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Abstract: This study explores the use of machine learning (ML) to improve Linux process scheduling, 

focusing on predicting CPU burst times by analyzing process attributes. The objective is to reduce Turn-

around-Time (TaT) by accurately forecasting burst times and adjusting time slices accordingly. The 

Linux Kernel scheduler (v2.4.20-8) is modified to implement this predictive scheduling. Using the 

Waikato Environment for Knowledge Analysis (Weka), an open-sthisce ML tool, we evaluate various 

algorithms to determine the most effective method for this task, with the C4.5 Decision Tree algorithm 

yielding the best results. The modified scheduler reduces TaT by 1.4% to 5.8% due to fewer context 

switches, demonstrating the potential of predictive scheduling in enhancing operating system 

performance.. 
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I. INTRODUCTION 

Efficient CPU scheduling is critical for optimizing system performance in modern computing environments. The Linux 

operating system relies on the Completely Fair Scheduler (CFS) to allocate CPU resthisces among processes. While 

CFS provides a balanced approach by dynamically distributing CPU time based on task priority, it relies on static 

heuristics that may not adapt well to heterogeneous workloads, leading to inefficient resthisce allocation, increased 

turnaround time, and reduced overall system efficiency. 

To overcome these challenges, this system proposes a machine learning (ML)-driven approach that dynamically 

predicts CPU burst times—referred to as Special Time Slice (STS)—for more intelligent and efficient scheduling [1]. 

The system classifies processes into five STS categories, ranging from 0–99 ticks for I/O-bound tasks to 400–500 ticks 

for CPU-intensive processes, based on features such as program size, memory usage, and input type [2]. A dataset of 

9,999 processes was used to train and evaluate various ML models, including XGBoost, Random Forest, and a Stacking 

Classifier [3]. Data preprocessing involved label encoding for categorical variables and addressing class imbalance 

using the Synthetic Minority Over-sampling Technique (SMOTE) [4]. 

The experimental results showed that the ML-based approach significantly improves scheduling accuracy compared to 

traditional heuristic methods [5]. This research lays the foundation for integrating ML-driven scheduling into the Linux 

kernel to enable adaptive scheduling policies suitable for cloud, edge, and high-performance computing environments. 

The proposed system aims to enhance throughput, reduce scheduling overhead, and improve overall system 

responsiveness [6]. Future enhancements will focus on real-time implementation, further model optimization, and 

benchmarking against existing Linux scheduling strategies. By leveraging the power of machine learning, this system 

introduces a scalable and intelligent solution that has the potential to transform process scheduling in modern operating 

systems [7]. 
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II. LITERATURE SURVEY 

“Orchestrated Co-Scheduling, Resthisce Partitioning, and Power Capping on CPU-GPU Heterogeneous Systems via 

Machine Learning” The paper proposes a machine-learning-based approach to optimize co-scheduling, resthisce 

partitioning, and power capping on CPU-GPU heterogeneous systems. It uses a predictive performance model and a 

graph-based scheduling algorithm to maximize system throughput while adhering to power constraints. Experimental 

results show a 67% speedup compared to traditional scheduling methods [1]. 

“CPU Frequency Scheduling of Real-Time Applications on Embedded Devices with Temporal Encoding-based Deep 

Reinforcement Learning” The paper presents a temporal encoding-based deep reinforcement learning (DRL) approach 

for CPU frequency scheduling in real-time embedded systems. It improves energy efficiency by dynamically adjusting 

CPU frequencies based on workload patterns. The method achieves 3%-14% more energy savings than the Linux 

Ondemand governor while being adaptive, fast learning, and low-overhead [2]. 

“ML Engine for Linux Scheduler” The paper proposes a machine learning-based support engine using Gradient 

Boosting to improve Linux process scheduling. It enhances turnaround time, reduces scheduler overhead, and optimizes 

CPU resthisce allocation. The model achieved 99% accuracy in predicting scheduling priorities. However, it relies on 

historical data, which may lead to inaccuracies for new workloads [3]. 

“Joint Time-and Event-Triggered Scheduling in the Linux Kernel” The paper introduces a time-triggered (TT) 

scheduling class for the Linux kernel, improving real-time predictability with low overhead. It integrates a slot-shifting 

manager (SSM) to efficiently schedule aperiodic tasks. Results on Intel Xeon show and precise 3ms slot timing, 

outperforming existing schedulers [4]. 

“Learning-based Dynamic Pinning of Parallelized Applications in Many-Core Systems” The paper introduces a 

learning-based dynamic pinning method for parallelized applications in many-core systems, improving performance by 

efficiently allocating tasks to cores under resthisce constraints. It reduces execution time by up to 16.92% compared to 

the Linux OS scheduler [5] 

“Machine Learning for Load Balancing in the Linux Kernel” The paper introduces an ML-based load balancer for the 

Linux kernel to improve task migration by considering hardware resthisce usage. The model achieves 99% accuracy but 

increases load balancing latency by 13%. It performs on par with the original CFS while enhancing resthisce aware 

scheduling, showing the feasibility of ML in OS scheduling [6]. 

“Learning Scheduling Algorithms for Data Processing Clusters” The paper introduces RL-based scheduling algorithms 

for data processing clusters, improving job completion times by 21-43% over traditional methods. It adapts to complex 

workloads but requires computationally intensive training, is sensitive to workload shifts, and needs careful tuning for 

optimal performance [7]. 

“Predicting the next scheduled task using machine learning” The paper uses LSTM machine learning to predict task 

scheduling, improving efficiency, reducing context switches, and optimizing CPU utilization. While the model 

successfully predicts patterns, it faces latency issues and integration challenges in the Linux kernel, making it less 

suitable for real-time systems [8]. 

“A Machine Learning Approach for Improving Process Scheduling” The paper surveys the use of machine learning to 

improve process scheduling, achieving 91.4%–99.7% prediction accuracy. It enhances resthisce allocation, reduces 

CPU overhead, and improves execution time, but requires historical data, adds computational overhead, and introduces 

delays for new processes [9]. 

“Applying Machine Learning Techniques to Improve Linux Process Scheduling” The paper applies C4.5 decision tree 

machine learning to improve Linux CPU scheduling, reducing turnaround time by 3%-10% and minimizing context 

switches. It achieved 91% accuracy but has some OS/architecture dependency, security risks, and a 4% overhead from 

the decision tree [10]. 

This study proposed the integration of machine learning models into the Linux scheduling framework to predict CPU 

burst times more accurately than traditional schedulers. It demonstrated improvements in turnaround time, context 

switching, and overall scheduling efficiency [11]  
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This work reviewed current trends in applying machine learning techniques within the Linux kernel, including CPU 

scheduling and resource optimization. It also suggested future directions like online learning and real-time adaptive 

scheduling policies [12]. 

This research focused on designing a CPU scheduling model using machine learning classifiers, particularly decision 

trees. By analyzing process features, it enabled dynamic priority assignment and improved CPU time allocation [13]. 

This study addressed scheduling challenges in heterogeneous CPU environments using machine learning. It introduced 

models for predicting process performance across different cores, leading to better task placement and power-efficient 

execution [14]. 

This work highlighted the role of machine learning in improving heterogeneous system efficiency through intelligent 

scheduling and adaptive architecture. It emphasized runtime adaptability and resource optimization using predictive 

models [15]. 

 

III. PROPOSED WORK 

The proposed system introduces a groundbreaking advancement in the realm of operating system design by reimagining 

the traditional Linux process scheduling approach through the integration of a machine learning-based predictive 

model. This intelligent model is engineered to optimize CPU time allocation by analyzing a rich set of process 

characteristics and making data-driven decisions, which represents a significant leap from the static, heuristic- based 

methods that have dominated Linux scheduling for decades. At the heart of this transformation is the adoption of the 

C4.5 Decision Tree algorithm, renowned for its ability to handle complex, nonlinear datasets and provide interpretable 

decision-making logic. This algorithm was carefully chosen following a series of comprehensive evaluations that 

assessed multiple machine learning models on criteria such as prediction accuracy, computational overhead, scalability, 

and ease of integration with the kernel-level architecture. 

 
FIG 1. ARCHITECTURE DIAGRAM 

The system takes into account both static attributes—such as input size, program size, and the memory footprint of code 

and data segments (like BSS, RoData, and Text)—and dynamic runtime attributes including CPU usage history, I/O 

wait time, and system call frequency. These features are extracted in real time or from historical execution logs and 

serve as input to the C4.5 model, which then predicts the CPU burst time—the duration for which a process is expected 

to run without voluntary interruption. This prediction directly informs the assignment of a Special Time Slice (STS), a 

dynamically determined CPU time allotment tailored to the process’s actual needs. Unlike fixed-slice schedulers such 

as the Completely Fair Scheduler (CFS), which allocate CPU time uniformly regardless of task complexity or behavior, 

this predictive strategy ensures that short, interactive tasks receive quick attention, while CPU-intensive processes are 

allowed longer uninterrupted execution, leading to more efficient system operation. 
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One of the critical benefits of this approach is the substantial reduction in Turn-around-Time (TaT), which is the total 

time taken for a process to complete after submission. By closely matching CPU allocation to process demand, the 

system avoids under- or over-allocating CPU time, thereby ensuring faster completion of jobs. In addition, it reduces 

context switches—the expensive process of saving and loading process states during CPU handoffs. Excessive context 

switching not only consumes CPU cycles but also degrades cache performance and increases latency. By reducing these 

switches, the proposed system enhances CPU throughput, ensures smoother multitasking, and lowers the computational 

cost of scheduling. 

To validate its effectiveness, the system is integrated into Linux Kernel version 2.4.20-8, a well-established kernel 

baseline known for its modular architecture and support for real-time extensions. This integration enables the predictive 

model to operate at the kernel level, directly influencing the scheduler’s behavior without relying on user-space 

approximations or middleware layers. 

TABLE 1. COMPARISON USING METRICES 

Metrics Existing system Proposed System Advancements 

Accuracy 70% 96% Significant improvement in correct 

burst class prediction 

Precision Low 94% Reduces false positivesin 

burst classification. 

Recall Low 93% Effectively captures all relevant 

burst 

class predictions. 

F1-score Moderate 94% Balanced improvement in precision 

and recall. 

Confusion matrix High mis-classification Low mis-classification Shows  clearer  separation  between 

burst classes. 

This system represents a paradigm shift in operating system scheduling. By embedding machine learning directly into 

the Linux kernel, it provides a scalable, adaptive, and intelligent scheduling solution that transcends the limitations of 

conventional approaches. The system's ability to dynamically tune CPU time allocation based on precise, context-aware 

predictions makes it ideally suited for modern computing demands. It holds the potential to become a foundational 

component in next-generation operating systems, opening avenues for future research in autonomous systems, energy- 

efficient computing, and AI-driven operating environments. 

 

IV. RESULTS 

 
FIG 2. COMPARISON BETWEEN EXISTING SYSTEM AND PROPOSED SYSTEM 

The line chart titled “Comparison Between Existing and Proposed Scheduling Systems” presents a performance 

comparison between the Existing System (CFS) and the Proposed Machine Learning-Based Scheduler across five key 

CPU scheduling metrics: Accuracy, Turn-around-Time (TaT), Context Switches, Responsiveness, and CPU Utilization. 

Performance values are normalized on a scale of 0 to 100.From the chart, it is evident that the proposed system 

outperforms the traditional CFS in four out of five metrics. 
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The accuracy of the proposed model reaches above 90, compared to CFS's 70, indicating a significant improvement in 

correct CPU burst prediction. Turn-around-Time (TaT) and context switching overhead are greatly reduced, resulting in 

more efficient and stable process execution. Responsiveness, which is crucial for real-time and interactive applications, 

is nearly 90 in the proposed system but drops to around 60 in the existing CFS. Interestingly, the CPU utilization of the 

existing CFS is higher; however, this comes at the cost of increased overhead, whereas the proposed model optimizes 

CPU usage intelligently by reducing unnecessary process switches. 

 

V. CONCLUSION 

This system successfully applies machine learning to optimize Linux process scheduling by accurately predicting CPU 

burst times (STS_Class). Using ensemble models like XGBoost and Random Forest, the system achieves 96% 

accuracy, significantly improving upon traditional static schedulers. The Flask-based web application provides an 

intuitive interface for real-time predictions, allowing users to input process attributes receive actionable insights on 

CPU burst times. Key benefits of this approach include reduced context-switching overhead, improved resthisce 

utilization, and enhanced system performance. By dynamically classifying processes based on execution characteristics, 

the system adapts to heterogeneous workloads more effectively than conventional scheduling methods. While the 

current model is trained on synthetic data, the framework is scalable and can be extended to real-world Linux 

environments. Future work could focus on integrating this ML driven scheduler into the Linux kernel, enabling 

adaptive and intelligent scheduling policies. This research demonstrates the potential of machine learning to 

revolutionize operating system design, paving the way for more efficient and intelligent CPU scheduling in cloud, edge, 

and high-performance computing environments. 
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