralytics’ augmentations (Mosaic, RandomHSV, Flip) for YOLOv8, effectively 

expanding the training set (e.g., YOLOv8’s 2,060 images to over 10,000) to enhance generalization and reduce 

overfitting, though SEM images’ grayscale nature, high contrast, and consistent conditions posed challenges, with 

augmentations simulating realistic variations like sample tilts and noise but being constrained by the inability to 

introduce new contexts or fully preserve fine defect details [10]. 

Nine models-YOLOv8, ResNet50V2, DenseNet169, EfficientNetB3, MobileNetV3 Large, Vision Transformer (ViT), 

CoCa, YOLOv9, and InceptionV3were pretrained (mostly on ImageNet) and fine-tuned with a 1024-unit dense layer, 

dropout (0.5), and softmax, trained using Adam (AdamW for YOLOv8) with batch sizes of 8 (16 for YOLOv8, 1 for 

InceptionV3), 50 epochs (30 initial + 20 fine-tuning), and callbacks like EarlyStopping and ReduceLROnPlateau 

[6,7,8], with hardware split between CPU (Intel i7-11800H) and GPU (NVIDIA RTX 3050 Ti), ensuring fair 

comparison, while YOLOv8’s larger 1,250-image test set provided a more reliable performance estimate than the 60-

image sets for other models; during training, the categorical cross-entropy loss was calculated using the equation: 

� = −
1

�
� � ��,�

�

���

�

� � �

���(���,�) 

where L is the loss function, N is the number of samples, C is the number of classes (5 in this case), ��,� is the true label 

(1 if the sample i belongs to class c, 0 otherwise),  ���,�is the predicted probability that sample i belongs to class 

c[10,11,4]. 

 

III. RESULTS AND DISCUSSION 

The performance evaluation of the nine deep learning models applied to perovskite solar cell (PSC) defect 

classification, as illustrated in Figure 2 followed by training time and weighted F1-score of all nine models as indicated 

in S1 and S2 respectively of supporting information (SI). Additionally, Table 1., reveals significant insights into their 

efficacy in identifying critical defects such as pure 3D perovskite, 3D perovskite with PbI₂ excess, pinholes, and 3D-2D 

mixed perovskite variants, which are pivotal for optimizing PSC efficiency and stability. YOLOv8 (Ultralytics) 

emerged as the top performer, achieving a perfect 100.0% test accuracy and a weighted F1-score of 1.000 on a robust 

1,250-image test set [7,8.9], with training and validation accuracy curves converging rapidly by epoch 8 and losses 

dropping to near-zero, a testament to its ability to capture the intricate microstructural features of perovskite films; 

however, this exceptional result, while promising for controlled laboratory conditions, raises concerns about overfitting 

and limited generalization to diverse perovskite synthesis environments due to the dataset’s constrained size and 

homogeneity. ResNet50V2 and DenseNet169 followed with a strong 96.7% accuracy and F1-scores of approximately 

0.966, exhibiting a more gradual convergence over 20 epochs with smoother validation curves, suggesting these deep 

residual networks [1,4,8] developed more generalizable representations of perovskite defect patterns, potentially better 

suited for variations in film fabrication processes like spin-coating or spray-coating [22].  

Table 1: Performance Metrics and Training Times for All Models 

Model Test Accuracy(%) WeightedF1-Score Training Time (min) 

YOLOv8(Ultralytics) 100.0 1.000 12 

ResNet50V2 96.7 0.966 81 

DenseNet169 96.7 0.966 297 

YOLOv9 45.0 0.411 8 

CoCa 35.0 0.324 9 

EfficientNetB3 33.3 0.297 47 

VisionTransformer 31.7 0.222 13 

MobileNetV3Large 25.0 0.171 21 

InceptionV3 16.7 0.060 74 
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In contrast, YOLOv9 achieved a moderate 45.0% accuracy (F1: 0.411), CoCa 35.0% (F1: 0.324), and EfficientNetB3 

33.3% (F1: 0.297), indicating moderate success in discerning perovskite defect characteristics, while Vision 

Transformer (31.7%, F1: 0.222), MobileNetV3 Large (25.0%, F1: 0.171), and InceptionV3 (16.7%, F1: 0.060) 

underperformed, with early plateauing of validation accuracy reflecting insufficient capacity to model the complex 

textures and phase distributions inherent in perovskite materials [4,9]. Transformer

displayed erratic validation curves with high epoch

with the limited SEM dataset of 2,060–2,260 training image

perovskite sample preparation and imaging. Training times further underscored hardware and model complexity trade

offs: GPU-accelerated models like YOLOv9 (7.8 min), CoCa (8.2 min), and Vision Tran

training swiftly [7.2.19], while CPU-trained CNNs such as DenseNet169 (4hr 57min) and ResNet50V2 (1hr 21min) 

required significantly longer, reflecting practical considerations for selecting models in perovskite research setting

where computational resources may be limited. These learning dynamics and performance metrics collectively suggest 

that while YOLOv8 and residual networks excel within the current dataset, enhancing dataset diversity

through advanced augmentation or additional perovskite synthesis conditions

critical factor for real-world PSC defect detection and quality control [5.9.21].

Furthermore, we evaluated the performance of various deep learning models [1,16] for automated defect detection, 

focusing on test accuracy, validation loss, training efficiency, and per

as the top performerachieving a test accuracy of 100.0%, a weighted F1

minutes on 1,250 test images (Figure 3.)while models like InceptionV3 (16.7% 

Figure 3. Distribution of dataset in different categories

accuracy, 1hr 14min) and EfficientNetB3 (33.3% accuracy, 47min) underperformed significantly. This is visually 

supported by the validation accuracy chart, showing YOLO8 at 1.00, DenseNet169 and ResNet50V2 at 0.98, and 

InceptionV3 at 0.23. Table 3. details YOLOv8’s training, with valid

reaching 100.0% by Epoch 8, aligning with the test loss chart (0.00) and validation loss chart (7.00E

rapid convergence but potential overfitting due to limited dataset diversity (2,060 training im

Table 2: Per-ClassPrecision,Recall,andF1

  Class   

 

 3Dperovskite   

 3DperovskitewithPbI2excess 

3Dperovskitewithpinholes 

3D-2Dmixedperovskite 

3D-2Dmixedperovskitewithpinholes

WeightedAvg 

 

I J A R S C T  
   

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, June 2025 

        DOI: 10.48175/IJARSCT-28026  

  

 

In contrast, YOLOv9 achieved a moderate 45.0% accuracy (F1: 0.411), CoCa 35.0% (F1: 0.324), and EfficientNetB3 

33.3% (F1: 0.297), indicating moderate success in discerning perovskite defect characteristics, while Vision 
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2,260 training images, a constraint rooted in the resource

perovskite sample preparation and imaging. Training times further underscored hardware and model complexity trade

accelerated models like YOLOv9 (7.8 min), CoCa (8.2 min), and Vision Transformer (13.0 min) completed 

trained CNNs such as DenseNet169 (4hr 57min) and ResNet50V2 (1hr 21min) 
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where computational resources may be limited. These learning dynamics and performance metrics collectively suggest 

that while YOLOv8 and residual networks excel within the current dataset, enhancing dataset diversity

tion or additional perovskite synthesis conditions—could improve generalizability, a 

world PSC defect detection and quality control [5.9.21]. 

Furthermore, we evaluated the performance of various deep learning models [1,16] for automated defect detection, 

focusing on test accuracy, validation loss, training efficiency, and per-class performance. Table 1. highlights YOLOv8 

eving a test accuracy of 100.0%, a weighted F1-score of 1.000, and a training time of 12 

minutes on 1,250 test images (Figure 3.)while models like InceptionV3 (16.7%  
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cientNetB3 (33.3% accuracy, 47min) underperformed significantly. This is visually 

supported by the validation accuracy chart, showing YOLO8 at 1.00, DenseNet169 and ResNet50V2 at 0.98, and 

InceptionV3 at 0.23. Table 3. details YOLOv8’s training, with validation loss dropping to 0.0002 and accuracy 

reaching 100.0% by Epoch 8, aligning with the test loss chart (0.00) and validation loss chart (7.00E

rapid convergence but potential overfitting due to limited dataset diversity (2,060 training images) [15]. 

ClassPrecision,Recall,andF1-ScoreforYOLOv9 

   Precision       Recall F1-Score  Support

     0.3889         0.5833 0.4667         12 

     1.0000         0.0833 0.1538         12 

0.3333 0.3333 0.3333 12 

0.5000 0.4167 0.4545 12 

pinholes 0.5263 0.8333 0.6452 12 

0.5497 0.4500 0.4107 60 
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that while YOLOv8 and residual networks excel within the current dataset, enhancing dataset diversity—potentially 

could improve generalizability, a 

Furthermore, we evaluated the performance of various deep learning models [1,16] for automated defect detection, 
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Table 3: Training and Validation Metrics for YOLOv8 

    Epoch  Train Loss Val. Loss           Val. Acc.(%)  

 

1 1.235 0.656 79.2 

8 0.268 0.031 100.0 

50 0.028 0.0002 100.0 

 

Table 2. reveals YOLOv9’s per-class performance, with a weighted average F1-score of 0.4107, excelling in 3D-2D 

mixed perovskite with pinholes (F1=0.6452) but struggling with 3D perovskite with PbI₂ excess (F1=0.1538, precision 

1.0000, recall 0.0833), a pattern echoed by its validation loss of 1.28 and test loss of 1.54 in the charts [16,18,21]. 

DenseNet169, however, achieved near-perfect scores across all classes, showcasing robust feature extraction despite the 

small test set of 60 images per model, which introduces high variance in accuracy measurements. Training logs confirm 

the framework’s flexibility across hardware, with ResNet50V2 and DenseNet169 taking ~7.5 hrs on a CPU (Intel i7-

11800H), while YOLOv9 and CoCa completed in minutes on an RTX 3050 Ti. YOLOv8’s inference speed on the GPU 

(~13.2 ms/image, ~75 FPS) and post-TensorRT optimization (<10 ms/image) demonstrates its viability for real-time 

inspection [5,6,8.10]. Sample visualizations further confirm YOLOv8’s ability to identify distinct defect characteristics, 

such as pinholes and layered structures, enhancing interpretability. Comparative analysis reveals that CNNs with 

feature reuse (ResNet50V2, DenseNet169) outperform transformers (VisionTransformer, CoCa) and efficiency-focused 

models (EfficientNetB3, MobileNetV3Large) due to their ability to handle limited data, underscoring the need for 

careful model selection and larger, more diverse SEM datasets to improve generalization in scientific imaging 

applications [9,11,15]. Additionally detailed results on each model validation accuracy and loss are outlined in S3-S7(a-

d). 

The confusion matrices for various deep learning models evaluated in this study provide critical insights into their 

performance for classifying defect types in perovskite solar cell SEM images, as detailed in the results and discussion 

section. The YOLOv8 confusion matrix(Figure 4.) demonstrates perfect classification [18.12], with each of the 50 

instances of 3D perovskite,3D perovskite with PbI₂ excess, 3D perovskite with pinholes, 3D-2D mixed perovskite, and 

3D-2D mixed perovskite with pinholes correctly predicted, resulting in a perfectly diagonal matrix [11,19].  

 
Figure 4. Confusion matrix detailed for different perovskite categories for YOLOv8 

This aligns with its reported 100% test accuracy and near-zero validation loss (0.0002), underscoring its robustness on 

the 1,250-image test set. In contrast, the DenseNet169 matrix(Figure 5.)shows near-perfect performance, with all 12 

instances per class correctly classified except for minor misclassifications (e.g. 3D perovskite with PbI₂ excess 

instances mislabeled as 3D perovskite), reflecting its strong feature extraction capabilities despite the limited dataset. 

The ResNet50V2 matrix similarly exhibits high accuracy, with all 12 instances per class correctly identified except for 
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3D perovskite with PbI₂ excess instances misclassified as 3D perovskite, indicating a slight confusion between these 

classes. The VisionTransformer matrix [6,23] performs well overall, with 12, 9, 11, 12, and 6 instances correctly 

classified for each class, respectively, though 3D perovskite with PbI₂ excess instances were misclassified as 3D-2D 

mixed perovskite with pinholes, suggesting some sensitivity to subtle defect variations [5.11]. 

The CoCa matrix reveals more significant challenges, with only 10 3D perovskite instances correctly classified out of 

12, and notable misclassifications (e.g. 3D perovskite with pinholes as 3D-2D mixed perovskite), reflecting its 35.0% 

test accuracy and higher validation loss (1.20). The EfficientNetB3 matrix shows moderate performance, with 7, 8, 7, 5, 

and 3 instances correctly classified [1,5,6,7,8], respectively, and frequent off-diagonal values (e.g.3D perovskite as 3D-

2D mixed perovskite), consistent with its 33.3% accuracy and validation loss of 1.46. The MobileNetV3Large matrix 

indicates better results, with 9, 12, 8, 9, and 7 instances correctly classified, though misclassifications (e.g.3D 

perovskite with pinholes as 3D-2D mixed perovskite with pinholes) align with its 25.0% accuracy. The InceptionV3 

matrix performs decently, with 10, 10, 12, 11, and 12 instances correct, but 3D perovskite with PbI₂ excess 

misclassified as 3D perovskite and 3D-2D mixed perovskite as 3D perovskite with pinholes, supporting its 16.7% 

accuracy and high validation loss (1.61). Lastly, the YOLOv9matrix(Figure 6.) shows the weakest performance, with 

only 7, 6, 4, 5, and 10 instances correct, and widespread misclassifications (e.g. 3D perovskite with pinholes as "3D-2D 

mixed perovskite), consistent with its 45.0% accuracy and validation loss of 1.28 [4,3]. 

 
Figure 5. Confusion matrix detailed for different perovskite categories for DenseNet169 

These matrices collectively highlight YOLOv8’s superiority, likely due to its optimized architecture and training on a 

larger, augmented dataset (2,060 images), while other models struggle with the smaller 60-image test set per class, 

revealing dataset diversity and size as limiting factors. DenseNet169 and ResNet50V2’s near-perfect scores suggest 

their effectiveness with limited data, whereas CoCa, EfficientNetB3, and MobileNetV3Large’s higher error rates 

indicate challenges with feature discrimination. The misclassification patterns, particularly for "3D perovskite with PbI₂ 

excess" across models, point to the difficulty of detecting subtle defects, emphasizing the need for enhanced data 

collection and model tuning to improve generalization in SEM-based defect detection for perovskite solar cells 

[22,25].All other confusion matrix pertaining to other models are mentioned in S8(a-f). 
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Figure 6. Confusion matrix detailed for different perovskite categories for YOLOv9 

Additionally, in the final phase of our study, we deployed the defect classifier as a Streamlit-based web application, 

showcasing its practical utility and flexibility for real-time analysis of perovskite solar cell SEM images. This tool 

allows researchers to upload SEM images and receive immediate defect predictionssuch as 3D perovskite with pinholes 

or 3D-2D mixed perovskitealongside confidence scores and descriptive tooltips, enhancing transparency and 

encouraging critical evaluation of results. The interface, designed with usability in mind, includes visualization panels 

and a reference image gallery, making it accessible to laboratory technicians and researchers without deep learning 

expertise. Tested with our 1,250-image test set, the application consistently delivered accurate classifications (e.g., 

YOLOv8’s 100% test accuracy) despite dataset limitations, demonstrating its potential as a valuable tool for the 

research community. By providing an interactive platform to analyze defect types, this web application not only bridges 

the gap between academic research and practical application but also offers a flexible, user-friendly solution that can be 

further refined and expanded, empowering researchers to explore and address material defects in perovskite solar cells 

effectively. This deployment underscores the adaptability of our approach and its readiness for broader adoption in both 

research and industrial settings. (Github Link: https://github.com/Sahilsonii/Multi-Model-Deep-Learning-Framework-

for-Defect-Detection-in-Perovskite-Solar-Cell-SEM-Images) 

 

V. CONCLUSION 

This study successfully developed a multi-model deep learning framework for defect detection in perovskite solar cell 

SEM images, achieving notable performance despite significant dataset constraints. YOLOv8 emerged as the top 

performer with perfect classification on the 1,250-image test set at 75 FPS, while DenseNet169 and ResNet50V2 also 

excelled with approximately 96.7% accuracy, highlighting the efficacy of carefully selected architectures in limited-

data scenarios. The deployment of the classifier within a Streamlit web application further demonstrated its practical 

utility, offering researchers a user-friendly tool to analyze defects in real time with transparency through confidence 

scores and visualizations. However, the primary challenge remains the inherent difficulty in collecting large-scale SEM 

datasets, as our dataset of 2,380–4,560 images fall short of the 50,000+ typically required for robust deep learning 

generalization, limiting the models’ adaptability to diverse laboratory conditions. Ethical considerations, including 

transparency, accountability, and open-source release of code and models, ensure reproducibility and foster community 

collaboration to address these limitations. Future work should focus on collaborative data collection, domain 
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adaptation, and advanced learning techniques to overcome dataset constraints, building on this foundation to fully 

realize the potential of automated defect detection in perovskite solar cell research and quality control. 
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Figure S3. Accuracy and loss parameters for a) CoCa and b) DenseNet169 

Figure S4. Accuracy and loss parameters for a) EfficientNetB3 and b) InceptionV3 models

 

 

I J A R S C T  
   

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, June 2025 

        DOI: 10.48175/IJARSCT-28026  

  

 

 
Figure S3. Accuracy and loss parameters for a) CoCa and b) DenseNet169 models

 
Figure S4. Accuracy and loss parameters for a) EfficientNetB3 and b) InceptionV3 models

  

  

Technology  

Reviewed, Refereed, Multidisciplinary Online Journal 

 205 

Impact Factor: 7.67 

 

models 

Figure S4. Accuracy and loss parameters for a) EfficientNetB3 and b) InceptionV3 models 
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Figure S5. Accuracy and loss parameters for a) MobileNetV3Large and b) ResNet50V2 models

Figure S6. Accuracy and loss parameters for a) VisionTransformer
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Figure S5. Accuracy and loss parameters for a) MobileNetV3Large and b) ResNet50V2 models

 
Figure S6. Accuracy and loss parameters for a) VisionTransformer and b) YOLOv9 models
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Figure S7. Accuracy and loss parameters for YOLOv8

Figure S8. Confusion matrix results for different models
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Figure S8. Confusion matrix results for different models 
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