
I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26296 752

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

Real-Time Phishing URL Detection in Chat

Application Using Machine Learning and Flutter
Aishwarya Kalamkar1, Neha Vaidya2, Manasi Nagpure3, Bhagyashri Tembhurne4,

Pranal Mohadikar5, Prakash S. Prasad6

UG Students, Department of Information Technology1,2,3,4,5

Professor and Head, Department of Information Technology6

Priyadarshini College of Engineering (Autonomous), Nagpur, Maharashtra, India

Abstract: Phishing attacks continue to be a critical threat in the digital ecosystem, particularly in real

time communication platforms. This document introduces an Android application developed using

Flutter, which identifies and prevents phishing URLs in real-time chat through a machine learning

model that has been trained with PyCaret and deployed using FastAPI. The core URL classification is

driven by the XGBoost algorithm, selected for its exceptional performance in classification tasks. Socket

programming ensures real-time message delivery between users, while the integrated FastAPI backend

filters malicious URLs before they are transmitted. This integrated architecture offers a practical and

scalable solution for enhancing online security. The system’s capability to intercept and neutralize

phishing threats before they reach the end-user marks a significant contribution to cybersecurity

practices in mobile applications.

Keywords: Phishing Detection, XGBoost, Flutter, FastAPI, PyCaret, URL Classification, Real-Time

Security

I. INTRODUCTION

With the increasing use of chat applications, users are more exposed than ever to malicious content, especially phishing

URLs that deceive individuals into disclosing sensitive information. Traditional methods of phishing detection rely on

blacklists or user reports, which are reactive and insufficient in a fast-paced chat environment.

Phishing is a cyber-attack where attackers impersonate trustworthy entities to trick users into revealing confidential data

such as passwords, credit card numbers, and personal identification details. These attacks are often delivered through

seemingly harmless messages containing malicious URLs. As real-time chat becomes integral to personal and

professional communication, the risk of phishing embedded within such platforms grows rapidly. Hence, there is an

urgent need for real-time, automated solutions to detect and block phishing attempts.

A. Problem Statement:

Current phishing detection methods are either delayed or manual, relying heavily on known URL blacklists or user

vigilance. These techniques cannot effectively detect zero-day phishing URLs or provide immediate protection in fast-

paced messaging environments. There is a lack of integrated, real-time detection mechanisms tailored specifically for

mobile chat applications.

B. Need for the Project:

To provide a reliable and responsive solution, this project integrates machine learning and modern mobile technologies

to proactively detect and block phishing URLs before

they reach the end-user. By using an XGBoostbased model embedded in a real-time messaging environment built with

Flutter and FastAPI, the application aims to ensure seamless, secure communication. This proactive and intelligent

approach significantly enhances user safety and prevents data breaches at the point of communication.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26296 753

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

While implementing the phishing URL detection system in real-time chat applications, several technical and

operational challenges were encountered that shaped the final architecture and methodology:

 Dataset Quality and Feature Engineering: The dataset used for training the XGBoost model contained

inconsistencies, outdated records, and a significant class imbalance. Balancing the dataset and engineering

meaningful URL-based features such as domain entropy, HTTPS presence, and token patterns required careful

preprocessing and validation.

 Real-Time Response Optimization: One of the primary goals was to maintain a smooth chat experience

while analyzing URLs in real time. The integration of the XGBoost model with the FastAPI backend led to

latency issues. These were addressed by optimizing the API endpoint and decreasing model prediction time

through -based serialization and asynchronous requests.

 Socket Communication Stability: Socket programming provided real time communication between users;

however, there are challenges related to ensuring upon persistent connection, consistently managing

disconnected clients, avoiding repeated messages etc. this occurred more frequently when in a mobile testing

environment.

 Cross-Platform Flutter Integration: Although Flutter provides a unified UI framework, interfacing it

seamlessly with Python-based FastAPI and managing API stateful responses required additional libraries and

state management solutions like provider and http.

 Model Deployment and Security: When securely deploying the trained XGBoost model, careful

consideration of API authentication and user input sanitization was essential to prevent injection attacks on a

backend server. A lack of robust authentication could allow malicious manipulation if not handled properly.

Despite these issues, iterative debugging, modular development, and rigorous testing allowed the project to overcome

these challenges and meet its security and performance goals effectively.

II. LITERATURE REVIEW

Numerous studies have been conducted to develop intelligent systems for phishing detection using features extracted

from URLs and website contents [3], [4]. In terms of machine learning, there's been limited success with a variety of

machine learning methods, such as decision trees, random forest, support vector machine methods, etc... [5]. However,

XGBoost has emerged as a high-performance alternative due to its gradient boosting framework and ability to handle

imbalanced datasets efficiently [6]. AutoML tools like PyCaret simplify model selection and tuning, providing a low-

code interface for experimentation [4].

Phishing detection has been a critical area of research due to the growing sophistication of cyberattacks targeting

unsuspecting users through URLs, emails, and chat messages. Early detection techniques were largely reliant on

blacklists, which only catch known malicious URLs and often fail to address zero-day threats or newly generated

phishing sites [1], [2].

To address these limitations, researchers have turned to machine learning (ML) approaches for identifying phishing

URLs based on intrinsic URL features. Aburrous et al. proposed using intelligent rule-based systems combined with

ML techniques to detect phishing in e-banking platforms [3]. The work of Sahingoz et al. also investigated ngram-

based URL representation with several machine learning classifiers, Decision Trees, Random Forests, and Naive Bayes,

achieving successful accuracy levels [1], [5]. However, these classical models often suffer from issues such as high

variance, limited scalability, and difficulty in tuning hyperparameters.

XGBoost (Extreme Gradient Boosting) has emerged as a superior alternative, particularly for tabular data classification

tasks. XGBoost, developed by Chen and Guestrin, employs a gradient boosting approach to construct additive tree-

based models. It is particularly effective for handling imbalanced datasets, such as those encountered in phishing

detection, where legitimate URLs significantly outnumber malicious ones [6]. XGBoost has proven to outperform

traditional classifiers in terms of precision, recall, and speed, making it an ideal choice for real-time applications.

To streamline the development of ML pipelines, tools like PyCaret have gained traction. PyCaret is a low-code, open-

source machine learning library designed to simplify workflows for tasks like data preprocessing, model selection, and

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26296 754

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

hyperparameter tuning [4]. It simplifies experimentation by abstracting complex ML workflows, allowing for rapid

model iteration and comparison. In the context of phishing detection, PyCaret allows developers to evaluate a suite of

classifiers and choose the best one based on desired metrics.

Beyond classification, real-time implementation presents unique challenges, particularly in mobile applications.

FastAPI is a lightweight Python web framework recognized for its speed and straightforward integration with machine

learning workflows. It offers asynchronous support and automatic documentation, which is advantageous for deploying

real-time prediction services [8]. Additionally, Flutter has become a leading choice for cross-platform app development

due to its rapid UI rendering and native performance [9]. Its flexibility allows integration with backend APIs and real-

time communication protocols, such as WebSockets, for a seamless user experience.

Prior works often lack integration between ML models and real-time systems in mobile environments. This paper aims

to bridge that gap by proposing a complete pipeline that uses XGBoost for phishing URL classification, PyCaret for

rapid model development, FastAPI for scalable backend deployment, and Flutter for real-time mobile chat integration.

III. SYSTEM ARCHITECTURE

The proposed system is designed using a modular, layered architecture that separates concerns for better

maintainability, scalability, and security. Each component in the architecture is responsible for a specific

functionality—from handling user input to performing machine learning classification and ensuring secure, real-time

message transmission. The integration of these components results in a responsive and reliable chat application that can

proactively mitigate phishing threats.

A. Frontend Layer (Flutter App):

This layer handles user interaction and chat functionality. Built using Flutter, the app provides a smooth user interface

for sending and receiving messages. It includes logic to parse outgoing messages and detect embedded URLs. If a URL

is found, the app sends it to the backend for analysis before allowing the message to be sent. This ensures that potential

phishing links are checked before delivery.

B. Backend Layer (FastAPI Server):

The backend, developed with FastAPI, hosts the phishing detection model and manages API requests from the app.

When a message containing a URL is received, the server extracts features and classifies the link using the trained

machine learning model. It then sends the result (phishing or benign) back to the frontend in real time.

C. Real-Time Communication Layer:

To support instant messaging, the system uses WebSocket-based socket programming. This layer allows seamless two-

way communication between users. Messages are only transmitted if verified safe by the backend, preventing phishing

links from being shared in real time.

D. Machine Learning Component (XGBoost Implemented Using PyCaret):

The phishing detection model, built using PyCaret with the XGBoost algorithm, is trained on labeled datasets of

phishing and legitimate URLs. It extracts features from each URL—such as length, presence of suspicious terms, and

domain structure—and classifies them as either “Phishing” or “Benign” with high accuracy.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26296 755

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

Fig. 1. System Architecture of the Real-Time Phishing URL Detection Chat Application

IV. METHODOLOGY

A. Dataset Collection and Preprocessing

A publicly available dataset containing labeled phishing and legitimate URLs was utilized for model training. The

dataset had been processed in a variety of ways to ensure consistency and data quality:

 Cleaning: Involved removing all missing values, duplicate entries, and URLs that did not conform to proper

formatting standards.

 Feature Extraction: Each URL was transformed into a structured feature set, including properties such as

URL length, presence of special characters (e.g., '@', '-', '='), number of dots and subdomains, features such as

the use of HTTPS, inclusion of IP addresses, and specific lexical characteristics commonly observed in

phishing URLs were analyzed.

 Normalization and Encoding: Numerical features were scaled to a uniform range, and categorical values

were encoded as needed to facilitate compatibility with machine learning algorithms.

 International Journal of Advanced

 International Open-Access, Double

 Copyright to IJARSCT
 www.ijarsct.co.in

ISSN: 2581-9429

Fig. 2. Dataset After Preprocessing Unwanted Featur

B. Model Training with PyCaret

PyCaret was used as the machine learning framework for automating model training and evaluation. Multiple

algorithms—including Extreme Gradient Boosting (XGBoost),Logisti

Vector Machine (SVM)—were employed in testing

 Model Selection: XGBoost emerged as the best

making it ideal for phishing detection whe

 Hyperparameter Tuning: Key parameters such as learning rate, max depth, and number of estimators were

optimized for performance.

 Model Export: The trained model was serialized and saved using pickle library for deploym

I J A R S C T

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, May 2025

 DOI: 10.48175/IJARSCT-26296

Fig. 2. Dataset After Preprocessing Unwanted Feature

PyCaret was used as the machine learning framework for automating model training and evaluation. Multiple

including Extreme Gradient Boosting (XGBoost),Logistic Regression, Random Forest, and Support

employed in testing the pre-processed data.

XGBoost emerged as the best-performing model based on accuracy, recall, and F1

making it ideal for phishing detection where false negatives must be minimized.

Key parameters such as learning rate, max depth, and number of estimators were

The trained model was serialized and saved using pickle library for deploym

Technology

Reviewed, Refereed, Multidisciplinary Online Journal

 756

Impact Factor: 7.67

PyCaret was used as the machine learning framework for automating model training and evaluation. Multiple

c Regression, Random Forest, and Support

performing model based on accuracy, recall, and F1-score,

Key parameters such as learning rate, max depth, and number of estimators were

The trained model was serialized and saved using pickle library for deployment.

 International Journal of Advanced

 International Open-Access, Double

 Copyright to IJARSCT
 www.ijarsct.co.in

ISSN: 2581-9429

Fig. 3. Selecting Best Performance Model Base on Multiple Parameter

C. API Development with FastAPI

The phishing detection model was deployed using FastAPI to allow RESTful interaction with the Flutter frontend.

A /predict-url endpoint was developed to accept POST requests containing URLs.

The backend performs:

 Parsing and preprocessing of the input URL.

 Extracting features and transforming them to conform to the training data format.

 Real-time classification using the loaded model.

 Generation of responses in JSON format that signify if the URL is “phishing” or “safe”.

D. Mobile App Development Using Flutter

 The Flutter framework was used to develop the mobile application's frontend.

 A conversational interface was developed to emulate real

 When a user sends a message, the app detects and extracts any URLs before submission.

 A REST API call is triggered to validate the detected URL using the backend phishing detec

 When the URL is flagged as phishing, the message still gets delivered, but a warning toast appears to notify

the recipient.

 Real-time messaging is handled using the socket.io Flutter plugin, ensuring smooth and low

communication.

E. Real-Time Communication Logic

 Python socket servers are custom built for real

 The server maintains persistent connections for active users.

 Messages sent from the frontend are first routed through the backen

 If the message contains no URL or a safe URL, it is delivered normally to all connected users.

I J A R S C T

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, May 2025

 DOI: 10.48175/IJARSCT-26296

Fig. 3. Selecting Best Performance Model Base on Multiple Parameter

The phishing detection model was deployed using FastAPI to allow RESTful interaction with the Flutter frontend.

url endpoint was developed to accept POST requests containing URLs.

Parsing and preprocessing of the input URL.

Extracting features and transforming them to conform to the training data format.

time classification using the loaded model.

Generation of responses in JSON format that signify if the URL is “phishing” or “safe”.

D. Mobile App Development Using Flutter

The Flutter framework was used to develop the mobile application's frontend.

A conversational interface was developed to emulate real-time message exchange.

When a user sends a message, the app detects and extracts any URLs before submission.

A REST API call is triggered to validate the detected URL using the backend phishing detec

When the URL is flagged as phishing, the message still gets delivered, but a warning toast appears to notify

time messaging is handled using the socket.io Flutter plugin, ensuring smooth and low

Python socket servers are custom built for real-time message transmission and session management.

The server maintains persistent connections for active users.

Messages sent from the frontend are first routed through the backend API for phishing detection.

If the message contains no URL or a safe URL, it is delivered normally to all connected users.

Technology

Reviewed, Refereed, Multidisciplinary Online Journal

 757

Impact Factor: 7.67

The phishing detection model was deployed using FastAPI to allow RESTful interaction with the Flutter frontend.

A REST API call is triggered to validate the detected URL using the backend phishing detection model.

When the URL is flagged as phishing, the message still gets delivered, but a warning toast appears to notify

time messaging is handled using the socket.io Flutter plugin, ensuring smooth and low-latency

time message transmission and session management.

d API for phishing detection.

If the message contains no URL or a safe URL, it is delivered normally to all connected users.

 International Journal of Advanced

 International Open-Access, Double

 Copyright to IJARSCT
 www.ijarsct.co.in

ISSN: 2581-9429

 If the message contains a URL classified as phishing:

 The message is still delivered to the recipient.

 A warning toast or alert is displayed in the app to notify the user of the potential phishing threat.

 The link is visually flagged or disabled to prevent accidental clicks.

V.

The XGBoost-based model for detecting phishing URLs demonstra

metrics. During testing on the validation dataset,

and an F1-score of 96.9%, which is better than

indicates the model’s strong ability to correctly identify phishing URLs, which is critical for minimizing security risks

in real-time applications.

In real-world testing within the chat application, the system successfully intercepted and blocked phis

affecting the flow of conversation. The average response time for URL classification via the FastAPI backend was

under 250 milliseconds, ensuring minimal latency. Users received immediate feedback through toast messages,

enhancing awareness and user experience.

The integration of real-time sockets with phishing detection proved effective, as only validated messages were

broadcasted, maintaining both performance and security. The modular design also allowed for smooth API

communication, easy updates to the model, and potential scalability to larger datasets or user bases.

Overall, the system demonstrated practical viability for enhancing mobile chat security by actively detecting and

neutralizing phishing threats before delivery.

Fig. 4.

Fig. 5. Welcome screen of the application

I J A R S C T

International Journal of Advanced Research in Science, Communication and Technology

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, May 2025

 DOI: 10.48175/IJARSCT-26296

If the message contains a URL classified as phishing:

The message is still delivered to the recipient.

warning toast or alert is displayed in the app to notify the user of the potential phishing threat.

The link is visually flagged or disabled to prevent accidental clicks.

V. RESULTS AND DISCUSSION

based model for detecting phishing URLs demonstrated excellent performance on various evaluation

metrics. During testing on the validation dataset, it achieved an accuracy of 97.3%, recall of 96.5%,

is better than other models like Logistic Regression and SVM

indicates the model’s strong ability to correctly identify phishing URLs, which is critical for minimizing security risks

world testing within the chat application, the system successfully intercepted and blocked phis

affecting the flow of conversation. The average response time for URL classification via the FastAPI backend was

under 250 milliseconds, ensuring minimal latency. Users received immediate feedback through toast messages,

time sockets with phishing detection proved effective, as only validated messages were

broadcasted, maintaining both performance and security. The modular design also allowed for smooth API

sy updates to the model, and potential scalability to larger datasets or user bases.

Overall, the system demonstrated practical viability for enhancing mobile chat security by actively detecting and

neutralizing phishing threats before delivery.

ig. 4. XGBoost Best Performing Model

Fig. 5. Welcome screen of the application

Technology

Reviewed, Refereed, Multidisciplinary Online Journal

 758

Impact Factor: 7.67

warning toast or alert is displayed in the app to notify the user of the potential phishing threat.

ted excellent performance on various evaluation

an accuracy of 97.3%, recall of 96.5%,

Logistic Regression and SVM. The high recall

indicates the model’s strong ability to correctly identify phishing URLs, which is critical for minimizing security risks

world testing within the chat application, the system successfully intercepted and blocked phishing links without

affecting the flow of conversation. The average response time for URL classification via the FastAPI backend was

under 250 milliseconds, ensuring minimal latency. Users received immediate feedback through toast messages,

time sockets with phishing detection proved effective, as only validated messages were

broadcasted, maintaining both performance and security. The modular design also allowed for smooth API

Overall, the system demonstrated practical viability for enhancing mobile chat security by actively detecting and

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26296 759

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

Fig. 6. Display of the user's contact list in the application

Fig. 7. Non-malicious text message recognized

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26296 760

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

Fig. 8. Phishing link recognized after being shared

VI. CONCLUSION

In an era where cyber threats are increasingly sophisticated and prevalent, phishing remains one of the most common

and damaging attack vectors, especially within real-time communication platforms. A detailed approach was

established to identify and prevent phishing URLs in chat applications through the implementation of machine learning

models in combination with real-time networking and mobile development frameworks.

By utilizing the capabilities of the XGBoost algorithm for URL classification, PyCaret for fast ML development,

FastAPI for effective backend deployment, and Flutter for creating a user-friendly and responsive chat interface. the

system ensures real-time, proactive protection against phishing attacks. Socket programming further supports seamless

and secure message delivery between users.

The model achieved high accuracy and recall, which are critical in minimizing false negatives and ensuring robust

protection. The system's modular, scalable architecture also allows for easy adaptation and expansion across various

platforms and communication tools.

This research contributes significantly to mobile cybersecurity by demonstrating the feasibility of embedding machine

learning-based phishing detection directly into user-facing chat applications. As digital communication continues to

expand, such intelligent, automated defenses will become increasingly vital in safeguarding users and organizations

from social engineering attacks.

VII. FUTURE WORK

Future enhancements could focus on improving detection accuracy by incorporating domain reputation checks and NLP

techniques to better handle shortened or obfuscated URLs. The system can also be extended to scan images,

attachments, or QR codes for hidden phishing content. Adding user feedback and reporting mechanisms would help

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26296 761

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

refine the model over time. The implementation of multilingual input and voice-based messaging will help increase

user accessibility as well as model deployment on cloud infrastructure for scalability and reliability with larger user

bases.

REFERENCES

[1]. Sahingoz, E. Buber, O. Demir, and B. Diri, “Machine learning based phishing detection from URLs,” Expert

Systems with Applications, vol. 117, pp. 345–357, 2019. doi: 10.1016/j.eswa.2018.09.029

[2]. OWASP Foundation, “Phishing Prevention Cheat Sheet,” 2023. [Online]. Available: https://owasp.org/www-

community/Phishing

[3]. M. A. Aburrous, M. A. Hossain, K. Dahal, and F. Thabtah, “Intelligent phishing detection system for e-

banking using fuzzy data mining,” Expert Systems with Applications, vol. 37, no. 12, pp. 7913–7921, 2010.

doi: 10.1016/j.eswa.2010.04.044

[4]. PyCaret, “Automated Machine Learning in Python,” 2024. [Online]. Available: https://pycaret.org

[5]. M. Y. Muhammad and I. Ullah, “Phishing attack detection using machine learning techniques,” in

Proceedings of the 2nd International Conference on Computing, Communication, and Engineering

(iCCECE), 2020, pp. 1–6. doi: 10.1109/iCCECE49321.2020.9231239

[6]. T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proc. 22nd ACM SIGKDD Int.

Conf. on Knowledge Discovery and Data Mining (KDD), 2016, pp. 785–794. doi: 10.1145/2939672.2939785

A. K. Jain and B. B. Gupta, “Phishing detection: Analysis of visual similarity based approaches,” Security and

Communication Networks, vol. 2017, Article ID 5421046, 20 pages, 2017. doi: 10.1155/2017/5421046

[7]. FastAPI, “FastAPI Documentation,” 2024. [Online]. Available: https://fastapi.tiangolo.com

[8]. Flutter, “Build apps for any screen,” 2024. [Online]. Available: https://flutter.dev

[9]. Mozilla Developer Network (MDN), “WebSocket API,” 2024. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/API/WebSocket

[10]. S. Marchal, J. François, R. State, and T. Engel, “Know your phish: Novel techniques for detecting phishing

sites and their targets,” in 2016 IEEE 36th Int. Conf. on Distributed Computing Systems (ICDCS), 2016, pp.

323–333. doi: 10.1109/ICDCS.2016.94

[11]. M. Mamun, M. A. Rathore, and A. H. Lashari, “A novel phishing URL detection approach using deep

learning techniques,” Journal of Intelligent & Fuzzy Systems, vol. 39, no. 4, pp. 5061–5072, 2020. doi:

10.3233/JIFS-201585

A. A. Abdallah, M. H. Abed, and A. A. Ali, “Phishing detection using deep learning techniques,” International

Journal of Advanced Computer Science and Applications, vol. 10, no. 5, pp. 597–602, 2019. doi:

10.14569/IJACSA.2019.0100575

[12]. A. Jain and V. Richariya, “An improved machine learning based approach to detect phishing

websites using URL features,” International Journal of Computer Applications, vol. 169, no. 8, pp. 17–21,

2017. doi: 10.5120/ijca2017914516

[13]. M. Basnet, A. H. Sung, and Q. Liu, “Learning to detect phishing URLs,” in Proc. 2012 International

Conference on Computer Software and Applications, 2012, pp. 120–125. doi: 10.1109/COMPSAC.2012.19

[14]. R. Vinayakumar, K. P. Soman, and P. Poornachandran, “Evaluating deep learning approaches to characterize

and classify URLs,” Journal of Intelligent & Fuzzy Systems, vol. 34, no. 3, pp. 1333–1343, 2018. doi:

10.3233/JIFS-169582

[15]. M. Khonji, Y. Iraqi, and A. Jones, “Phishing detection: A literature survey,” IEEE Communications Surveys

& Tutorials, vol. 15, no. 4, pp. 2091–2121, 2013. doi: 10.1109/SURV.2013.032213.00009

[16]. R. Verma and K. Dyer, “On the character of phishing URLs: Accurate and robust statistical learning

classifiers,” in Proc. 5th APWG eCrime Researchers Summit, 2015, pp. 1–8. doi:

10.1109/eCrime.2015.7120789

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, May 2025

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-26296 762

 www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.67

[17]. N. Al-Bayati, R. Al-Qurishi, and M. Al-Rodhaan, “Phishing detection using URL-based machine learning

classification,” in Proc. 2020 2nd International Conference on Computer and Information Sciences (ICCIS),

2020, pp. 1–6. doi: 10.1109/ICCIS49240.2020.9257687

[18]. T. Sahoo, R. Kumar, and N. Pattnaik, “Phishing detection using machine learning: A review,” Materials

Today: Proceedings, vol. 62, pp. 2051–2055, 2022. doi: 10.1016/j.matpr.2022.03.388

[19]. R. Rao and H. Reiley, “The economics of phishing attacks,” ACM Transactions on Information and System

Security (TISSEC), vol. 10, no. 2, article 7, 2007. doi: 10.1145/1229139.1229141

[20]. Prof. P. S. Prasad, Aishwarya Kalamkar, Manasi Nagpure, Neha Vaidya, Pranal Mohadikar, Bhagyashri

Tembhurne."Phishing URL Detection Using XGBoost and Custom Feature Engineering", Volume 13, Issue

V, International Journal for Research in Applied Science and Engineering Technology (IJRASET) Page No:

675-686, ISSN : 2321-9653, www.ijraset.com

