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Abstract: Code clone detection is a critical task in software engineering, aimed at identifying duplicated 

code segments that can hinder maintainability and increase the risk of defect propagation. Code2Img 

presents a scalable solution by converting Abstract Syntax Trees (ASTs) into image-based vector 

representations, enabling effective detection of syntactically complex clones. However, its reliance on 

structural similarity limits its ability to capture deeper semantic relationships. In this work, we enhance 

Code2Img by integrating a semantic transition scoring mechanism. We compute heuristic scores for AST 

node transitions based on node depth and connectivity within local function contexts, reflecting their 

semantic roles. These scores are further weighted using Inverse Document Frequency (IDF) across a 

broader corpus to emphasize informative yet uncommon transition patterns. The enriched semantic 

scores are incorporated into the vector representation used by Code2Img, enhancing its capacity to 

detect nuanced Type-3 clones and extending potential coverage toward Type-4 clones. Empirical 

evaluation demonstrates that our approach preserves the scalability of the original framework while 

significantly improving semantic clone detection performance.   
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I. INTRODUCTION 

1.1. Background and Motivation 

Code reuse, often implemented through copying, pasting, and subsequent modifications, is a prevalent strategy in 

contemporary software development practices. This approach offers developers a seemingly convenient method for 

swiftly implementing new functionalities, leveraging existing codebases and reducing the necessity for de novo code 

creation. However, this convenience brings with it inherent risks that warrant careful consideration. The introduction of 

security vulnerabilities and the amplification of maintenance costs are primary concerns associated with the widespread 

adoption of code cloning methodologies [1], [5]. Cloned code segments may inadvertently propagate existing 

vulnerabilities present in the original source, thereby creating multiple points of weakness within the encompassing 

system. Furthermore, the maintenance of cloned code can pose significant challenges, necessitating the application of 

updates and bug fixes to numerous instances of similar code, which in turn elevates the probability of introducing 

inconsistencies and augmenting the overall maintenance burden. 

Clone detection has emerged as a critical area within software engineering, aimed at mitigating the aforementioned 

risks through the identification of similar code segments [5], [15], [19]. By systematically identifying code clones, 

developers can gain enhanced insights into code dependencies, detect potential security vulnerabilities that may 

proliferate across cloned segments, and strategically allocate maintenance efforts to areas exhibiting the highest degree 

of code duplication. Effective clone detection methodologies facilitate improved code management practices, reduce 

redundancy inherent in cloned code segments, and ultimately contribute to the enhancement of both the quality and 

security attributes of software systems [7], [15]. Moreover, the application of clone detection techniques can extend to 

the identification of violations pertaining to software licenses, thereby ensuring compliance with established licensing 
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agreements and precluding potential legal ramifications stemming from the unauthorized replication or utilization of 

code [5], [43], [44]. 

Scalable and complicated clone detection represent the two core demands in the field of clone detection. Scalable clone 

detection specifically addresses the imperative to efficiently analyze large codebases, a prerequisite for the practical 

application of clone detection methodologies in real-world software projects [15], [16]. The capacity to process millions 

of lines of code within reasonable timeframes and with judicious resource utilization constitutes a fundamental 

requirement for scalable clone detection systems [14], [2]. Complicated clone detection, conversely, centers on the 

identification of clones that transcend mere identical copies, encompassing instances where code segments have 

undergone substantive modifications, thereby rendering their detection more arduous [7], [8], [11]. Such modifications 

may encompass statement reordering, insertions, deletions, and variable name changes [23]. Addressing both scalability 

and the detection of complicated clones is essential for developing effective tools that can support the development and 

maintenance of modern software systems [53]. 

 

1.2. Limitations of Existing Approaches 

Existing clone detection approaches can be broadly categorized into text-based, token-based, graph-based, and tree-

based methods, each characterized by its own distinct strengths and limitations. Text-based and token-based methods 

are generally efficient for scalable clone detection, making them suitable for analyzing large codebases [5], [15], [16]. 

These methodologies treat source code as either plain text or token sequences, proceeding to calculate similarities 

directly from these representations. However, they often struggle with complicated clone types because they lack 

consideration for the underlying code structure [7], [15]. Text-based methods exhibit sensitivity to minor code 

variations, encompassing whitespace alterations and commentary, while token-based methods are susceptible to 

perturbations in variable names and statement ordering [5], [6]. 

Methods based on intermediate representations of code, such as graph-based and tree-based approaches, can effectively 

detect complex clones by capturing the structural and semantic information of code [8], [9], [10], [11]. Graph-based 

approaches employ program dependency graphs (PDG) or control flow graphs (CFG) to represent code structure, thus 

enabling the identification of clones even in the presence of substantial modifications [8], [11]. Tree-based methods, on 

the other hand, leverage abstract syntax trees (AST) to capture the hierarchical structure of code, facilitating the 

detection of syntactically similar yet non-identical clones [10], [19], [20]. However, graph-based methods are limited 

by long generation times and complex graph structures, leading to high runtime overhead [9], [11]. The computational 

complexity inherent in constructing and comparing intricate graphs can render graph-based methodologies impractical 

for large-scale clone detection endeavors [2], [9]. 

Tree-based methods, while offering improvements in speed relative to graph-based approaches, nonetheless encounter 

scalability challenges stemming from the inherent complexity of ASTs [10], [20], [53]. The size and complexity of 

ASTs can lead to high memory consumption and long detection times, limiting their scalability for very large codebases 

[19], [53]. Abstract Syntax Tree (AST)-based methods, while capable of capturing code structure, face challenges in 

large-scale clone detection because the complex structure of ASTs leads to high memory consumption and long 

detection times [19], [20]. The computational cost of comparing ASTs directly can be significant, especially when 

dealing with large and complex codebases. The main limitation of the AST-based method is the tree's complex 

structure, so it has to take up a large amount of memory and a long time for the trees matching. This makes it difficult 

to meet the needs of scalable clone detection [53]. 

 

1.3. Semantically Enhanced AST Vectorization Approach and Contributions 

The "Semantically Enhanced AST Vectorization" approach addresses the challenge of achieving both effectiveness and 

scalability in detecting complicated clones from large-scale source code [53]. It achieves this by transforming Abstract 

Syntax Trees (ASTs) into vector representations that capture both syntactic and semantic information. This approach 

leverages the strengths of AST-based methods [10], [19], [20] while mitigating their limitations by using vector 

representations that are more compact and efficient to compare [53]. 
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The approach involves several key steps. First, ASTs are generated from the source code to capture the syntactic 

structure [24]. Second, semantic information is extracted from the ASTs

and depth of a node [10], [11]. Third, the syntactic and semantic information is combined to create a vector 

representation of each code fragment [53]. Finally, clones are detected by calculating the similarit

representations, allowing for efficient and scalable clone detection [2], [15].

The key contribution of this approach is a novel method to efficiently represent code fragments as vectors that capture 

both syntactic and semantic information [53]. This transformation helps to avoid high

memory occupation associated with traditional AST

information, the approach can detect complicated clones that ha

scalable for large codebases [7], [11], [53]. The use of vector representations enables efficient similarity comparisons, 

making the approach practical for real-world software development scenarios [15

 

II. DEFINITION AND MOTIVATION

2.1. Code Clone Types 

Code clones are typically categorized into four types based on their similarity, each representing a different level of 

challenge for detection [21], [22], [23]. 

Type-1 Clones (T1): These are identical code fragments, excluding differences in spaces, blank lines, and comments. 

These clones represent the simplest form of code duplication and are relatively straightforward to detect, often using 

simple string comparison techniques [5], [7].

Type-2 Clones (T2): These are identical code fragments except for renamed unique identifiers, such as variable names, 

function names, or class names. Detecting T2 clones requires normalizing the code by replacing all identifiers with a 

consistent naming scheme before comparing the code fragments [7], [53].

Type-3 Clones (T3): These are syntactically similar code fragments that differ at the statement level, with statements 

added, modified, or deleted. Detecting T3 clones requires more sophisticated tec

similarity between code fragments, even when they are not identical [15], [16], [53]. The BigCloneBench (BCB) 

dataset further classifies T3 clones into subcategories based on code similarity scores, such as Very Stron

(VST3), Strongly Type-3 (ST3), and Moderately Type

Type-4 Clones (T4): These are semantically similar code fragments that are syntactically dissimilar. Detecting T4 

clones requires a deep understanding of the code's semantics, maki

To better illustrate the different types of clones, consider the example from the BCB dataset [23], which all have similar 

functionality with transposing a two-dimensional matrix:

T1 Clone: This clone is identical to the source function except for the addition of comments.

T2 Clone: This clone differs from the source function only in a variable name, i.e., 
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The approach involves several key steps. First, ASTs are generated from the source code to capture the syntactic 

structure [24]. Second, semantic information is extracted from the ASTs using node metrics such as frequency, degree, 

and depth of a node [10], [11]. Third, the syntactic and semantic information is combined to create a vector 

representation of each code fragment [53]. Finally, clones are detected by calculating the similarity between the vector 

representations, allowing for efficient and scalable clone detection [2], [15]. 

The key contribution of this approach is a novel method to efficiently represent code fragments as vectors that capture 

tion [53]. This transformation helps to avoid high-cost tree comparison and high 

memory occupation associated with traditional AST-based methods [19], [20]. By combining syntactic and semantic 

information, the approach can detect complicated clones that have undergone significant modifications while remaining 

scalable for large codebases [7], [11], [53]. The use of vector representations enables efficient similarity comparisons, 

world software development scenarios [15], [16]. 

. DEFINITION AND MOTIVATION 

Code clones are typically categorized into four types based on their similarity, each representing a different level of 

These are identical code fragments, excluding differences in spaces, blank lines, and comments. 

These clones represent the simplest form of code duplication and are relatively straightforward to detect, often using 

[7]. 

These are identical code fragments except for renamed unique identifiers, such as variable names, 

function names, or class names. Detecting T2 clones requires normalizing the code by replacing all identifiers with a 

ng scheme before comparing the code fragments [7], [53]. 

These are syntactically similar code fragments that differ at the statement level, with statements 

added, modified, or deleted. Detecting T3 clones requires more sophisticated techniques that can capture the syntactic 

similarity between code fragments, even when they are not identical [15], [16], [53]. The BigCloneBench (BCB) 

dataset further classifies T3 clones into subcategories based on code similarity scores, such as Very Stron

3 (ST3), and Moderately Type-3 (MT3) [23]. 

These are semantically similar code fragments that are syntactically dissimilar. Detecting T4 

clones requires a deep understanding of the code's semantics, making it impractical for large-scale detection [8], [9].

To better illustrate the different types of clones, consider the example from the BCB dataset [23], which all have similar 

dimensional matrix: 

s identical to the source function except for the addition of comments. 

This clone differs from the source function only in a variable name, i.e., LImage instead of 
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and depth of a node [10], [11]. Third, the syntactic and semantic information is combined to create a vector 

y between the vector 

The key contribution of this approach is a novel method to efficiently represent code fragments as vectors that capture 

cost tree comparison and high 

based methods [19], [20]. By combining syntactic and semantic 

ve undergone significant modifications while remaining 

scalable for large codebases [7], [11], [53]. The use of vector representations enables efficient similarity comparisons, 

Code clones are typically categorized into four types based on their similarity, each representing a different level of 

These are identical code fragments, excluding differences in spaces, blank lines, and comments. 

These clones represent the simplest form of code duplication and are relatively straightforward to detect, often using 

These are identical code fragments except for renamed unique identifiers, such as variable names, 

function names, or class names. Detecting T2 clones requires normalizing the code by replacing all identifiers with a 

These are syntactically similar code fragments that differ at the statement level, with statements 

hniques that can capture the syntactic 

similarity between code fragments, even when they are not identical [15], [16], [53]. The BigCloneBench (BCB) 

dataset further classifies T3 clones into subcategories based on code similarity scores, such as Very Strongly Type-3 

These are semantically similar code fragments that are syntactically dissimilar. Detecting T4 

scale detection [8], [9]. 

To better illustrate the different types of clones, consider the example from the BCB dataset [23], which all have similar 
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T3 Clone: This clone is textually dissimilar to the source function, as reflected in the function names, variable names, 

and variable types being completely different.

 

T4 Clone: This clone is syntactically dissimilar but semantically similar.
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2.2. Challenges in Clone Detection 

Detecting T3 clones is more challenging than detecting T1 and T2 clones due to syntactic similarities. The variations in 

statement order, additions, deletions, and modifications make it 

comparison techniques [1], [2]. Instead, more sophisticated methods are needed that can capture the underlying 

syntactic structure of the code and identify similarities even when the code fragments are 

clones (T4) exhibit semantic similarity but are syntactically dissimilar, requiring a deep understanding of the code's 

semantics, making them impractical for large

code duplication, where the code fragments perform the same function but are implemented using different syntax and 

code structures [7]. 

This paper focuses on achieving scalable T3 clone detection. Scalable T3 clone detection requires developi

that can efficiently analyze large codebases and identify T3 clones with high accuracy [8]. This involves balancing the 

need for sophisticated techniques that can capture the syntactic similarity between code fragments with the need for 

efficient algorithms that can handle large amounts of code [9], [10].

 

2.3. Motivating Example 

A motivating example illustrates how the tree

specific example of code cloning, it becomes easier 

the Semantically Enhanced AST Vectorization approach [2], [3]. In one specific example, the Jaccard similarity of the 

token, AST, and AST’s adjacency matrix is calculated for a pair of cod

first tokenized to obtain the token sequence of the source code [4]. Then the token sequences of the two functions are 

put into Set1 and Set2, respectively [1]. For AST similarity, the AST of these two fu

nodes of the two ASTs are put into Set1 and Set2 [5]. Then the Jaccard similarity of token and AST is computed as in 

the formula of set_Jacc_sim1 [1]. 

The probability matrix exceeds 0.7 among the total average similarity, 

tree's structural details and improve clone detection effectiveness [1], [6]. The probability transition matrix can support 

complex clone detection [1]. Therefore, it can be inferred that Markov chains help ca

and thus improve clone detection’s effectiveness, especially for the complicated clone types [7], [8].

 

III. APPROACH: SEMANTICALLY ENHANCED AST VECTORIZATION  FRAMEWORK

3.1. System Overview 

The Semantically Enhanced AST Vectorization framework consists of four main phases: Data Preprocessing, Clone 

Filtering, Structure and Semantics Encoding, and Clone Detecting. Each phase plays a crucial role in the overall process 

of detecting code clones, and the framework is designed 

Preprocessing phase prepares the code for analysis by normalizing the code and generating an inverted index [3], [4]. 

The Clone Filtering phase reduces the number of code pairs that need to be analyzed b

[5], [6]. The Structure and Semantics Encoding phase transforms the code into a vector representation that captures 

both the structural and semantic information of the code [1], [7]. Finally, the Clone Detecting phase compare

vectors to identify clones [8], [9].  
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Detecting T3 clones is more challenging than detecting T1 and T2 clones due to syntactic similarities. The variations in 

statement order, additions, deletions, and modifications make it difficult to rely on simple text-based or token

comparison techniques [1], [2]. Instead, more sophisticated methods are needed that can capture the underlying 

syntactic structure of the code and identify similarities even when the code fragments are not identical [3], [4]. Type

clones (T4) exhibit semantic similarity but are syntactically dissimilar, requiring a deep understanding of the code's 

semantics, making them impractical for large-scale detection [5], [6]. These clones represent the most com

code duplication, where the code fragments perform the same function but are implemented using different syntax and 

This paper focuses on achieving scalable T3 clone detection. Scalable T3 clone detection requires developi

that can efficiently analyze large codebases and identify T3 clones with high accuracy [8]. This involves balancing the 

need for sophisticated techniques that can capture the syntactic similarity between code fragments with the need for 

t algorithms that can handle large amounts of code [9], [10]. 

A motivating example illustrates how the tree-based image transformation can detect code clones [1]. By considering a 

specific example of code cloning, it becomes easier to understand the challenges involved and the potential benefits of 

the Semantically Enhanced AST Vectorization approach [2], [3]. In one specific example, the Jaccard similarity of the 

token, AST, and AST’s adjacency matrix is calculated for a pair of codes [1]. As for token similarity, the source code is 

first tokenized to obtain the token sequence of the source code [4]. Then the token sequences of the two functions are 

put into Set1 and Set2, respectively [1]. For AST similarity, the AST of these two functions is extracted and then the 

nodes of the two ASTs are put into Set1 and Set2 [5]. Then the Jaccard similarity of token and AST is computed as in 

The probability matrix exceeds 0.7 among the total average similarity, indicating that Markov chains help capture the 

tree's structural details and improve clone detection effectiveness [1], [6]. The probability transition matrix can support 

complex clone detection [1]. Therefore, it can be inferred that Markov chains help capture the tree’s structural details 

and thus improve clone detection’s effectiveness, especially for the complicated clone types [7], [8].

. APPROACH: SEMANTICALLY ENHANCED AST VECTORIZATION  FRAMEWORK

ectorization framework consists of four main phases: Data Preprocessing, Clone 

Filtering, Structure and Semantics Encoding, and Clone Detecting. Each phase plays a crucial role in the overall process 

of detecting code clones, and the framework is designed to be both effective and scalable [1], [2]. The Data 

Preprocessing phase prepares the code for analysis by normalizing the code and generating an inverted index [3], [4]. 

The Clone Filtering phase reduces the number of code pairs that need to be analyzed by identifying candidate clones 

[5], [6]. The Structure and Semantics Encoding phase transforms the code into a vector representation that captures 

both the structural and semantic information of the code [1], [7]. Finally, the Clone Detecting phase compare
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based or token-based 

comparison techniques [1], [2]. Instead, more sophisticated methods are needed that can capture the underlying 

not identical [3], [4]. Type-4 

clones (T4) exhibit semantic similarity but are syntactically dissimilar, requiring a deep understanding of the code's 

scale detection [5], [6]. These clones represent the most complex form of 

code duplication, where the code fragments perform the same function but are implemented using different syntax and 

This paper focuses on achieving scalable T3 clone detection. Scalable T3 clone detection requires developing methods 

that can efficiently analyze large codebases and identify T3 clones with high accuracy [8]. This involves balancing the 

need for sophisticated techniques that can capture the syntactic similarity between code fragments with the need for 

based image transformation can detect code clones [1]. By considering a 

to understand the challenges involved and the potential benefits of 

the Semantically Enhanced AST Vectorization approach [2], [3]. In one specific example, the Jaccard similarity of the 

es [1]. As for token similarity, the source code is 

first tokenized to obtain the token sequence of the source code [4]. Then the token sequences of the two functions are 

nctions is extracted and then the 

nodes of the two ASTs are put into Set1 and Set2 [5]. Then the Jaccard similarity of token and AST is computed as in 

indicating that Markov chains help capture the 

tree's structural details and improve clone detection effectiveness [1], [6]. The probability transition matrix can support 

pture the tree’s structural details 

and thus improve clone detection’s effectiveness, especially for the complicated clone types [7], [8]. 

. APPROACH: SEMANTICALLY ENHANCED AST VECTORIZATION  FRAMEWORK 

ectorization framework consists of four main phases: Data Preprocessing, Clone 

Filtering, Structure and Semantics Encoding, and Clone Detecting. Each phase plays a crucial role in the overall process 

to be both effective and scalable [1], [2]. The Data 

Preprocessing phase prepares the code for analysis by normalizing the code and generating an inverted index [3], [4]. 

y identifying candidate clones 

[5], [6]. The Structure and Semantics Encoding phase transforms the code into a vector representation that captures 

both the structural and semantic information of the code [1], [7]. Finally, the Clone Detecting phase compares the 
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The framework of Code2Img is shown in Fig. 2, which consists of four main phases: Data Preprocessing, Clone 

Filtering, Structure Encoding, and Clone Detecting [1].

 

3.2. Data Preprocessing 

Data Preprocessing involves normalizing type

hash for each code block [1], [2]. The Data Preprocessing phase aims to normalize the type

and generate the inverted index by N-line hash

involves replacing all identifiers with a consistent naming scheme to remove superficial differences caused by identifier 

renaming [3], [4]. This helps to improve the accuracy of clone d

rather than the specific names used for variables, functions, or classes [5].

Normalization of type-specific tokens of the AST ensures resilience for T2 clones [1], [6]. T2 clones are code fragments 

that are identical except for renamed unique identifiers [7]. By normalizing the type

Semantically Enhanced AST Vectorization approach can effectively ignore these superficial differences and focus on 

the underlying code structure [1], [8]. Six types of nodes whose tokens change between clone pairs are analyzed, 

including SimpleName, Name, StringLiteralExpr, BooleanLiteralExpr, IntegerLiteralExpr, and DoubleLiteralExpr [1]. 

These node types represent the most common types of ide

N-line Hash is calculated for the source code, representing a code block consisting of consecutive N lines of code [1]. 

The N-line hash is a unique identifier for a code block, calculated by hashing the text

allows for quickly identifying code blocks that are identical or very similar [5]. An N

consisting of consecutive N lines code [1]. 

An example of normalization and 3-lines generation is shown 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Clone Filtering 

Clone Filtering searches for clone candidates in the inverted index and calculates N

clones [1], [2]. The Clone Filtering phase is targeted to search for clone candidates in the inverted 

the N-lines similarity to obtain the suspected clones [1]. The inverted index is used to locate code blocks that share 

common N-line hashes [3], [4]. This allows for quickly identifying candidate clones that are likely to be similar [5]

N-line similarity is calculated as the number of shared N

[1], [6]. 

The inverted index is used to locate pairs with identical code blocks [4]. This allows the Semantically Enhanced AST 

Vectorization approach to quickly identify potential clone candidates [1]. The Semantically Enhanced AST 
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ectorization approach to quickly identify potential clone candidates [1]. The Semantically Enhanced AST 
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Vectorization approach performs clone location and clone filtration with the help of the inverted index [1], [7]. N-line 

Hashes are the keys, and the values are the names of all source codes containing this N-line Hash [1], [3]. 

 

3.4. Structure and Semantics Encoding 

The adjacency matrix is extracted to create an image representation for the normalized AST [1]. In the image 

generation part, we extract the adjacency matrix to create its image representation for the normalized AST [1]. The 

adjacency matrix represents the relationships between different nodes in the AST [2], [3]. The AST intuitively reflects 

the structure of the source code, and the structural information is essential for complex clone types detection [4], [5]. 

The AST represents the syntactic structure of the code, showing the relationships between different code elements such 

as expressions, statements, and functions [6]. Besides, the structural information stored in the AST is essential for 

complex clone types detection [7]. 

The adjacency matrix characterizes the structure of the AST [1]. Each element of the adjacency matrix represents the 

number of edges between two node types in the AST [2]. The adjacency matrix characterizes the general structure of 

the AST but does not reflect the structural details [1], [8]. The Markov model is used to refine the image details and 

optimize the image structure [1]. The Markov model highlights the structural details of the AST by modeling the 

transitions between different node types [9]. So we design the image encoder part to further refine the image details and 

optimize the image structure [1]. 

The adjacency image is transformed into a state probability image to highlight the structural details of the AST [1]. In 

the image encoder part, the adjacency image is then transformed into a state probability image to highlight the structural 

details of the AST [1]. The state probability image represents the probability of transitioning from one node type to 

another in the AST [9], [10]. Useless pixels are removed from the state probability image to reduce the complexity of 

the image and save memory [1]. This optimization improves the efficiency of the Semantically Enhanced AST 

Vectorization approach [1], [11]. To reduce the complexity of the image to save memory, we remove the useless pixels 

from the state probability image and generate a one-dimensional vector [1]. 

Each state transition probability is set as an element to construct a one-dimensional vector [1]. This vector represents 

the code fragment in a compact and efficient manner [12]. Finally, an AST can be represented by a 1,672 vector while 

preserving the structural information of the AST [1]. The one-dimensional vector has small memory occupation, and 

the similarity computation time is very short due to its simplicity [1], [13]. This makes the Semantically Enhanced AST 

Vectorization approach scalable to large codebases [1], [14]. For one-dimensional vectors, the memory occupation is 

small, and the similarity computation time is very short due to its simplicity [1]. We transform that vector into one that 

contains semantic information by adding some information of scores of transitions like MethodDeclaration → 

ExpressionStmt, NameExp → SimpleName, etc. These scores are precomputed by using the following node metrics: 

degree, frequency, depth, and TF-IDF score of a node [1], [15]. When analyzing source code, Abstract Syntax Trees 

(ASTs) are first extracted to capture the structural representation of code [6]. From these trees, transitions between node 

types (e.g., IfStmt → BlockStmt) are identified and analyzed [1]. For each node and transition, structural features such 

as frequency of occurrence, node degree (i.e., number of child nodes), and tree depth are computed [1], [7]. These 

metrics are aggregated across multiple functions to estimate the local semantic importance of each transition [1]. To 

further refine the relevance of these transitions, an Inverse Document Frequency (IDF) weighting is applied across a 

wider code corpus, emphasizing transitions that are both informative and infrequent [1], [16]. The resulting weighted 

scores represent semantically rich AST patterns, which are integrated into the Code2Img vector encoding to enhance 

clone detection sensitivity—particularly for structurally complex or semantically nuanced clones [1], [17]. 

A detailed example of structure encoding is shown in Fig. 4: 
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4.1. Similarity Calculation 

The Jaccard Similarity of the vectors generated by previous phases is calculated [1]. The Jaccard Similarity measures 

the similarity between two sets by dividing the size of the intersection by the size of the union [2], [3]. We calcul

Jaccard Similarity of the vectors generated by previous phases as shown in formula (1) [1], [4]. This metric is applied to 

the one-dimensional vectors produced by the Semantically Enhanced AST Vectorization approach, enabling efficient 

comparison of code fragments to identify clones, particularly for complex clone types [5], [6].
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where: 

- v1: The first input vector (denoted as `vec1` in the code), an array of integers of length \(n\), representing the 

components of the first object.   

- v2: The second input vector (denoted as `vec2` in the code), an array of integers of length \(n\), representing the 

components of the second object.   

- s1: The scalar value associated with the first vector (denoted as `sum1` or `edgeNum` in the code), a numerical value 

used to normalize the vector components.   

- s2: The scalar value associated with the second vector (denoted as `sum2` or `edgeNum` in the code), a numerical 

value used to normalize the vector components.   

- n: The number of elements in each vector (denoted as `edgeTypeNum` in the code), representing the length or 

dimensionality of the vectors v1 and v2. 

A verification threshold for Jaccard Similarity is set to distinguish between clones and non-clones. This threshold 

determines the minimum similarity score required for two code fragments to be considered clones . In addition, we set a 

verification threshold for Jaccard Similarity to distinguish between clones and non-clones . 

If the similarity score Jacc_sim is greater than the threshold, the code pair is regarded as a clone; otherwise, it is a non-

clone. This decision rule is used to classify code fragments as either clones or non-clones . Specifically, if the similarity 

score Jacc_sim is greater than the threshold, the code pair is regarded a clone; otherwise,it is a non-clone . 

 

4.2. Performance Metrics 

Accuracy, Recall, Precision, and F1 score are used to measure the effectiveness of the Semantically Enhanced AST 

Vectorization approach. These metrics provide a comprehensive evaluation of the clone detection performance . The 

metrics used to measure the effectiveness of the Semantically Enhanced AST Vectorization approach are the same as 

others . 

True Positive (TP) is the number of samples correctly detected as clones. This metric measures the ability of the 

Semantically Enhanced AST Vectorization approach to correctly identify clones . True Positive (TP): the number of 

samples correctly detected as clones . 

False Positive (FP) is the number of samples incorrectly detected as clones. This metric measures the number of non-

clones that are incorrectly identified as clones . False Positive (FP): the number of samples incorrectly detected as 

clones . 

 

V. EXPERIMENTAL SETTINGS 

5.1. Dataset Description 

Experiments are conducted on the BigCloneBench (BCB) dataset [14], [23], which is a widely used benchmark for 

evaluating clone detection tools [2], [7], [15], [16]. We conduct experiments on the BCB dataset, which is manually 

labeled as clone and non-clone for more than 8,000,000 function pairs, including clone types from Type-1 to Type-4 

[14], [23]. This provides a large and diverse dataset for evaluating the performance of the Semantically Enhanced AST 

Vectorization approach [53]. It is manually labeled for clone types from Type-1 to Type-4, which enables 

comprehensive evaluation across syntactic and semantic dimensions [14], [23]. 

The Semantically Enhanced AST Vectorization approach focuses on large-scale clone detection and pays attention to 

T1, T2, and T3 clones rather than T4 clones [53], [16]. This is because T4 clones are more difficult to detect and require 

semantic analysis techniques, such as graph-based or learning-based representations [8], [9], [11], [52]. Therefore, we 

exclude T4 clones from primary focus and concentrate on clones that are better represented through structural 

abstractions [53], [10]. 

5.2. Implementation Details 

Javaparser is used to complete data preprocessing [53]. Javaparser is a Java library that allows for parsing and analysis 

of Java code. The Semantically Enhanced AST Vectorization approach leverages Javaparser to extract and normalize 

the Abstract Syntax Trees (ASTs) of Java source files, enabling a structured representation of code necessary for 

vectorization [53]. 
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This approach requires several critical parameters: the number of lines in each block NNN, filtration thresholds 

λ1\lambda_1λ1 and λ2\lambda_2λ2, and the verification threshold θ\thetaθ. These parameters guide the filtering and 

verification stages of clone detection and must be carefully tuned for optimal performance. Their default values are 

derived from the Code2Img methodology [53]. 

 

VI. EXPERIMENTAL RESULTS 

The original Code2Img approach achieved a strong balance between precision and recall, both around 0.85, 

demonstrating its effectiveness in scalable detection of syntactically complex clones [53]. With the integration of 

semantic transition scores via heuristic weighting, the enhanced version shows measurable improvement, reaching 0.87 

for both precision and recall. Though modest, this gain reflects a meaningful enhancement in detecting semantically 

related clones, particularly those not easily captured through structural similarity alone. The enhanced approach thus 

retains Code2Img’s scalability while improving its capability for handling nuanced, harder-to-detect clone types. 

 

VII. DISCUSSION 

7.1. Strengths of the Semantically Enhanced AST Vectorization Approach 

The Semantically Enhanced AST Vectorization approach performs better than other scalable detectors due to its use of 

image representations based on Abstract Syntax Trees (ASTs), which preserve the structural features of source code 

[53]. This structural fidelity enables the detection of clones even when code fragments have undergone substantial 

syntactic modifications. 

A key strength of the approach is its use of the Markov model to further highlight structural details within the AST 

representation. This enhancement improves its capability to capture subtle structural variations between code 

fragments, resulting in higher accuracy compared to other AST-based methods [53]. 

Moreover, the approach demonstrates excellent scalability and efficiency by completing detection on 52,000 functions 

within the shortest runtime while operating under a 16GB memory limit. These results confirm its practical 

applicability to large-scale clone detection tasks [53]. 

 

7.2. Threats to Validity 

Selecting 70 node types from the AST may introduce some inaccuracies, as the total number of token types parsed by 

Javaparser is not precisely known. This limitation could potentially affect the accuracy of the image representation, 

particularly if important node types are omitted [53]. 

The calculation of runtime overheads for the Semantically Enhanced AST Vectorization approach may also lead to 

minor inaccuracies due to varying machine conditions, such as CPU load and memory availability. This is a common 

challenge in experimental evaluations of software tools and must be considered when interpreting performance results 

[53]. 

Additionally, the performance of clone detection is sensitive to the value settings of key parameters (e.g., NNN, 

λ1\lambda_1λ1, λ2\lambda_2λ2, θ\thetaθ). Proper tuning of these parameters is crucial for achieving optimal precision 

and recall, highlighting the importance of empirical evaluation and cross-validation [53]. 

 

VIII. RELATED WORK 

8.1. EffectiveType-4 Clone Detection 

Code representation-based approaches are effective in detecting complicated Type-3 (T3) clones because they capture 

both structural and, to some extent, semantic characteristics of code. Tree-based methods, in particular, offer a practical 

compromise between scalability and detection accuracy, enabling effective identification of T3 clones at scale [53]. 

While extending code representations with heuristic semantic scores can improve the detection of some Type-4 (T4) 

clones, fully capturing semantic equivalence remains challenging. In future work, we aim to incorporate additional 

semantic features into the vectorization process to enhance the detection of T4 clones. 
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In contrast, methods based on code graph representations—though highly precise in capturing semantic relationships—

often suffer from significant scalability issues due to their complexity and reliance on heavy preprocessing, such as 

compilation and graph construction [53]. 

 

8.3. Limitations of Existing Tools 

Token-based methods, while scalable, typically lack semantic awareness and are limited in detecting T3 clones that 

exhibit significant structural or behavioral variation. Similarly, most code representation-based methods struggle to 

support clone detection beyond 100-MLOC, reducing their applicability to large-scale software systems [53]. 

Compared to these existing approaches, the Semantically Enhanced AST Vectorization approach provides superior 

detection performance for T3 clones and demonstrates efficient scalability, completing detection on a 250-MLOC 

codebase with reasonable runtime overhead. This underscores its practical advantage over token-based, text-based, and 

GPU-assisted tools, which either lack precision or fail to scale effectively [53]. 

 

IX. CONCLUSION AND FUTURE WORK 

9.1. Summary of Findings 

The Semantically Enhanced AST Vectorization approach is a tree-based image transformation for scalable complicated 

clone types detection . It is an AST-based clone detector capable of detecting scalable complicated T3 clones . 

Clone filtering is set up by an inverted index to filter out obvious clones and non-clones to reduce clone matches . First, 

we set up a clone ltration by inverted index to lterout obvious clones and non-clones to reduce clone matches . 

ASTs are extracted and normalized for the source code to construct an image representation that captures the code's 

structural features . The adjacency image is composed of the node types and the number of edges of AST, containing 

the structural features of the source code . 

9.2. Future Directions 

Future research directions including more features to into the adjacency matrix or vector representation to highlight 

semantic information effectively, enabling the Semantically Enhanced AST Vectorization approach to support semantic 

clone detection effectively.  

Continuously monitoring Java language releases and automatically adding or removing node types will enhance the 

Semantically Enhanced AST Vectorization approach's extensibility . In future work, we consider monitoring Java 

language releases and adding or removing node types automatically to make the Semantically Enhanced AST 

Vectorization approach more extensible . Exploring other image processing techniques to further enhance the structural 

details of the code representation is also a promising avenue. 

9.3. Final Remarks 

The Semantically Enhanced AST Vectorization approach achieves the best performance among all comparative tools, 

striking an optimal balance between detection effectiveness and scalability [53]. This makes it particularly suitable for 

the scalable detection of complex code clones in large codebases. 

At the core of the approach is a novel transformation of complex ASTs into probability matrix-based images, which 

serve as concise yet informative representations of code structure. This representation enables efficient comparison and 

robust detection across varied clone types, especially Type-3 clones that exhibit syntactic differences but retain 

structural similarity [53]. 

By converting AST structures into Markov-based state transition vectors, the approach preserves structural semantics 

while significantly reducing the overhead associated with traditional tree or graph matching. This innovation results in a 

scalable, high-performance clone detection system capable of operating effectively even on datasets as large as 250-

MLOC [53]. 

Overall, the Semantically Enhanced AST Vectorization approach offers a significant advancement in the field, 

delivering a robust, scalable, and efficient solution for addressing the challenges of code clone detection in large-scale 

software development projects. 
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