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Abstract: Autonomous systems have become more prevalent in areas such as self-driving vehicles, aerial 

drones, and service robotics, the need for systems that make not only accurate but also understandable 

decisions has grown significantly. While deep learning has enabled major advances in perception and 

control, these models often operate as opaque black boxes, offering little insight into how or why specific 

decisions are made. This lack of transparency poses real risks, especially in safety-critical applications 

where human oversight, accountability, and trust are essential. In this work, we propose a Neuro-

Symbolic AI framework that combines neural networks with symbolic reasoning to support both 

formalized decision-making and real-time explainability in autonomous systems. The neural component 

handles low-level perception tasks, while the symbolic layer captures high-level domain knowledge and 

reasoning rules. By integrating these two paradigms, the system can make informed decisions grounded 

in logical structures, while still benefiting from the flexibility of learning from data. To evaluate the 

framework, we conduct experiments in simulated driving environments using the CARLA simulator. The 

results demonstrate that our approach not only maintains competitive performance but also provides 

interpretable reasoning paths for its actions. This work contributes to the ongoing effort to design 

autonomous systems that are not only intelligent and adaptive, but also understandable and safe. 
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I. INTRODUCTION 

Over the past decade, autonomous systems have moved from research labs to real-world environments, powering 

applications from self-driving cars to warehouse automation and healthcare robotics. These systems are increasingly 

expected to operate independently in complex and unpredictable settings, often with limited human oversight. 

However, as their capabilities grow, so too does the importance of understanding how they make decisions—

particularly in situations where outcomes may impact safety, ethics, or legal responsibility. 

While deep learning models have been central to many breakthroughs in autonomy, they come with a significant 

limitation: they are difficult to interpret. These systems can detect patterns and make predictions with impressive 

accuracy, but their decision-making processes are largely hidden from view. This "black-box" nature makes it hard for 

developers, regulators, or end-users to verify their behaviour, correct mistakes, or build trust in their outputs. 

At the same time, symbolic AI offers a very different approach. Rooted in formal logic and structured knowledge, 

symbolic systems are inherently interpretable. They can follow explicit rules, trace their reasoning, and provide clear 

justifications for their actions. However, they typically struggle with raw data like images or sensor streams, and they 

lack the flexibility that neural models offer when dealing with noisy or incomplete information. 

This paper explores how these two paradigms—neural and symbolic—can be brought together in a unified framework. 

We present a Neuro-Symbolic AI architecture that separates low-level perception (handled by neural networks) from 

high-level reasoning (handled by a symbolic engine). This integration allows the system to not only perform effectively 

in dynamic environments but also to generate real-time explanations of its decisions in terms that humans can 

understand. 
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Our goal is to move toward a new kind of autonomy

with logic, we aim to build systems that do more than just function; they can also explain their actions, follow explicit 

rules, and adapt to new situations in a way that is both rob

 

This section outlines the design and integration of the proposed Neuro

reasoning and real-time explainability in autonomous systems. The architecture is designed to combine

strengths of neural networks with the logical transparency of symbolic reasoning, ensuring that decisions made by 

autonomous agents are both effective and interpretable.

 

Perception Layer (Neural Subsystem) 

The perception module is built using deep neural networks (e.g., CNNs for vision or RNNs for sequence modelling) to 

process raw sensor inputs such as camera feeds, lidar scans, and radar signals. This layer is responsible for:

 Detecting and classifying objects in the environment.

 Estimating trajectories and motion patterns.

 Abstracting low-level data into symbolic representations (e.g., “Vehicle approaching”, “Pedestrian crossing”).

 These outputs serve as the input for the symbolic layer.

Fig 1:  Neuro

This diagram shows the flow of data from raw sensor input through the neural perception module to the symbolic 

reasoning engine and decision modules. Outputs from the symbolic subsystem are also sent to an inference engine, 

which formats decisions into human-understandable justifications.   
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autonomy—one that is both capable and accountable. By combining learning 

with logic, we aim to build systems that do more than just function; they can also explain their actions, follow explicit 

rules, and adapt to new situations in a way that is both robust and transparent. 

II. METHODOLOGY 

This section outlines the design and integration of the proposed Neuro-Symbolic AI framework for enabling formalized 

time explainability in autonomous systems. The architecture is designed to combine

strengths of neural networks with the logical transparency of symbolic reasoning, ensuring that decisions made by 

autonomous agents are both effective and interpretable. 

using deep neural networks (e.g., CNNs for vision or RNNs for sequence modelling) to 

process raw sensor inputs such as camera feeds, lidar scans, and radar signals. This layer is responsible for:

Detecting and classifying objects in the environment. 

ting trajectories and motion patterns. 

level data into symbolic representations (e.g., “Vehicle approaching”, “Pedestrian crossing”).

These outputs serve as the input for the symbolic layer. 

Fig 1:  Neuro-Symbolic AI Framework Architecture 

This diagram shows the flow of data from raw sensor input through the neural perception module to the symbolic 

reasoning engine and decision modules. Outputs from the symbolic subsystem are also sent to an inference engine, 

understandable justifications.    
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Symbolic Knowledge Base and Reasoning Engine

Once the perception module has converted sensory input into symbolic tokens, these are fed into a reasoning engine 

that uses a structured knowledge base to infer actions. 

Knowledge Base (KB): Contains domain-specific logic, rules, and constraints. For instance:

IF pedestrian_detected AND distance < 10m THEN prepare_to_stop.

IF traffic_light = red AND speed > 0 THEN decelerate.

Reasoning Engine: Executes formal inference algorithms (e.g., propositional logic, forward chaining, SAT solvers) to 

derive conclusions from the KB and current world state.

This subsystem ensures that decisions adhere to safety rules and constraints and that each act

an explicit logical path. 

Fig. 2: Flowchart illustrating how symbolic predicates are processed through rules and inference to generate high

decisions. 

 

Decision and Explanation Modules 

The decisions generated by the symbolic engine are sent to the 

low-level control commands. In parallel, the 

language explanations or traceable logic for end

This module ensures that for any decision (e.g., braking at an intersection), the system can articulate why it acted the 

way it did—e.g., "Pedestrian detected within unsafe distance while traffic light is red."

Fig.3: Architecture illustrating Integration of Knowledge Base into Deep Learning Models
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Symbolic Knowledge Base and Reasoning Engine 

Once the perception module has converted sensory input into symbolic tokens, these are fed into a reasoning engine 

that uses a structured knowledge base to infer actions. The symbolic subsystem consists of: 

specific logic, rules, and constraints. For instance: 

IF pedestrian_detected AND distance < 10m THEN prepare_to_stop. 

IF traffic_light = red AND speed > 0 THEN decelerate. 

Executes formal inference algorithms (e.g., propositional logic, forward chaining, SAT solvers) to 

derive conclusions from the KB and current world state. 

This subsystem ensures that decisions adhere to safety rules and constraints and that each action can be traced back to 

Fig. 2: Flowchart illustrating how symbolic predicates are processed through rules and inference to generate high

ic engine are sent to the Decision Module, which handles action selection and 

level control commands. In parallel, the Explanation Generator extracts logical paths and maps them into natural 

language explanations or traceable logic for end-users, developers, or auditors. 

This module ensures that for any decision (e.g., braking at an intersection), the system can articulate why it acted the 

e.g., "Pedestrian detected within unsafe distance while traffic light is red." 

illustrating Integration of Knowledge Base into Deep Learning Models

  

  

Technology  

Reviewed, Refereed, Multidisciplinary Online Journal 

 556 

Impact Factor: 7.67 

 

Once the perception module has converted sensory input into symbolic tokens, these are fed into a reasoning engine 

Executes formal inference algorithms (e.g., propositional logic, forward chaining, SAT solvers) to 

ion can be traced back to 

 
Fig. 2: Flowchart illustrating how symbolic predicates are processed through rules and inference to generate high-level 

, which handles action selection and 

extracts logical paths and maps them into natural 

This module ensures that for any decision (e.g., braking at an intersection), the system can articulate why it acted the 

 
illustrating Integration of Knowledge Base into Deep Learning Models 



I J A R S C T    

    

 

               International Journal of Advanced Research in Science, Communication and Technology  

                               International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 5, Issue 3, June 2025 

 Copyright to IJARSCT         DOI: 10.48175/IJARSCT-27573  557 

    www.ijarsct.co.in  

 
 

ISSN: 2581-9429 Impact Factor: 7.67 

 
Integration and Feedback Loop 

The complete framework operates in a closed-loop, where the outputs of the reasoning engine influence actuator 

commands, and the system continuously receives new environmental inputs. Feedback from outcomes (e.g., successful 

or failed decisions) can also be used to retrain the neural models or refine symbolic rules over time, enabling lifelong 

learning and adaptation. 

 

III. RESULTS 

To evaluate the performance and practicality of the proposed Neuro-Symbolic AI framework, we conducted a series of 

experiments in a simulated urban driving environment using the CARLA simulator. The experiments were designed to 

measure both decision accuracy and explainability under various real-world conditions, such as pedestrian crossings, 

traffic signals, and dynamic vehicle interactions. 

We compared our approach against a purely neutral baseline and a rule-based symbolic system across the following key 

metrics: 

Decision accuracy 

The Neuro-Symbolic framework consistently made safe and contextually correct decisions with an average accuracy of 

94.3%, outperforming: 

Neural-only system: 91.1% 

Symbolic-only system: 85.6% 

Training and Validation Accuracy 

We introduced a custom Explainability Score, based on the following: 

Traceability of decision logic 

Clarity of natural language explanations 

Response time of explanation generation 

Our model achieved an average explainability rating of 4.6 out of 5, based on expert human evaluation, significantly 

higher than the neural-only system (1.8) and on par with symbolic-only models (4.7), with the added benefit of 

perceptual flexibility. 

Inference Time (Latency) 

The proposed hybrid framework showed a modest increase in latency due to the reasoning step: 

Neural-only system: ~52 ms 

Neuro-Symbolic system: ~69 ms 

Symbolic-only system: ~130 ms 

Despite the added symbolic layer, the system maintained real-time performance (sub-100ms), making it suitable for 

real-world deployment in autonomous agents. 

TABLE 1. Comparison of proposed methodologies 

Configuration Accuracy 
Explainability 

Score 
Latency 

Full Neuro-Symbolic 94.3% 4.6 / 5 69 ms 

Without Symbolic 

Reasoning 
91.1% 1.8 / 5 52 ms 

Without Neural 

Perception 
85.6% 4.7 / 5 130 ms 

 

The results reinforce that High decision accuracy with enhanced robustness is achieved in uncertain conditions and 

Real-time capability with only minimal overhead from the symbolic layer. 
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IV. CONCLUSION 

In this research, we introduced a comprehensive Neuro-Symbolic AI framework designed to enable formalized 

reasoning and real-time explainability in autonomous systems. Our approach bridges the gap between data-driven 

perception and logical decision-making by integrating neural networks with symbolic reasoning modules. This hybrid 

architecture not only allows autonomous agents to interpret complex, unstructured inputs like images or sensor data but 

also empowers them to make decisions grounded in transparent, rule-based logic. 

The results of our experiments—conducted in dynamic and realistic urban environments—demonstrate that the 

proposed framework strikes a strong balance between accuracy, interpretability, and performance. Compared to 

standalone neural or symbolic systems, our model achieves: 

Higher decision accuracy in complex scenarios, 

Substantially improved explainability of actions, and 

Near real-time responsiveness, essential for safety-critical domains like autonomous driving 

In conclusion, this work takes a significant step toward creating autonomous systems that are not only capable of 

making intelligent decisions but are also accountable, explainable, and aligned with human reasoning principles. As 

autonomous technologies continue to integrate into society, such hybrid approaches will be key to ensuring they operate 

safely, ethically, and transparently. 
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