
IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, February 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2793 587
www.ijarsct.co.in

Impact Factor: 6.252

A Novel Approach for Mining Top-K High Utility

Itemset
Mr. Patil Lalit1, Miss. Kadlag Utkarsha2, Miss. More Pranjal3,

Miss. Walke Naina4, Prof. R. N. Devikar5
Students, Department of Information Technology1,2,3,4

Professor, Department of Information Technology5

Amrutvahini College of Engineering, Sangamner, Maharashtra, India

lalitpatil0501@gmail.com1, uttukadlag0812@gmail.com2, morepranjal2000@gmail.com3

nayanawalke62@gmail.com4

Abstract: Top-k high utility itemset mining refers to the discovery of top-k patterns using a user-specified

value k by considering the utility of items in a transactional database. Since existing top-k high utility

itemset mining algorithms are based on the pattern-growth method, they search the patterns in two steps.

Therefore, the generation of many candidates and additional database scan for calculating exact utilities

are unavoidable. In this paper, we propose a new algorithm, TKUL-Miner, to mine top-k high utility

itemsets efficiently. It utilizes a new utility-list structure which stores necessary information at each node

on the search tree for mining the itemsets. The proposed algorithm has a strategy using search order for

specific region to raise the border minimum utility threshold rapidly. Moreover, two additional strategies

for calculating smaller overestimated utilities are suggested to prune unpromising itemsets effectively.

Experimental results on various datasets showed that the TKUL-Miner outperforms other recent algorithms

both in runtime and memory efficiency.

Keywords: High Utility Itemset, Top-K Pattern Mining, Utility-List Structure, Data Mining

I. INTRODUCTION

 Itemset mining is a useful pattern search technique to find correlations among items as in association rule mining.

Frequent itemset mining (FIM) [1, 2] is studied in the early stage of the itemset mining which finds the patterns that

have no less existence-based support than a user specified minimum support. However, it is very difficult for users to

set an appropriate minimum support because it highly depends on data types. If it is set too high, no result patterns

are found while too small value makes an enormous number of result patterns which cause inefficiencies in terms of

computation time and memory usage. Thus, it requires multiple trials for users to find an appropriate minimum

support value, which costs a lot[3-5].

 To address this issue, top-k frequent itemset mining [3-5] has been proposed. Top-k FIM mines the most frequent k

itemsets without using the minimum support value from the user. Instead, the user inputs the desired number of useful

patterns k which is much intuitive and comfortable. In Top-k FIM, the anti- monotone property of support is utilized

to prune the mining search space.

 The research of the FIM has been developed into the weighted frequent pattern mining [6, 7] and progressed to

the high utility itemset mining (HUIM) [8-13]. HUIM reflects more realistic situations by adopting the utility concept

which considers both quantity and profit of items. Similarly, the research of the top-k FIM has been progressed to

top-k HUIM. The top-k HUIM algorithms are proposed in various types such as data stream top-k HUIM [14, 15],

sequential top-k HUIM [16], and transactional databases top-k HUIM [17, 18].

 The top-k high utility itemset mining on the transactional database discovers the desired number of high utility

itemsets by the user specified value k. In top-k HUIM, the border minimum utility which is initially zero increases

gradually as itemset mining is processed. Since the utility of an item is the product of the quantity and the profit of the

item, it does not have the anti- monotone property which makes search space pruning difficult in HUIM. Likewise,

this property causes highly limited situations for pruning unpromising itemsets in top-k HUIM. The undecided

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, February 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2793 588
www.ijarsct.co.in

Impact Factor: 6.252

minimum utility of top-k HUIM may generate more candidates and cost even more in memory consumption [17].

In this paper, we propose a new efficient top-K high utility itemset mining algorithm, TKUL-Miner. The

contribution of this paper is as follows:

 A new framework of the utility-list structure based top-k high utility itemset mining is proposed.

 A new utility-list structure and several strategies are proposed to raise the border minimum utility threshold

rapidly.

 The performance improvement of the proposed algorithm compared to other top-k HUIM algorithms [17, 18] is

experimentally demonstrated, especially when the datasets have a dense distribution and contain many long

transactions.

 The remainder of this paper is organized as follows. In Section II, we present the problem statement and define

some relevant terms. Also, several related works are reviewed in the same section. In Section III, a newly designed

data structure and mechanism of the proposed algorithm are explained. The experimental performance comparison of

the proposed.

II. RELATED WORK:

 Then, it searches next frequent itemsets by increasing their length by one in the „level-wise‟ manner and repeats

this process until it finds frequent itemsets. Another well-known FIM algorithm is the FP-Growth [2]. This method

mines patterns without generating candidate itemsets by constructing the conditional-trees recursively after building

a global FP-tree. Both algorithms utilize the anti-monotone property to prune the search space of the FIM. However,

they have a problem in deciding the proper minimum support value.

 Itemset-Loop and Itemset-iLoop [3] algorithms were proposed to address the minimum support problem in the

FIM. In these algorithms, user inputs the maximum length of itemsets as well as the desired number of patterns, N. Using

these values, they applies a backtracking method to the Apriori technique to mine N most frequent patterns whose

lengths are no longer than the given maximum length. Another top-k FIM algorithm, TFP [4], constructs the FP-Tree

and finds the top-k frequent itemsets whose lengths are no shorter than the given minimum length. An advanced version

of TFP, TF2P-Growth [5], was introduced to obtain the frequent patterns sequentially in response to the user without

any threshold.

 The high utility itemset mining (HUIM) has been proposed to reflect real situations by considering both the quantity

and the weight factor of each item. Two-Phase [8] algorithm approaches HUI in two-steps using the „level-wise‟

method. In phase I, it initially mines all patterns whose TWUs are no less than the minimum utility. In phase II, it

calculates the exact utilities of candidates by scanning the database again. IHUP [9] algorithm applies the Two-Phase

technique to the pattern growth method. UP-Growth and UP-Growth+ [10] algorithms which followed IHUP

algorithm decrease the number of candidate itemsets by additional pruning strategies. After that, HUI-Miner [11]

algorithm is proposed to avoid the database scanning in the phase II by using a utility-list structure which maintains

the real utilities of itemsets. FHM [12] algorithm adds the EUCS structure which stores 2-itemsets TWU to prune the

search space of the utility pattern mining. Recently, a utility-list based HUIM algorithm, TUL-Miner [13], was

introduced which uses transaction utilities of itemsets for effective search space pruning. Also it utilizes common

utilities to reduce calculation speed in join operation. However, the HUIM algorithms have a problem in determining

the minimum utility threshold.

 T-HUDS [14] and TOPK-SW [15] algorithms are introduced to find top-k high utility patterns over sliding windows

of a data stream. Both of them utilize tree structures with the pattern growth method. The TUS [16] algorithm finds

the top-k high utility sequential patterns by the itemset and sequence concatenation process.

 TKU [17] algorithm based on the UP-Growth was proposed to search top-k patterns in high utility itemsets. Since

the minimum utility is not given in this problem, the algorithm applied several strategies to raise the border

minimum utility threshold quickly to minimize the candidate itemsets. REPT [18] algorithm improved the performance

of TKU by applying additional strategies that raise the border minimum utility rapidly.

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, February 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2793 589
www.ijarsct.co.in

Impact Factor: 6.252

III. PROPOSED METHOD

3.1 Itemset Node and Utility-List Structure

 An itemset node of the search tree in the TKUL-Miner is newly designed to contain more information than that

used in other utility-list based algorithms [11, 13]. Fig. 1 is an example of the itemset node used in the TKUL-Miner

algorithm. It consists of its node name, TWU, Sum_iutils, Sum_rutils, Sum_cutils and Sum_zrutils which can be

calculated from the transaction database and the profit information. For an itemset, the TWU indicates sum of

transaction utilities of itself in the database. The Sum_iutils, Sum_rutils, Sum_cutils are sum of iutil, rutil and cutil

of each transaction in the utility-list of the itemset [13]. The Sum_zrutils is the sum of iutils whose transaction has

zero rutil in the utility-list.

 The utility-list structure of every itemset in TKUL-Miner is shown in Fig. 1. It has an attribute of cutil (common

utility) which proposed in UTU-List [13]. The cutil is a value used for storing the iutil of its parent node which is

necessary for calculating the itemset utility in utility-list join operation. The (k+1)-itemset stores iutils of the parent

itemset node, the k- itemset, as cutils. Therefore the cutils of itemset Pxy is the relevant iutils of itemset Px. Note

that all cutil values in utility- lists of 1-itemsets are initially zero. Thus, the cutils of itemset

{dc} are the iutils of T2, T3, T4, T6 of {d} which are 8, 4, 8, 4 in Fig. 1.

Figure 1: Itemset nodes and utility-list structures

3.2 TKUL-Miner A lgorithm

 The transaction database with the profit table and user specified value k are given before the mining process starts.

The border minimum utility threshold called minutil which is initially set to zero gradually increases during the mining

process of the top-k HUI. The proposed algorithm starts with a pre- processing as described in Fig. 2. It scans the

database twice to construct the data structures including the utility-lists and the EUCS [12] which are used throughout

the whole mining process. After the pre-processing, the TKUL-Miner steps into the main top-k HUI mining. It

extends searching from an item to each itemset by performing join operation of the utility-lists to find top-k high

utility itemsets. Whenever an itemset contains no less utility than the minutil, it is added to the minimum heap. If

the minimum heap is full and the smallest utility of the itemsets in the heap is bigger than the minutil, the minutil is

updated to the smallest utility. This process ends when there are no more itemsets to generate. Moreover, the TKUL-

Miner algorithm adopts several strategies called FSD, RUZ, and FCU to raise the minutil rapidly and prune the search

space effectively, which contributes a lot to reduce execution time.

Fig. 2. TKUL-Miner algorithm

Algorithm: TKUL-Miner Algorithm
input : D, a transaction database; minuti;, k.
output: the top-k high-utility itemsets.
1 Scan D to calculate the TWU of 1-itemsets
2 I* ← each item i such that TWU(i) ≥ minutil
3 Sort items in TWU ascending values on I*
4 Scan D to build the initial utility-list of each item i ∈ I* and

build the EUCS structure
5 TUL-FirstLevelSearch(∅ , I*, minutil, EUCS, k)

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, February 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2793 590
www.ijarsct.co.in

Impact Factor: 6.252

Fig. 3. TKUL-FirstLevelSearch algorithm

 In detail, rearrangement of 1-itemsets is performed in the pre-processing to build data structures efficiently. First,

the algorithm scans the database to calculate the TWU of each 1- itemset. Then, it rearranges them in ascending order

according to the TWU. For the aforementioned example, 1-itemsets are rearranged as b < a < d < c < e. After the

rearrangement process, the utility-list and the EUCS structure are constructed while it scans the database again.

 Two main algorithms of the TKUL-Miner are TKUL- FirstLevelSearch and TKUL-Search. After the pre-processing,

the main parts of TKUL-Miner starts with the TKUL- FirstLevelSearch which has FSD and RUZ strategies.

A. FSD (First-level Search in TWU Decreasing-order) Strategy

 The FSD strategy refers to a searching method of the TKUL- FirstLevelSearch algorithm, which searches 1-itemsets

of the first level by TWU decreasing-order in Line 1 of Fig. 3 instead of the increasing-order in HUI-Miner [11]. The

TKUL- FirstLevelSearch algorithm only searches 1-itemsets and generates 2-itemsets, whereas the rest will be

searched and generated by the TKUL-Search algorithm. The TKUL- FirstLevelSearch algorithm discovers itemsets

from the right side whose TWU is bigger than that in the left. This order is very efficient in raising the border minimum

utility because itemsets with bigger TWU are more likely to generate children itemsets with higher utilities. Hence,

the border minimum utility increases rapidly and it improves the pruning efficiency.

 The first selected itemset Px is the right most node of 1- itemsets. The Px is an extension itemset of P with an item

x. If the exact utility of Px is not less than the minutil, the Px belongs to a candidate of the top-k high utility itemset.

Line 4 in Fig. 3 shows that it inserts the itemset into the minimum heap and updates the border minimum utility with

the smallest utility if the minimum heap is full.

B. RUZ (Reducing the Overestimated Utility by Sum_zrutils) Strategy

 In the existing algorithms [11, 12], the overestimated utility of each itemset in the utility-list is used to check if Px

is promising. If we reduce the overestimated utility safely without losing any top-k itemset, then the mining process

will be very efficient. To improve the search space pruning, the RUZ strategy minimizes the overestimated utility by

subtracting Sum_zrutils from the overestimated utility which is the total value of Sum_iutils and Sum_rutils, in Line

5 of Fig. 3. This idea is based on the fact that the transactions of Px which have zero rutil will not be included to

children of Px. It means that subtracting iutils of those transactions still maintains the overestimated utility of Px‟s

descendants. The itemset Px is figured out as unpromising and pruned if the minimized overestimated utility is less

than the minutil.

 When itemset Px is promising, select Py where y is an item whose TWU is greater than that of x, and then check

whether the value of EUCS is no less than minutil [12] or not. If the EUCS of x and y is promising, the Utility-List

Join function is called as in Line 10 in Fig. 3. It generates the itemset Pxy by joining the utility-lists of Px and Py. This

function uses DTJ (Decreasing TWU while Joining) strategy [13] that halts the joining process. To use TU of the

Algorithm: TKUL-FirstLevelSearch Algorithm
input : P, an itemset; ExtensionsOfP, a set of extensions of P;

minutil; EUCS; k.
output: minHeap, the top-k high-utility itemsets.
1 for i ← length(ExtensionsOfP)-1 to 0 do
2 Px ← ExtensionsOfP[i]
3 if Px.Sum_iutils ≥ minutil then
4 add Px to minHeap(k)
5 if Px.Sum_iutils + Px.Sum_rutils - Px.Sum_zrutils ≥ minutil then
6 ExtensionsOfPx ← ∅
7 for j ← i+1 to length(ExtensionsOfP)-1 do

8 Py←ExtensionsOfP[j] � yafterx

9 if c ≥ minutil such that (x, y, c) ∈ EUCS then
10 Pxy ← Utility-List Join (Px, Py)
11 if Pxy.Sum_itus ≥ minutil then

12 ExtensionsOfPx ← ExtensionsOfPx ∪ Pxy
13 TKUL-Search(Px, ExtensionsOfPx, minutil, k)

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, February 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2793 591
www.ijarsct.co.in

Impact Factor: 6.252

utility-list, the TKUL-Miner uses transaction utilities in Table 3 to subtract TU of the excluded transactions from the

respective TWU of Px and Py.

 The TKUL-Search algorithm starts after all children nodes of each Px are generated. Like the TKUL-

FirstLevelSearch algorithm, the TKUL-Search adopts RUZ and EUCS strategies with the same utility-list join

operation. However, the TKUL- Search has two different characteristics from the TKUL- FirstLevelSearch to enhance

the pruning efficiency. One is that it searches the itemsets in TWU increasing order and the other is that the TKUL-

Search has an additional strategy called FCU using Sum_cutils.

 An example of set-enumeration tree is described in Fig. 4. The number above each node represents the construction

order and the number below the node in the bracket represents the search order of the TKUL-Miner algorithm. Here,

all 2-itemsets from {ce} to {ba} are generated by the TKUL-FirstLevelSearch algorithm while the rest itemsets from

{dce} to {badce} are generated by the TKUL-Search algorithm.

Fig. 4. Set-enumeration tree with the construction and search order

 In the TKUL-Search, the Px is selected from the left most child of P. The Sum_iutils for validating a top-k high

utility itemset and the RUZ strategy for determining a promising itemset are used. The FCU strategy in the TKUL-

Search is used when Px has no child. Otherwise, it uses the EUCS strategy as same with the previous case.

C. FCU (First Child Pruning by using Sum_Cutil) Strategy

 The FHM algorithm checks whether the overestimated utility of (x, y) in the EUCS is not less than the minutil

before the algorithm generates the child node Pxy from the parent nodes Px and Py. We will reduce the overestimated

utility of (x, y) in the EUCS by using the attribute of Sum_cutils in the utility-list, which is applied only to the first

child of Px. The FCU strategy checks whether the result of the formula, Px.Sum_iutils + Py.Sum_iutils +

Py.Sum_rutils – Px.Sum_cutils, is not less than the minutil when Px has no child. This formula calculates the

overestimated value of Pxy which is less than the value of EUCS. The Sum_iutils of Pxy is obtained by adding iutils

of transactions and subtracting the cutils during the utility-list join operation. The iutil of Px is always bigger than its

cutil and the maximum value for Sum_rutils of Pxy is the Sum_rutils of Py. Thus, if the overestimated value of Pxy

is less than minutil, the join operation of Px and Py will be meaningless.

 The reason why this strategy is only available to the first child is that the first child does not affect the others,

whereas the nodes from the second child can affect the children of their left- side sibling nodes. If the FCU strategy

applies to the second child onwards, some promising children may not be generated.

 The TKUL-Search will let the itemsets Px and Py generate the extended itemset Pxy when they are turned out as

promising by the aforementioned process. The algorithm performs all join operations of Px with every possible

extension item y and calls the search algorithm recursively. The TKUL-Miner algorithm ends the process when no

more promising itemsets left. The desired number of high utility itemsets will be stored in the minimum heap after the

process ends with the fixed value of the border minimum utility.

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, February 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2793 592
www.ijarsct.co.in

Impact Factor: 6.252

IV. EXPERIMENTAL RESULTS

 Experiments were conducted to compare performance of the proposed algorithm TKUL-Miner with other state-of-

the-art algorithms TKU [17], REPT [18], and UP-Growth+ [10]. For the REPT algorithm, the value of N which is

needed to build the structure RSD is set according to [18]. Also, we executed the UP-Growth+ algorithm with optimal

minimum utilities which are obtained by a top-k HUIM algorithm.

 The real dataset Chain and Chess are obtained from NU- MineBench 2.0 [19] and FIM Repository [20],

respectively. The synthetic datasets T10I4D100K and T40I10D100K are generated by IBM Quest Data Generator [1].

For the datasets, the quantity is randomly generated in the range of 1 to 10 and the profit is generated under the log-

normal distribution from 1 to 1000. The real datasets are either dense or sparse according to the distribution of length

of each transaction as shown in Table V. On the other hand, the synthetic datasets are almost evenly distributed because

they are generated randomly.

 The experiments were performed under the environment of Windows 64bit OS with Intel i7-4770 CPU 3.40GHz

and 32GB memory. The results are measured from the algorithms that are implemented in MS Visual Studio 2010

C++.

Database Size (KB) #Trnx #items Avg Len Max Len type

Chain 63573 1112949 46086 7.3 170 Sparse

Chess 591 3196 75 37 37 Dense

T10I4D100K 6268 98424 1000 10.1 30 -

T40I10D100K 24905 100000 1000 39.6 78 -

Table V: Characteristics of Datasets

4.1 Performance Comparison of Different Strategies

 Fig. 5 shows the running time and the memory consumption of difference strategies in the TKUL-Miner algorithm

on dense dataset Chess. In the graph, the notations TKUL-base, FLS, RUZ, TKUL-full are the TKUL-Miner algorithm

without any strategy, TKUL-base with FLS strategy, TKUL-base with FLS and RUZ strategy and the full version of

TKUL-Miner algorithm including FSD strategy respectively. According to Fig. 5(A), TKUL-base takes the worst time

and FLS have improved TKUL-base over 70%. The runtime performance of RUZ is also improved but not very

significantly. The TKUL-Full with FSD strategy improved almost 20%. Fig. 5(B) shows the strategy of TKUL-Miner

algorithm improved the usage of memory on Chess. Likewise, the improvement of FLS strategy is noticeable than the

others. Since increasing the minutil as fast as possible in the top-k high utility pattern mining affects its performance

significantly, the FLS strategy works well in the proposed algorithm.

Fig. 5. Performance comparison

4.2 Running Time Comparison on Different Datasets

 Running time of the TKUL-Miner, TKU, REPT, and optimal UP-Growth+ algorithms on each datasets is shown in

Fig. 6 in a logarithmic scale. The experiment of the algorithm was terminated if the running time exceeds 10,000

seconds.

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, February 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2793 593
www.ijarsct.co.in

Impact Factor: 6.252

 Fig. 6(A) shows the running time of the algorithms for the sparse dataset Chain. Excluding the TKUL-Miner, the

optimal UP-Growth+ takes the shortest running time when k is smaller than or equal to 50. From the 100 of the k

value, the REPT (N = 1000) becomes the fastest one. However, the TKUL-Miner takes shorter execution time than

the other three algorithms for all k. For the case where k is 5000, the running time of the TKUL-Miner becomes 21

seconds whereas REPT takes 266 seconds. It is more than 10 times improvements.

 The experimental result on the dense dataset Chess is shown in Fig. 6(B). For the dense dataset, the gap between

the TKUL- Miner algorithm and other algorithms is bigger than that with the dataset Chain and those tree based

algorithms exceed 10000 seconds even k is not very large. The running time of the TKUL- Miner algorithm never

exceeds 2 seconds for any k. Comparing to the performance of REPT(N = 100), it improved the running time by 100

times when k is 1 and 200 times when k is 10. Figs. 6(C) and 6(D) show the experimental results on the synthetic

datasets T10I4D100K and T40I10D100K, respectively. For both cases, the TKUL-Miner outperformed the other

algorithms for all k

Fig. 6. Running time

 Fig. 6(C) shows that the execution time of the other algorithms increases steeply, whereas it grows gradually for the

proposed algorithm. Also, it does not exceed 2 seconds even when k is 5000. In Fig. 6(D), running time of the TKUL-

Miner is 10 times improved in the best case compared to TKU algorithm. The improvement of the TKUL-Miner

algorithm is larger than that of Fig. 6(C) when k varies from 1 to 100.

 The experimental results show that the TKUL-Miner takes the shortest time over the state-of-the-art algorithms by

more than multiple times in many cases. Also, the TKUL-Miner algorithm tends to be much faster when the datasets

are dense and contain longer average lengths.

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, February 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2793 594
www.ijarsct.co.in

Impact Factor: 6.252

4.3 Memory Usage Comparison on Different Datasets

 Fig. 7 shows the peak memory consumption of the TKUL- Miner, TKU, REPT, and optimal UP-Growth+

algorithms on the datasets in a logarithmic scale. The experiment was terminated when the algorithm uses over

20000MB of memory.

 Fig. 7(A) is the result on the sparse dataset Chain. In this graph, the TKUL-Miner algorithm uses the least memory

when k is less than 100. The memory consumption of the TKUL- Miner grows larger than others when k is more than

500 because it does not make a compressed structure like the utility pattern tree. However, it is applicable since k is

usually not larger than 100 in real applications.

 In Fig. 7(B), the proposed algorithm outperforms over other algorithms on the dense dataset Chess. The TKU

algorithm terminates when k is 1. The REPT algorithm exceeds 20000MB when k is 50. The UP-Growth+ uses large

memory throughout the mining process. Memory efficiency of the proposed algorithm, which is based on the utility-

list structure, improved the performance approximately 98% in the dense dataset.

 According to Figs. 7(C) and 7(D), the TKU algorithm uses the largest memory because it generates the most number

of candidate itemsets on synthetic datasets T10I4D100K and T40I10D100K. The REPT and the optimal UP-Growth+

algorithm consume almost the same memory. On the other hand, the TKUL-Miner consumes the least memory. Since

the TKUL- Miner is a utility-list based algorithm which does not maintain the many candidates, the memory usage is

reduced by approximately 60% in Fig. 7(C) and 80 % in Fig. 7(D) compared to REPT (N = 100 and N = 1000).

Although the consumed memory of the TKUL-Miner algorithm varies depending on the number of transactions in a

database, reduction of memory consumption becomes even larger when the experiments are taken on the dense

datasets.

Fig. 7. Memory consumption

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, February 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2793 595
www.ijarsct.co.in

Impact Factor: 6.252

V. CONCLUSION

 This paper proposed the TKUL-Miner algorithm to mine top-k high utility itemsets efficiently. The TKUL-Miner

algorithm uses the utility-list to avoid the additional scanning of database which is a necessary step for the existing

top-k HUIM algorithms. To increase the border minimum utility rapidly, the proposed algorithm takes the TWU

descending order for searching first-level itemsets. It utilizes the sum of common utilities and the sum of itemset

utilities that have zero remaining utilities in order to prune the search space of the mining effectively. The TKUL-

Miner is outperformed the state-of-the- art top-k high utility itemset mining algorithms in all demonstrated

experiments on real and synthetic datasets. Both running time and memory consumption of the algorithms are

decreased in all cases of the experiments.

VI. ACKNOWLEDGMENT

 This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the ITRC

(Information Technology Research Center) support program (IITP-2015-H8501-15-1012) supervised by the IITP

(Institute for Information and communications Technology Promotion)

REFERENCES

[1]. R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” In Proceedings of the 20th

International Conference on Very Large Data Bases, Santiago, Vol. 1215, pp. 487-499, 1994.

[2]. J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate generation,” In Proceedings of the

2000 ACM SIGMOD International Conference on Management of Data, Dallas, pp. 1-12, 2000.

[3]. A.W.-C. Fu, R.W.-W. Kwong, and J. Tang, “Mining n-most interesting itemsets,” In Proceeding of

International Symposium on Methodologies for Intelligent Systems (ISMIS), Charlotte, Vol. 1932, pp. 59-

67, 2000.

[4]. J. Han, J. Wang, Y. Lu, and P. Tzvetkov, “Mining top-k frequent closed patterns without minimum support,”

In Proceedings of IEEE International Conference on Data Mining(ICDM), Maebashi, pp. 211- 218, 2002.

[5]. Y. Hirate, E. Iwahashi, and H. Yamana, “TF2P-Growth: an efficient algorithm for mining frequent patterns

without any thresholds”, In Proceedings of IEEE ICDM 2004 Workshop on Alternative Techniques for Data

Mining and Knowledge Discovery, Brighton, 2004.

[6]. W. Wang, J. Yang, and P. Yu, “Efficient mining of weighted association rules (WAR),” In Proceedings of

the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, pp.

270- 274, 2000.

[7]. F. Tao, F. Murtagh, and M. Farid, “Weighted association rule mining using weighted support and significance

framework,” In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, Washington, pp. 661-666, 2003.

[8]. Y. Liu, W. Liao, and A. Choudhary, “A two-phase algorithm for fast discovery of high utility itemsets,” In

Proceedings of the 9th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer, Vol.

3518, pp. 689-695, 2005.

[9]. C.F. Ahmed, S.K. Tanbeer, B.S. Jeong, and Y.K. Lee, “Efficient tree structures for high utility pattern mining

in incremental databases,” IEEE Transactions on Knowledge and Data Engineering, Vol. 21, No. 12, pp.

1708-1721, 2009.

[10]. V.S. Tseng, B.E. Shie, C.W. Wu, and P.S. Yu, “Efficient algorithms for mining high utility itemsets from

transactional databases,” IEEE Transactions on Knowledge and Data Engineering, Vol. 25, No. 8, pp. 1772-

1786, 2013.

[11]. M. Liu and J. Qu, “Mining high utility itemsets without candidate generation,” In Proceedings of the 21st

ACM International Conference on Information and Knowledge Management, Maui, pp. 55-64, 2012.

[12]. P. Fournier-Viger, C.W. Wu, S. Zida, and V.S. Tseng, “FHM: Faster high- utility itemset mining using

estimated utility co-occurrence pruning,” Foundations of Intelligent Systems, Springer, pp. 83-92, 2014.

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 2, February 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-2793 596
www.ijarsct.co.in

Impact Factor: 6.252

[13]. S. Lee and J.S. Park, “High utility itemset mining using transaction utility of itemsets,” KIPS Transactions

on Software and Data Engineering, Vol. 4, No. 11, pp. 499-508, 2015.

[14]. M. Zihayat and A. An, “Mining top-k high utility patterns over data streams,” Information Sciences, Vol.

285, pp. 138-161, 2014.

[15]. T. Lu, Y. Liu, and L. Wang, “An algorithm of top-k high utility itemsets mining over data stream,” Journal

of Software, Vol. 9, No. 9, pp. 2342- 2347, 2014.

[16]. J. Yin, Z. Zheng, L. Cao, Y. Song, and W. Wei, “Efficiently mining top- k high utility sequential patterns,”

IEEE 13th International Conference on Data Mining(ICDM), Dallas, pp. 1259-1264, 2013.

[17]. C. Wu, B. Shie, V.S. Tseng, and P.S. Yu, “Mining top-k high utility itemsets,” In Proceedings of ACM

SIGKDD 18th International Conferemce on Knowledge discovery and data mining, New York, pp. 78- 86,

2012.

[18]. H. Ryang and U. Yun. “Top-k high utility pattern mining with effective threshold raising strategies,”

Knowledge-Based Systems, Vol. 76, pp. 109- 126, 2015.

[19]. J. Pisharath, Y. Liu, W.K. Liao, A. Choudhary, G. Memik, and J. Parhi, (2005). Numinebench version 2.0

dataset and technical report. Available at <http://cucis.ece.northwestern.edu/projects/DMS/MineBe

nch.html>. Accessed on June 2015.

[20]. FIMI, (2003). Fimi: The frequent itemset mining dataset repository. Accessed on August 2015.

<http://fimi.ua.ac.be/data/>.

