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Abstract: Breast cancer poses a formidable global health challenge, demanding precise prediction 

models for early detection and treatment planning. This study pioneer’s advancements in breast cancer 

prediction by harnessing 2D Convolutional Neural Networks (CNNs) and Transfer Learning (TL) in deep 

learning frameworks using histopathological data. Initially, a CNN base model achieves a 50% accuracy 

on the CBIS-DDSM dataset, which significantly improves to 55% through TL. Subsequently, we propose 

a refined approach, developing a comprehensive CNN architecture using TensorFlow's Keras API, 

specifically tailored for image classification. Meticulous experimentation and hyperparameter tuning 

propel model accuracy to an impressive 97%. Additionally, deep learning techniques are applied to the 

Invasive Ductal Carcinoma (IDC) Segmentation Use Case dataset, yielding a notable 94% accuracy in 

breast cancer detection. These results underscore the potential of CNNs and TL in breast cancer 

prediction and highlight the efficacy of tailored deep learning approaches. Achieving 97% and 94% 

accuracy on two datasets showcases the promising capabilities of advanced deep learning techniques, 

offering valuable insights for clinical applications and advancing healthcare outcomes 

 
Keywords: Deep Learning, Breast Cancer, Convolutional Neural Networks (CNN), Transfer learning 

(TL) 

 

I. INTRODUCTION 

In recent years, the discourse surrounding early-stage breast cancer treatment has underscored the critical role of 

effective patient engagement. Deep learning has revolutionized the field of medical imaging, particularly in diagnosing 

breast cancer tumors by leveraging the CNN and vast datasets of annotated images. These models excel in detecting 

and segmenting abnormalities like masses and microcalcifications. Furthermore, their ability to extract meaningful 

features from images enables precise classifications of tumors categorized as benign and malignant aiding radiologists 

in making informed and timely decision[1][2][3][4]. This adaptability enables deep learning algorithms to discern the 

significance of input data and effectively generate desired outputs. Deep Learning has transformed breast cancer 

prediction diagnosis by initially using CNN that enables accurate tumor detection and classification by analysis of 

histopathology images and mammograms [5,4].Additionally, recurrent neural networks (RNN) and long-short term 

memory (LSTM) networks analyze sequential data like patient history and genetic sequences thereby improving 

diagnostics accuracy [3,6]. Generative adversarial network (GAN) generates synthetic data to augment limited training 

datasets, enhancing model robustness. Autoencoders facilitate feature extraction and dimensionality reduction, 

uncovering hidden patterns in medical data. Addressing these challenges necessitates a comprehensive analysis of 

various deep learning neural network types and their efficacy in scenarios with limited input data [7,9]. By examining 

the strengths and limitations of CNNs (as indicated in figure 1.), RNNs, and other neural network architectures, 



I J A R S C T    

    

 

               International Journal of Advanced Research in Science, Communication and Technology  

                               International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 5, Issue 7, June 2025 

 Copyright to IJARSCT         DOI: 10.48175/IJARSCT-28025  186 

    www.ijarsct.co.in  

 
 

ISSN: 2581-9429 Impact Factor: 7.67 

 
researchers can facilitate advancements in deep learning methodologies, enabling more accurate and efficient data 

recognition and classification processes [8].  

 
Fig. 1. Typical CNN Architecture 

In this paper, we embark on enhancing breast cancer prediction through CNNs and Transfer Learning (TL) techniques, 

leveraging their potential to augment diagnostic capabilities and refine treatment strategies. Our investigation 

commences with constructing a baseline CNN model for breast cancer prediction. Utilizing the Chest Imaging Platform 

and Database of Digital Mammography (CBIS-DDSM) dataset, we implement a CNN architecture, achieving a modest 

accuracy of approximately 55%. While this baseline model demonstrates the potential of CNNs in medical image 

analysis, there exists room for improvement to enhance predictive performance [8,10]. The modified model 

encompasses the use of batch normalization and dropout yielding an accuracy of 97%. 

 

     II. MAMMOGRAPHY 

Mammography stands as a cornerstone in breast cancer detection and diagnosis, serving as a primary imaging tool in 

screening and early detection programs. In the framework of our breast cancer prediction model leveraging deep 

learning methodologies, mammography images take center stage as the primary input data for analysis and 

classification. These images intricately capture the anatomical structures and tissue characteristics of the breast, 

furnishing crucial information for discerning abnormalities such as tumors, masses, and microcalcifications—signifiers 

of breast cancer [15-18]. Acquired through low-dose X-ray imaging techniques, mammography yields high-resolution 

digital images necessitating specialized analysis for accurate interpretation. In our investigation, we draw upon 

mammography images sourced from datasets like the Chest Imaging Platform and Database of Digital Mammography 

(CBIS-DDSM) [48], encompassing a diverse array of breast images with associated clinical annotations. Additionally, 

we delve into the realm of Invasive Ductal Carcinoma (IDC), the predominant subtype of encountered breast cancer. 

Pathologists, when assessing the aggressiveness of a whole mount sample, naturally focus on regions housing IDC 

[49,50,48]. Thus, a fundamental preprocessing step in automating aggressiveness grading involves meticulously 

delineating IDC boundaries within whole mount slides. These datasets serve as the bedrock for training and evaluating 

our deep learning models, empowering the development of robust predictive algorithms adept at distinguishing between 

benign and malignant breast lesions. The architecture of our deep learning model for mammography analysis 

predominantly comprises convolutional neural networks (CNNs), meticulously tailored for image classification tasks. 

CNNs excel in extracting intricate patterns and features from medical images, facilitating precise identification and 

characterization of breast abnormalities. Throughout the training phase, the CNN model assimilates subtle patterns and 

features within mammography images indicative of breast cancer. This iterative learning process involves optimizing 

model parameters through backpropagation and gradient descent algorithms [20-22], wherein the model adjusts its 

internal parameters to minimize prediction errors and enhance accuracy. Once trained, the CNN model autonomously 

analyzes new mammography images, providing predictions regarding the presence or absence of breast cancer. 

Through rigorous evaluation and validation on independent datasets, we gauge the performance of our deep learning 

model in terms of sensitivity, specificity, and overall predictive accuracy. 

Breast cancer, as described by Rebecca L. Siegel et al., manifests in two primary stages: Benign and Malignant. The 

Benign stage typically involves localized tumors that are relatively straightforward to diagnose. Conversely, the 

Malignant stage poses greater risks, as cancerous cells have the propensity to metastasize and establish connections 

with other tissues in the body. Leveraging various breast cancer datasets alongside machine learning classifiers enables 
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the early identification of malignant and benign tumors. Machine learning algorithms play a pivotal role in 

distinguishing between different categories of breast cancer cells, utilizing a training set of data with known 

membership categories. These algorithms dynamically build models that facilitate real-time predictions or decisions 

based on input data. Unlike rigid static rules, machine learning algorithms offer flexibility and adaptability, enabling 

them to navigate complex diagnostic scenarios and enhance diagnostic accuracy [25-28]. 

P. Priyadharshini et al. utilized a deep learning methodology, employing algorithms such as FA-RNN, CNN, and RNN, 

on the COSMIC dataset. Their study revealed that FA-RNN exhibited superior performance compared to CNN and 

RNN, achieving high accuracy rates with minimal error. They also advocated for the efficacy of hybrid models in 

effectively diagnosing breast cancer by integrating genetic and imaging patterns [28-33]. Bhargav Hegde et al. 

proposed the application of various deep learning techniques for lung cancer detection. They utilized the Recurrent 

Neural Networks (RNN) approach within the framework of deep learning, analyzing a dataset sourced from NCBI. 

Their findings indicated an impressive accuracy rate of 88% for the trained model [33-38]. 

The CNN, widely recognized as the foremost deep learning technique, has been extensively employed in numerous 

studies for the detection of breast cancer [16]. This deep learning model operates on a hierarchical abstraction principle 

and comprises multiple layers that directly accept raw data as features [24]. CNNs utilized for breast cancer diagnosis 

are typically categorized into two groups: transfer learning-based models and de novo trained models [19]. "De novo 

models" refer to CNN architectures generated and trained from scratch, while "transfer learning (TL)-based methods" 

involve utilizing pre-trained neural networks like AlexNet, Residual Neural Network (ResNet), and Visual Geometry 

Group (VGG) [16,65]. Various methods employing CNN-based techniques have been employed for breast cancer 

diagnosis. These studies primarily utilize CNN models to extract diverse features from validated gene expression data 

to identify clinical outcomes associated with breast cancer [39,40]. Some researchers employ CNNs to identify the 

mitosis process for diagnosing invasive breast cancer based on histopathological imaging [41], while others use deep 

CNN methods to classify and identify tumor-related stroma for breast cancer diagnosis [55,43,44,45]. Additionally, a 

CNN-based method combined with linear discriminative analysis and ridge regression, utilizing image processing, was 

applied for breast cancer detection [46]. 

Deep Neural Networks (DNNs) have also shown efficacy in breast cancer detection [23,24,29]. These networks 

typically comprise layers such as an output layer, convolution layer, fully connected layer, and pooling layer. The 

convolution layer is instrumental in learning high-level characteristics, while the fully connected layer focuses on 

learning pixel-level features. The pooling layer reduces the size of convolved features, thereby minimizing 

computational requirements and performing operations such as average pooling and maximum pooling [33]. Numerous 

DNN-based approaches have been proposed for breast cancer detection. For instance, Che et al. [45] employed an 

attentive-based model, utilizing multi-modality information with a multi-NNF DNN to enhance breast cancer detection 

and prognosis. Lu et al. utilized a DNN technique to represent tumor-infiltrating lymphocytes in breast cancer based on 

histopathological imaging, thereby improving detection accuracy. Several other studies have utilized the DNN model to 

detect cancer subtypes by integrating various types of transcriptomics data and identifying differentially expressed (DE) 

biomarkers [42,47]. 

Another significant deep learning-based approach for breast cancer detection is the Recurrent Neural Network (RNN), 

which includes versions such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). RNNs are 

particularly effective for processing sequential data, employing loops and memory to retain previous computations 

when processing sequential inputs. Consequently, RNNs have shown promise in processing 3D volumetric images, 

such as MRI image slices. Recent methods have applied LSTM and GRU for breast cancer detection [41,65]. For 

instance, a study introduced a gene-subcategory deep learning-based method employing interaction-based learning to 

enhance breast cancer sub categorical analysis based on gene expressions [50]. 

Autoencoders (AE) have emerged as a valuable tool for breast cancer detection [34]. AE functions by reconstructing 

images using learned features, aiming to encapsulate the essence of raw features. It employs an encoder to effectively 

transform each image into a latent space. Several studies have leveraged AE for breast cancer detection. For instance, 

Zhang et al. [65] utilized AE to enhance deep learning methodologies for breast cancer detection, employing Integrated 

Feature Selection and Feature Extraction to predict the clinical outcomes of breast cancer. Additionally, Toğaçar et al. 
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[46] utilized autoencoder-processed invasive breast cancer images to integrate CNN with linear discriminant analysis 

and ridge regression, further enhancing breast cancer diagnosis. Xu et al. [23] introduced an approach based on 

histopathological images, utilizing a stacked sparse autoencoder (SSAE) to enhance model performance for breast 

cancer detection. Similarly, Xu et al. [25] employed the SSAE model, comprising two Stacked Autoencoder (SAE) 

layers, for the detection of nuclei patches in breast cancer histopathology images, thereby improving breast cancer 

diagnosis. 

Furthermore, Generative Adversarial Networks (GANs), a type of deep learning generative model, have found 

applications in breast cancer detection. Shams et al. [28] devised a deep generative multitasking model combining GAN 

and CNN to reduce mortality rates in breast cancer by enhancing mammography diagnoses. Similarly, Singh et al. [19] 

developed a GAN-based method for segmenting breast tumors within the region of interest on mammograms. This 

generative model generates a binary mask delineating the tumor region after learning to detect it, thereby motivating the 

generative network to produce realistic binary masks. Moreover, GANs have been employed as image augmentation 

techniques to address data limitations. Authors in [4] utilized digital breast tomosynthesis data to detect anomalies and 

complete images using GAN, achieving promising results in locating suspicious areas without the need for training 

photos with anomalies. Fan et al. [30] employed a generative adversarial technique with an enhanced deep network and 

bicubic interpolation to create super-resolution images. Additionally, Guan and Loew [17] utilized GAN as a novel 

mammographic image generator from DDSM datasets, with CNN serving as GAN's discriminator, yielding superior 

performance compared to other image augmentation methods. Evaluation metrics are crucial for assessing the 

performance of models, yet deep learning methods lack standardized metrics for rigorous evaluation. Various 

performance evaluation metrics, including recall, precision, F1-measure, accuracy, area under the curve (AUC), false-

negative rate (FNR), among others, have been utilized by researchers. Precision gauges the accuracy of a model's 

positive predictions, while accuracy measures the proportion of correct overall predictions. Recall, also known as 

sensitivity, indicates the classifier's ability to correctly detect positive cases. Specificity, on the other hand, represents 

the ratio of correctly identified negative samples. 

 

III. DESIGN AND METHODOLOGY 

The methodology adopted in this project demonstrates a comprehensive strategy as indicated in figure 2. for advancing 

breast cancer prediction using deep learning methodologies. It commenced with an exhaustive literature review aimed 

at comprehending existing methodologies, datasets, and challenges prevalent in the domain. After this, data acquisition 

procedures involved gathering mammography images, clinical records, and histopathological data from diverse sources, 

followed by meticulous preprocessing to standardize formats and manage missing values effectively. The exploration of 

various deep learning architectures, encompassing Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), and autoencoders, facilitated the development of robust models. To harness existing knowledge, 

transfer learning techniques, including fine-tuning pre-trained models, were judiciously applied. The training phase 

encompassed optimizing hyperparameters, integrating regularization techniques, and monitoring convergence 

diligently. Rigorous evaluation of model performance ensued, utilizing established metrics, and validating against 

independent test datasets (CBIS-DDSM and IDC) to gauge generalization capability. Interpretation and analysis of 

model predictions were undertaken to discern clinical implications and anticipate potential challenges in real-world 

deployment. Ethical considerations were paramount throughout the research process, ensuring adherence to privacy 

regulations and fostering equitable healthcare outcomes. Finally, drawing on insights garnered, conclusions were 

formulated, and avenues for future research were delineated to further enrich breast cancer diagnosis and treatment 

strategies.  

 
Fig. 2. Data Flow Framework 

We examine the accuracy of the proposed model in this section by conducting experiments on CBIS-DDSM, IDC 

dataset [23,48], with three different models (base model-100 epochs, model with TL – 100 epochs, modified model – 
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100 epochs and IDC model – 100 epochs). All the computations are performed on

RAM. Moreover, goggle collab was used was coding purposes. Furthermore, the Python programming language was 

used. The scikit-learn and keras software packages are utilized. The proposed architecture is run for 100 epoch

batch size of 32. The dataset has been split into training, testing and validation datasets. 

The DDSM comprises 2,620 scanned film mammography studies, encompassing normal, benign, and malignant cases 

alongside verified pathology details. Despit

mammograms, the extensive scale of this database, coupled with its meticulously validated ground truth, renders it an 

invaluable resource for developing and validating decision support 

available mammography database of comparable size as indicated by the preprocessing of the data in Figure 3.

Fig.3. Craniocaudal and Mediolateral oblique view statistical characteristics

To address this gap, we have developed and intend to release the CBIS

DDSM), an enhanced iteration of the DDSM featuring improved data accessibility and refined ROI segmentation. This 

initiative aims to bolster research in mammography de

data for analysis and innovation. Additionally, the Invasive Ductal Carcinoma (IDC) case use dataset stands as a 

cornerstone, distinguished by its comprehensive content and distinctive attribute

mount slide images of Breast Cancer (BCa) specimens, each meticulously scanned at 40x magnification, the dataset 

offers a wealth of pathological insights. From these images, a substantial collection of 277,524 patches, wer

meticulously extracted, facilitating detailed cellular

positive and IDC negative classes, comprising 198,738 and 78,786 patches respectively. Each patch's file name follows 

a uniform format: u_xX_yY_classC.png, where ‘u’ denotes the patient ID, ‘X, Y’ denote the patch's cropping 

coordinates, and ‘C’ indicates the class (1 for IDC, 0 for non

subsequent analysis and model training endeavors, offer

characterization within breast the cancer pathology [45,47,48,49].

 

IV. RESULTS AND DISC

Deep learning models achieved promising results in predicting breast cancer based on mammography images. The 

models demonstrated high accuracy, precision, recall, and F1

malignant and benign cases. Compared to traditional machine learning approaches or baseline models, the deep 

learning models showed superior performance. The deep learning models outperformed baseline methods in terms of 

accuracy and other evaluation metrics, highlighting their potential for improving breast cancer diagnosis. The models 

exhibited robust performance across different datasets

Transfer Learning to our base CNN model [11, 9], resulting in a notable enhancement of efficiency, with the accuracy 

of breast cancer prediction improving to approximately 60%. However, recognizin

refinement and optimization, we introduce a modified approach. This entails the development of a bespoke CNN model 

using TensorFlow's Keras API, tailored explicitly for image classification tasks in the context of breast cancer
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100 epochs). All the computations are performed on an Intel i5 processor with 16 GB of 

RAM. Moreover, goggle collab was used was coding purposes. Furthermore, the Python programming language was 

learn and keras software packages are utilized. The proposed architecture is run for 100 epoch

batch size of 32. The dataset has been split into training, testing and validation datasets.  

The DDSM comprises 2,620 scanned film mammography studies, encompassing normal, benign, and malignant cases 

alongside verified pathology details. Despite the limitation of scanned film images rather than full field digital 

mammograms, the extensive scale of this database, coupled with its meticulously validated ground truth, renders it an 

invaluable resource for developing and validating decision support systems. Notably, there is currently no publicly 

available mammography database of comparable size as indicated by the preprocessing of the data in Figure 3.

Fig.3. Craniocaudal and Mediolateral oblique view statistical characteristics 

we have developed and intend to release the CBIS-DDSM (Curated Breast Imaging Subset of 

DDSM), an enhanced iteration of the DDSM featuring improved data accessibility and refined ROI segmentation. This 

initiative aims to bolster research in mammography decision support systems by furnishing standardized mammography 

data for analysis and innovation. Additionally, the Invasive Ductal Carcinoma (IDC) case use dataset stands as a 

cornerstone, distinguished by its comprehensive content and distinctive attributes. Initially comprising 162 whole 

mount slide images of Breast Cancer (BCa) specimens, each meticulously scanned at 40x magnification, the dataset 

offers a wealth of pathological insights. From these images, a substantial collection of 277,524 patches, wer

meticulously extracted, facilitating detailed cellular-level analysis. Notably, these patches are categorized into IDC 

positive and IDC negative classes, comprising 198,738 and 78,786 patches respectively. Each patch's file name follows 

u_xX_yY_classC.png, where ‘u’ denotes the patient ID, ‘X, Y’ denote the patch's cropping 

coordinates, and ‘C’ indicates the class (1 for IDC, 0 for non-IDC,). This systematic organization streamlines 

subsequent analysis and model training endeavors, offering invaluable insights into IDC classification and 

characterization within breast the cancer pathology [45,47,48,49]. 

IV. RESULTS AND DISCUSSION 

Deep learning models achieved promising results in predicting breast cancer based on mammography images. The 

models demonstrated high accuracy, precision, recall, and F1-score, indicating their effectiveness in identifying both 

malignant and benign cases. Compared to traditional machine learning approaches or baseline models, the deep 

ior performance. The deep learning models outperformed baseline methods in terms of 

accuracy and other evaluation metrics, highlighting their potential for improving breast cancer diagnosis. The models 

exhibited robust performance across different datasets and variations in data distribution. Accordingly, we apply 

Transfer Learning to our base CNN model [11, 9], resulting in a notable enhancement of efficiency, with the accuracy 

of breast cancer prediction improving to approximately 60%. However, recognizing the imperative for further 

refinement and optimization, we introduce a modified approach. This entails the development of a bespoke CNN model 

using TensorFlow's Keras API, tailored explicitly for image classification tasks in the context of breast cancer
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prediction. The architecture of the model encompasses convolutional layers, batch normalization, max-pooling, 

dropout, and fully connected layers, meticulously designed to capture intricate patterns and features indicative of 

malignancy. Through rigorous experimentation and hyperparameter tuning, the modified CNN model achieves a 

remarkable accuracy of approximately 97%, signifying a substantial advancement in breast cancer prediction accuracy. 

Further we explored the Invasive Ductal Carcinoma Segmentation Use Case dataset, aiming to assess the efficacy of 

deep learning techniques in improving the accuracy of breast cancer detection.  The dataset under scrutiny comprises 

meticulously annotated breast cancer images, providing a robust foundation for training and evaluating machine 

learning models. The point of interest is the remarkable accuracy achieved by the deep learning model deployed in this 

study. Through rigorous experimentation, the model demonstrates an impressive accuracy rate of approximately 94% in 

identifying invasive ductal carcinoma within the dataset. [49,20]. By harnessing the synergistic potential of CNNs and 

Transfer Learning techniques, this thesis endeavors to contribute to the burgeoning field of medical image analysis and 

precision medicine. The outcomes of our research hold profound implications for improving diagnostic accuracy, 

facilitating personalized treatment strategies, and ultimately, augmenting patient outcomes in the ongoing battle against 

breast cancer [10,11,12,13]. 

The base modelachieves an accuracy of around 50% as and follows a typical Convolutional Neural Network (CNN) 

architecture, comprising alternating convolutional and max pooling layers followed by fully connected layers for 

classification. The architecture begins with a Conv2D layer employing 32 filters, each with a size of 3x3 and ReLU 

activation, maintaining spatial dimensions via 'same' padding. Subsequent MaxPooling2D layers with a 2x2 pool size 

and strides of 2 reduce spatial dimensions. Further, additional Conv2D layers with 64 and 128 filters, ReLU activation, 

and MaxPooling2D layers with 3x3 pool size and strides of 2 follow-suit. The output is flattened into a one-dimensional 

vector for input to a fully connected layer with 128 units and ReLU activation. Finally, a Dense layer with 2 units and 

softmax activation facilitates binary classification tasks.  

 
Fig.4. Transfer Learning model performance. (a) ROC (b) Training and validation loss 

The transfer learning model (figure. 4.), yielding an accuracy of approximately 55%, utilizes the ResNet-50 architecture 

pretrained on the ImageNet dataset for a classification task. Firstly, necessary libraries are imported, including Conv2D 

and GlobalAveragePooling2D layers. The ResNet-50 base model is then created, instantiated with pre-trained 

ImageNet weights and excluding fully connected layers. Custom classification layers are added, including a global 

average pooling layer, a fully connected layer with 512 units and ReLU activation, and a final dense layer with softmax 

activation for multi-class classification. The final model is assembled, with base model layers frozen to retain pre-

trained weights. It's compiled with the Adam optimizer, categorical cross-entropy loss, and accuracy as the evaluation 

metric. Data augmentation is applied using ImageDataGenerator for various augmentations like rotation, shifting, 

shearing, zooming, and flipping. Augmented batches of training data are generated, with a batch size of 16, and the 

model is trained for 20 epochs using the augmented data while monitoring performance on validation data. The training 

history is stored for further analysis or visualization. 

 
Fig. 5. IDC model performance. (a) ROC (b) Model Accuracy 
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Furthermore, IDC Model achieves an accuracy of around 94%

Networks (CNNs) to classify breast histopathology images into Invasive Ductal Carcinoma (IDC) positive or negative 

categories. Data preprocessing involves resizing, normalization, and augmentation to enhance

CNN model architecture typically includes convolutional layers for feature extraction, pooling layers for down 

sampling, flattening layers for reshaping, and fully connected layers for prediction. During training, the model 

minimizes a predefined loss function through backpropagation and optimization algorithms over multiple epochs. 

Model evaluation employs metrics like accuracy, precision, recall, and F1

confusion matrices and ROC curves. Once t

images, aiding clinicians in diagnosing and treating breast cancer, potentially improving patient outcomes and treatment 

strategies.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6. Modified model performance

The modified model achieves an impressive accuracy of approximately 97% (figure. 6.) and is structured as a 

Convolutional Neural Network (CNN) specifically tailored for binary classification tasks, particularly in the domain of 

breast cancer diagnosis. The architecture employs convolutional layers to learn hierarchical features from input images, 

while batch normalization and dropout layers enhance generalization and prevent overfitting. The input layer comprises 

Conv2D, Batch Normalization, and MaxPooling2D layer

filters to extract higher-level features. Each Conv2D layer is followed by Batch Normalization for improved 

convergence and stability. The Flatten layer prepares the output for input to fully connec

layer with ReLU activation and a Dropout layer for regularization. The output layer consists of two units with softmax 

activation, suitable for binary classification tasks. Model compilation involves the Adam optimizer, binary

entropy loss, and accuracy metric for evaluating performance. All these models were outlined and designed based on 

the architecture mentioned in figure. 6. 

Fig. 
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Furthermore, IDC Model achieves an accuracy of around 94% (figure. 5.) by leveraging Convolutional Neural 

Networks (CNNs) to classify breast histopathology images into Invasive Ductal Carcinoma (IDC) positive or negative 

categories. Data preprocessing involves resizing, normalization, and augmentation to enhance model performance. The 

CNN model architecture typically includes convolutional layers for feature extraction, pooling layers for down 

sampling, flattening layers for reshaping, and fully connected layers for prediction. During training, the model 

s a predefined loss function through backpropagation and optimization algorithms over multiple epochs. 

Model evaluation employs metrics like accuracy, precision, recall, and F1-score, along with visualizations like 

confusion matrices and ROC curves. Once trained and evaluated, the CNN model can classify new histopathology 

images, aiding clinicians in diagnosing and treating breast cancer, potentially improving patient outcomes and treatment 

Fig.6. Modified model performance 

ified model achieves an impressive accuracy of approximately 97% (figure. 6.) and is structured as a 

Convolutional Neural Network (CNN) specifically tailored for binary classification tasks, particularly in the domain of 

ecture employs convolutional layers to learn hierarchical features from input images, 

while batch normalization and dropout layers enhance generalization and prevent overfitting. The input layer comprises 

Conv2D, Batch Normalization, and MaxPooling2D layers, with subsequent hidden layers increasing the number of 

level features. Each Conv2D layer is followed by Batch Normalization for improved 

convergence and stability. The Flatten layer prepares the output for input to fully connected layers, including a Dense 

layer with ReLU activation and a Dropout layer for regularization. The output layer consists of two units with softmax 

activation, suitable for binary classification tasks. Model compilation involves the Adam optimizer, binary

entropy loss, and accuracy metric for evaluating performance. All these models were outlined and designed based on 
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(figure. 5.) by leveraging Convolutional Neural 

Networks (CNNs) to classify breast histopathology images into Invasive Ductal Carcinoma (IDC) positive or negative 

model performance. The 

CNN model architecture typically includes convolutional layers for feature extraction, pooling layers for down 

sampling, flattening layers for reshaping, and fully connected layers for prediction. During training, the model 

s a predefined loss function through backpropagation and optimization algorithms over multiple epochs. 

score, along with visualizations like 

rained and evaluated, the CNN model can classify new histopathology 

images, aiding clinicians in diagnosing and treating breast cancer, potentially improving patient outcomes and treatment 

ified model achieves an impressive accuracy of approximately 97% (figure. 6.) and is structured as a 

Convolutional Neural Network (CNN) specifically tailored for binary classification tasks, particularly in the domain of 

ecture employs convolutional layers to learn hierarchical features from input images, 

while batch normalization and dropout layers enhance generalization and prevent overfitting. The input layer comprises 

s, with subsequent hidden layers increasing the number of 

level features. Each Conv2D layer is followed by Batch Normalization for improved 

ted layers, including a Dense 

layer with ReLU activation and a Dropout layer for regularization. The output layer consists of two units with softmax 

activation, suitable for binary classification tasks. Model compilation involves the Adam optimizer, binary cross-

entropy loss, and accuracy metric for evaluating performance. All these models were outlined and designed based on 
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V. SUMMARY AND FUTURE OUTLOOK 

The paper explores techniques and models for breast cancer prediction using medical imaging data, emphasizing the 

effectiveness of deep learning architectures like InceptionV3, ResNet-50, and custom CNNs in diagnosing breast cancer 

from mammography images. It underscores the importance of data preprocessing techniques such as image resizing, 

normalization, and augmentation to enhance model performance. Future research could focus on advanced CNN 

architectures, transfer learning techniques, and integrating clinical data for improved diagnosis. Deployment of models 

in clinical practice and large-scale validation studies are essential steps for practical utility. Overall, the thesis sets the 

stage for further research in applying deep learning to breast cancer diagnosis to enhance patient outcomes and advance 

medical science. 
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