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Abstract: Flight delays present significant operational and financial challenges to airlines and 

inconvenience to passengers. This paper proposes a Flight Delay Prediction System utilizing advanced 

machine learning techniques, particularly Bi-Directional Long Short-Term Memory (Bi-LSTM) and 

CNN-LSTM hybrid models. Historical and real-time flight data, weather conditions, and operational 

features are leveraged to enhance predictive accuracy. The system architecture integrates a React.js 

frontend, a Node.js backend, and Python-based ML models, with MongoDB managing historical records. 

The proposed model achieves high prediction accuracy, demonstrated through extensive testing and 

evaluation. This solution offers substantial potential in improving airline operational efficiency and 

enhancing passenger travel experience 
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I. INTRODUCTION 

Flight delays are an enduring issue in the aviation industry, impacting millions of passengers and costing airlines 

billions annually. Delays disrupt tight schedules, lead to missed connections, and escalate operational costs related to 

crew overtime, fuel wastage, and maintenance. 

Traditional delay prediction models using linear regression or decision trees often fail to capture the nonlinear, 

sequential nature of flight operations. Furthermore, most existing systems lack real-time adaptability, making them 

insufficient for dynamic environments like airports. 

To address these limitations, this project implements a deep learning-based Flight Delay Prediction System, integrating 

historical flight data, real-time operational parameters, and environmental factors. By deploying Bi-LSTM and CNN-

LSTM architectures, we aim to significantly enhance prediction accuracy and timeliness. 

 

II. METHODOLOGY 

The methodology is divided into the following key components: 

 

Model Training 

Data Collection: 

500,000 flight records over multiple seasons. 

Feature Engineering: 

 Scheduled vs Actual Departure Time 

 Taxi In/Out Times 

 Distance 

 Day of Week, Seasonality 

Handling Missing Data: 

Mean/mode imputation. 
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Feature Description Example 

Departure_Hour Time of scheduled take-off 17:00 hrs 

Taxi_Out Taxi time before take-off 15 min 

Season Flight season Winter 

 

2.  Model Building 

 
 

Bi-LSTM Model: 

Two layers of Bi-LSTM units. 

Captures sequential dependencies (e.g., previous delays impact future). 

 

CNN-LSTM Model: 

CNN extracts local patterns. 

LSTM models long-term dependencies. 

 

Training Parameters: 

Parameter Value 

Epochs 50 

Batch Size 64 

Optimizer Adam 

Loss Function Mean Squared Error (MSE) 

Model achieves convergence within 35–40 epochs. 

 

Model Validation 

Dataset Split: 

80% Training 
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20% Testing 

Evaluation Metrics: 

 

Mean Absolute Error (MAE): 8.5 minutes 

Root Mean Square Error (RMSE): 10.2 minutes 

R² Score: 0.87 

Metric Score 

MAE 8.5 min 

RMSE 10.2 min 

R² 0.87 

Thus, the model demonstrates high predictive accuracy. 

 

III. LITERATURE SURVEY 

Numerous studies have explored flight delay prediction using classical and machine learning techniques. A summary of 

key related works is given below: 

 

Ref. Author(s) Approach Findings 

[1] Sparsha S et al. (2023) Random Forest, Decision Tree 
Achieved 100% accuracy on a limited 

dataset. Generalization remains an issue. 

[2] Vishrut Raj et al. (2021) 
Linear Regression, ML 

Techniques 

Emphasized real-time data integration 

for better predictions. 

[3] Yogita Borse et al. (2020) 
Naive Bayes, Decision Tree, 

Random Forest 

Highlighted need for real-time weather 

integration. 

[4] 
Maged Mamdouh et al. 

(2023) 
Regression (FDPP-ML) 

Achieved 42% improvement in Mean 

Squared Error (MSE). 

[5] Jingyi Qu et al. (2023) CNN-MLSTM, Deep Learning 
High accuracy (91.36%) capturing delay 

propagation patterns. 

 

Summary of Literature Survey: 

1.  Traditional models (Decision Trees, Random Forests) have hown success on static datasets. 

2.  Deep learning models (BiLSTM, CNN-LSTM) demonstrate superior performance on large, time-sequenced data. 

3.  Integration of real-time data (weather, air traffic) is crucial for enhancing predictive power. 

 

IV. ALGORITHMS 

The system uses an NLP-enhanced Machine Learning Algorithm structured as follows: 

Flight Delay Prediction Algorithm: 

Input: Flight details (airline, schedule, weather data, airport congestion). 

Preprocessing: 

Clean missing values. 

Feature engineering (departure hour, day of week, seasonality). 

Embedding: 

Use TF-IDF or BERT for contextual embedding if textual data (comments, status) is involved. 

Model Prediction: 

Forward data through Bi-LSTM / CNN-LSTM models. 
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Calculate predicted delay in minutes. 

Output: 

Delay probability and estimated delay duration.

 

Mathematical representation: 

y^ = f(flight, Xweather, xtraffic) 

where f is the trained deep learning model function.

The Flight Delay Prediction System follows a modular architecture consisting of a React.js

Node.js/Express.js backend, a Python-based machine learning server, and a MongoDB database. The frontend collects 

flight details from users and communicates securely with the backend. The backend handles data processing, session 

management, and routes prediction requests 

LSTM models, processes the input and generates delay predictions, which are returned to the user. MongoDB stores 

user data, historical flight records, and prediction logs, ensuring scalab

is flexible, allowing future integration of real

 

After extensive testing, the developed system showed:

Prediction Accuracy: 87% R² Score. 

Average Response Time: 1.6 seconds per prediction.

Usability: 

Clear input forms. 

Real-time results visualization. 

Key Observations: 

Aspect 

Evening Flights (5

Winter Season

Weekend Flights

 

 

I J A R S C T  
   

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, June 2025 

        DOI: 10.48175/IJARSCT-27567  

  

 

lay duration. 

where f is the trained deep learning model function. 

The Flight Delay Prediction System follows a modular architecture consisting of a React.js

based machine learning server, and a MongoDB database. The frontend collects 

flight details from users and communicates securely with the backend. The backend handles data processing, session 

management, and routes prediction requests to the machine learning server. The ML server, using Bi

LSTM models, processes the input and generates delay predictions, which are returned to the user. MongoDB stores 

user data, historical flight records, and prediction logs, ensuring scalability and real-time performance. The architecture 

is flexible, allowing future integration of real-time weather data and mobile applications. 

V. RESULT 

After extensive testing, the developed system showed: 

: 1.6 seconds per prediction. 

Observation 

Evening Flights (5-8 PM) Higher Delays 

Winter Season Higher Delays (avg. 16.2 min) 

Weekend Flights Lower Delay Probability 
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The Flight Delay Prediction System follows a modular architecture consisting of a React.js-based frontend, a 

based machine learning server, and a MongoDB database. The frontend collects 

flight details from users and communicates securely with the backend. The backend handles data processing, session 

to the machine learning server. The ML server, using Bi-LSTM and CNN-

LSTM models, processes the input and generates delay predictions, which are returned to the user. MongoDB stores 

time performance. The architecture 
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Graphical Representation: 

Line graph: Predicted vs Actual Delays over a month. 

Bar chart: Average Delays by Season. 

 

Table 1: Model Performance Comparison 
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VI. FUTURE WORK 

Several enhancements are proposed for future development: 

Integration with Real-Time Weather APIs: 

Improve prediction robustness during dynamic weather conditions. 

Mobile Application Development: 

Create Android/iOS apps for delay prediction on-the-go. 

Multi-Airline Integration: 

Extend the system to major global airlines using live operational APIs. 

Explainable AI (XAI): 

Implement models that can explain why a particular delay prediction was made (e.g., due to weather, congestion). 

Multi-Language Support: 

Deploy multilingual interfaces for wider user adoption. 

 

VII. CONCLUSION 

The Flight Delay Prediction System demonstrates the power of deep learning for solving real-world problems in 

aviation. By incorporating both historical trends and real-time data, the system provides airlines and passengers with 

actionable, timely information. 

Deployment of the model as an accessible web application (via MERN stack) ensures ease of use and scalability. The 

project showcases how AI-driven analytics can improve operational efficiency, reduce costs, and enhance customer 

satisfaction in the aviation industry. 
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