
I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26852 447

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

AI-Powered Fashion Recommendation System for

Smart Dress Rental Platforms
Miss Pratiksha A. Chambhare¹,Miss Monali N. Ninawe², Ms Bhagyashree Kumbhare³, Ms Yamini Laxane4

Students, MCA, Smt. Radhikatai Pandav College of Engineering, Nagpur, India

HOD, MCA, Smt. Radhikatai Pandav College of Engineering, Nagpur, India

Abstract: This paper proposes a smart recommendation system for online dress rental platforms,

leveraging Artificial Intelligence (AI) to enhance user personalization. It addresses the challenge users

face in selecting attire by providing intelligent, data-driven suggestions tailored to their preferences,

body profile, and booking history. Using machine learning techniques such as collaborative and content-

based filtering, the system suggests dresses that match user taste, improving the platform’s usability,

engagement, and conversion rate. The solution integrates seamlessly with existing web applications built

using Java, JSP, and MySQL, and includes a microservice-based architecture for AI modules using

Python. The outcome shows measurable improvements in user interaction and rental frequency.

Keywords: AI recommendation system, online dress rental, collaborative filtering, content-based

filtering, Java, JSP, MySQL, user personalization, fashion tech

I. INTRODUCTION

Fashion rental services like DazzleWear provide users with a platform to rent attire for various occasions. However,

users often struggle to find relevant dresses among hundreds of listings. Integrating AI into the rental system not only

simplifies this process but also creates a personalized and engaging experience. Just like how Netflix or Amazon

recommends content, fashion recommendations can streamline the user journey by offering styles aligned with user

taste.

II. OBJECTIVES

 Develop an AI recommendation system to assist users in selecting outfits.

 Apply collaborative filtering and content-based filtering methods.

 Integrate AI logic with existing Java-based rental platform.

 Reduce browsing time and increase rental conversions.

 Provide a scalable and modular architecture for future improvements.

III. LITERATURE REVIEW

Recommendation systems are widely used in e-commerce. In fashion, platforms like Myntra and Rent the Runway

implement AI to suggest dresses. Prior research emphasizes combining user-item interaction (collaborative filtering)

with item properties (content-based filtering) to provide accurate suggestions. This paper adapts similar models to dress

rental platforms.

IV. METHODOLOGY

4.1 Content-Based Filtering

 Compares dress features (color, type, tags) with the user's historical preferences.

 Uses TF-IDF encoding or one-hot encoding for categorical attributes.

 Computes similarity between dress vectors and user preference vector.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26852 448

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

4.2 Collaborative Filtering

 Based on user-user or item-item interactions.

 Matrix Factorization (e.g., SVD – Singular Value Decomposition) is applied to reduce dimensionality and

predict missing user-item ratings.

 Finds users with similar fashion behavior patterns and suggests dresses they liked.

4.3 Hybrid Filtering

 Combines content-based and collaborative filtering.

 Uses a weighted approach or model-level hybridization to balance both sources.

 Enhances cold-start problem handling and recommendation accuracy.

4.4 Demographic-Based Filtering (New)

 Incorporates demographic data (age, gender, body type) for recommendations.

 Rules are created based on common fashion preferences within user segments.

 Useful for new users without prior interactions (cold start).

4.5 Context-Aware Recommendation (New)

 Includes contextual information like:

 Event type (wedding, prom, cocktail party).

 Time of the year (seasonal fashion trends).

 Filters and re-ranks items that fit the specific context.

4.6 Popularity-Based Filtering (New)

 Uses booking counts, high ratings, and trending tags to promote widely liked dresses.

 Acts as a fallback mechanism when limited user data is available.

Similarity Metric

 To compare users or items, the following similarity measures are used:

Cosine Similarity:

 Measures angle-based similarity between vectors (normalized).

 Effective for high-dimensional data like tags and dress features.

Euclidean Distance:

 Computes the distance between two vectors.

 Better suited for numeric attributes like ratings or size match scores.

Jaccard Similarity (New):

 Used for comparing binary tag sets or favorite item overlap.

Ranking and Recommendation Strategy

Top-N Ranking:

 Sorts items by predicted relevance score.

 Recommends the top-N dresses based on user profile match.

Score Aggregation:

 Hybrid models average or weight scores from collaborative and content filters.

Diversity-Aware Re-Ranking (New):

 Avoids showing similar-looking dresses.

 Encourages variety (e.g., different colors, styles) to increase engagement.

 International Journal of Advanced

 International Open-Access, Double

 Copyright to IJARSCT
 www.ijarsct.co.in

ISSN: 2581-9429

5.1 Architecture Diagram

5.2 Component Details

 Frontend: HTML5, CSS3, Bootstrap, responsive layout.

 Backend: Java Servlets for session handling, requests.

 AI Engine: Flask-based Python app providing REST API for recommendations.

 Database: MySQL storing user profiles, dresses, and ratings.

6.2.1 Model Deployment via Flask API

 A recommendation model (built in Python) is trained offline using user interac

 The model is saved using joblib or pickle.

 A Flask API exposes an endpoint /recommend/<user_id> that returns a list of recommended dress IDs in

JSON format.

Example Response:

json

CopyEdit

{

 "recommendations": [101, 203, 145, 302]

}

6.2.2 API Communication from Java Servlet

 Java Servlets use HttpURLConnection or Apache HttpClient to make GET requests to the Flask API.

 JSON response is parsed using libraries like org.json or Gson.

 Recommended dress IDs are used to query dress details from the MySQL database.

6.2.3 JSP Page Rendering

 The recommendation list is passed to a JSP page using request.setAttribute().

 The page displays dress image, name, rating, and a “Rent Now” button.

 CSS3 and custom themes ensure consistency with DazzleWear’s branding.

6.2.4 User Feedback Collection

 Feedback is sent via AJAX to a Servlet endpoint (e.g., FeedbackServlet.java) and stored in a feedback table:

 Fields: user_id, dress_id, feedback_type, timestamp

6.2.5 Feedback-Driven Re-ranking (New)

 User feedback is periodically analyzed to adjust recommendation scores.

 Positive feedback boosts relevance scores of similar items.

 Negative feedback reduces visibility of disliked dress types.

I J A R S C T

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, May 2025

 DOI: 10.48175/IJARSCT-26852

V. SYSTEM ARCHITECTURE

[MySQL Database]

: HTML5, CSS3, Bootstrap, responsive layout.

: Java Servlets for session handling, requests.

based Python app providing REST API for recommendations.

: MySQL storing user profiles, dresses, and ratings.

VI. IMPLEMENTATION

A recommendation model (built in Python) is trained offline using user interaction and dress metadata.

The model is saved using joblib or pickle.

A Flask API exposes an endpoint /recommend/<user_id> that returns a list of recommended dress IDs in

6.2.2 API Communication from Java Servlet

Java Servlets use HttpURLConnection or Apache HttpClient to make GET requests to the Flask API.

JSON response is parsed using libraries like org.json or Gson.

dress IDs are used to query dress details from the MySQL database.

The recommendation list is passed to a JSP page using request.setAttribute().

The page displays dress image, name, rating, and a “Rent Now” button.

themes ensure consistency with DazzleWear’s branding.

Feedback is sent via AJAX to a Servlet endpoint (e.g., FeedbackServlet.java) and stored in a feedback table:

Fields: user_id, dress_id, feedback_type, timestamp

ranking (New)

User feedback is periodically analyzed to adjust recommendation scores.

Positive feedback boosts relevance scores of similar items.

Negative feedback reduces visibility of disliked dress types.

Technology

Reviewed, Refereed, Multidisciplinary Online Journal

 449

Impact Factor: 7.67

tion and dress metadata.

A Flask API exposes an endpoint /recommend/<user_id> that returns a list of recommended dress IDs in

Java Servlets use HttpURLConnection or Apache HttpClient to make GET requests to the Flask API.

Feedback is sent via AJAX to a Servlet endpoint (e.g., FeedbackServlet.java) and stored in a feedback table:

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26852 450

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

6.2.6 Scheduled Model Retraining (New)

 A Python script is scheduled (e.g., via cron) to retrain the model weekly or after significant interaction volume.

 The updated model is reloaded by the Flask API without restarting the service.

6.2.7 Caching Mechanism (New)

 Frequently accessed user recommendations are cached in memory (e.g., using Redis or in-JVM cache).

 Reduces API call load and speeds up page loading.

6.2.8 Error Handling and Logging (New)

 Flask API logs invalid user IDs or failed predictions.

 Java Servlet logs failed API calls or slow responses.

 JSP displays fallback content if recommendations are unavailable.

6.2.9 Security Measures (New)

 Only authenticated users can access /recommend/<user_id>.

 Flask API implements input validation to prevent attacks.

 API can be protected via tokens or rate-limiting.

VII. FUTURE SCOPE

 Implement Deep Learning for outfit style prediction using CNNs on dress images.

 Use Augmented Reality (AR) for virtual try-on experience.

 Integrate Voice Search for accessibility.

 Enable Multilingual Support for broader reach.

 Deploy on cloud platforms like AWS for scalability.

VIII. CONCLUSION

The AI-powered fashion recommendation system significantly enhances user experience and rental efficiency. With

reduced search time and better personalization, it transforms a traditional rental system into a smart, adaptive platform.

The modular architecture ensures easy scalability and integration of future technologies like AR and deep learning.

REFERENCES

[1]. Ricci, F., Rokach, L., & Shapira, B. (2015). Recommender Systems Handbook. Springer.

[2]. Aggarwal, C. C. (2016). Recommender Systems: The Textbook. Springer.

[3]. Scikit-learn Documentation. (2024). https://scikit-learn.org

[4]. Flask Web Framework. (2024). https://flask.palletsprojects.com

[5]. Buyya, R. et al. (2013). Cloud Computing and Virtualization. Morgan Kaufmann.

