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Abstract: Phishing attacks continue to be a critical threat in the digital ecosystem, particularly in real 

time communication platforms. This document introduces an Android application developed using 

Flutter, which identifies and prevents phishing URLs in real-time chat through a machine learning 

model that has been trained with PyCaret and deployed using FastAPI. The core URL classification is 

driven by the XGBoost algorithm, selected for its exceptional performance in classification tasks. Socket 

programming ensures real-time message delivery between users, while the integrated FastAPI backend 

filters malicious URLs before they are transmitted. This integrated architecture offers a practical and 

scalable solution for enhancing online security. The system’s capability to intercept and neutralize 

phishing threats before they reach the end-user marks a significant contribution to cybersecurity 

practices in mobile applications. 
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I. INTRODUCTION 

With the increasing use of chat applications, users are more exposed than ever to malicious content, especially phishing 

URLs that deceive individuals into disclosing sensitive information. Traditional methods of phishing detection rely on 

blacklists or user reports, which are reactive and insufficient in a fast-paced chat environment. 

Phishing is a cyber-attack where attackers impersonate trustworthy entities to trick users into revealing confidential data 

such as passwords, credit card numbers, and personal identification details. These attacks are often delivered through 

seemingly harmless messages containing malicious URLs. As real-time chat becomes integral to personal and 

professional communication, the risk of phishing embedded within such platforms grows rapidly. Hence, there is an 

urgent need for real-time, automated solutions to detect and block phishing attempts. 

 

A.  Problem Statement:  

Current phishing detection methods are either delayed or manual, relying heavily on known URL blacklists or user 

vigilance. These techniques cannot effectively detect zero-day phishing URLs or provide immediate protection in fast-

paced messaging environments. There is a lack of integrated, real-time detection mechanisms tailored specifically for 

mobile chat applications. 

 

B.  Need for the Project:  

To provide a reliable and responsive solution, this project integrates machine learning and modern mobile technologies 

to proactively detect and block phishing URLs before 

they reach the end-user. By using an XGBoostbased model embedded in a real-time messaging environment built with 

Flutter and FastAPI, the application aims to ensure seamless, secure communication. This proactive and intelligent 

approach significantly enhances user safety and prevents data breaches at the point of communication. 
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While implementing the phishing URL detection system in real-time chat applications, several technical and 

operational challenges were encountered that shaped the final architecture and methodology: 

 Dataset Quality and Feature Engineering: The dataset used for training the XGBoost model contained 

inconsistencies, outdated records, and a significant class imbalance. Balancing the dataset and engineering 

meaningful URL-based features such as domain entropy, HTTPS presence, and token patterns required careful 

preprocessing and validation. 

 Real-Time Response Optimization: One of the primary goals was to maintain a smooth chat experience 

while analyzing URLs in real time. The integration of the XGBoost model with the FastAPI backend led to 

latency issues. These were addressed by optimizing the API endpoint and decreasing model prediction time 

through -based serialization and asynchronous requests. 

 Socket Communication Stability: Socket programming provided real time communication between users; 

however, there are challenges related to ensuring upon persistent connection, consistently managing 

disconnected clients, avoiding repeated messages etc. this occurred more frequently when in a mobile testing 

environment. 

 Cross-Platform Flutter Integration: Although Flutter provides a unified UI framework, interfacing it 

seamlessly with Python-based FastAPI and managing API stateful responses required additional libraries and 

state management solutions like provider and http. 

 Model Deployment and Security: When securely deploying the trained XGBoost model, careful 

consideration of API authentication and user input sanitization was essential to prevent injection attacks on a 

backend server. A lack of robust authentication could allow malicious manipulation if not handled properly. 

Despite these issues, iterative debugging, modular development, and rigorous testing allowed the project to overcome 

these challenges and meet its security and performance goals effectively. 

 

II. LITERATURE REVIEW 

Numerous studies have been conducted to develop intelligent systems for phishing detection using features extracted 

from URLs and website contents [3], [4]. In terms of machine learning, there's been limited success with a variety of 

machine learning methods, such as decision trees, random forest, support vector machine methods, etc... [5]. However, 

XGBoost has emerged as a high-performance alternative due to its gradient boosting framework and ability to handle 

imbalanced datasets efficiently [6]. AutoML tools like PyCaret simplify model selection and tuning, providing a low-

code interface for experimentation [4]. 

Phishing detection has been a critical area of research due to the growing sophistication of cyberattacks targeting 

unsuspecting users through URLs, emails, and chat messages. Early detection techniques were largely reliant on 

blacklists, which only catch known malicious URLs and often fail to address zero-day threats or newly generated 

phishing sites [1], [2]. 

To address these limitations, researchers have turned to machine learning (ML) approaches for identifying phishing 

URLs based on intrinsic URL features. Aburrous et al. proposed using intelligent rule-based systems combined with 

ML techniques to detect phishing in e-banking platforms [3]. The work of Sahingoz et al. also investigated ngram-

based URL representation with several machine learning classifiers, Decision Trees, Random Forests, and Naive Bayes, 

achieving successful accuracy levels [1], [5]. However, these classical models often suffer from issues such as high 

variance, limited scalability, and difficulty in tuning hyperparameters. 

XGBoost (Extreme Gradient Boosting) has emerged as a superior alternative, particularly for tabular data classification 

tasks. XGBoost, developed by Chen and Guestrin, employs a gradient boosting approach to construct additive tree-

based models. It is particularly effective for handling imbalanced datasets, such as those encountered in phishing 

detection, where legitimate URLs significantly outnumber malicious ones [6]. XGBoost has proven to outperform 

traditional classifiers in terms of precision, recall, and speed, making it an ideal choice for real-time applications. 

To streamline the development of ML pipelines, tools like PyCaret have gained traction. PyCaret is a low-code, open-

source machine learning library designed to simplify workflows for tasks like data preprocessing, model selection, and 
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hyperparameter tuning [4]. It simplifies experimentation by abstracting complex ML workflows, allowing for rapid 

model iteration and comparison. In the context of phishing detection, PyCaret allows developers to evaluate a suite of 

classifiers and choose the best one based on desired metrics. 

Beyond classification, real-time implementation presents unique challenges, particularly in mobile applications. 

FastAPI is a lightweight Python web framework recognized for its speed and straightforward integration with machine 

learning workflows. It offers asynchronous support and automatic documentation, which is advantageous for deploying 

real-time prediction services [8]. Additionally, Flutter has become a leading choice for cross-platform app development 

due to its rapid UI rendering and native performance [9]. Its flexibility allows integration with backend APIs and real-

time communication protocols, such as WebSockets, for a seamless user experience. 

Prior works often lack integration between ML models and real-time systems in mobile environments. This paper aims 

to bridge that gap by proposing a complete pipeline that uses XGBoost for phishing URL classification, PyCaret for 

rapid model development, FastAPI for scalable backend deployment, and Flutter for real-time mobile chat integration. 

 

III. SYSTEM ARCHITECTURE 

The proposed system is designed using a modular, layered architecture that separates concerns for better 

maintainability, scalability, and security. Each component in the architecture is responsible for a specific 

functionality—from handling user input to performing machine learning classification and ensuring secure, real-time 

message transmission. The integration of these components results in a responsive and reliable chat application that can 

proactively mitigate phishing threats. 

 

A.  Frontend Layer (Flutter App): 

This layer handles user interaction and chat functionality. Built using Flutter, the app provides a smooth user interface 

for sending and receiving messages. It includes logic to parse outgoing messages and detect embedded URLs. If a URL 

is found, the app sends it to the backend for analysis before allowing the message to be sent. This ensures that potential 

phishing links are checked before delivery. 

 

B.  Backend Layer (FastAPI Server): 

The backend, developed with FastAPI, hosts the phishing detection model and manages API requests from the app. 

When a message containing a URL is received, the server extracts features and classifies the link using the trained 

machine learning model. It then sends the result (phishing or benign) back to the frontend in real time. 

 

C.  Real-Time Communication Layer: 

To support instant messaging, the system uses WebSocket-based socket programming. This layer allows seamless two-

way communication between users. Messages are only transmitted if verified safe by the backend, preventing phishing 

links from being shared in real time. 

 

D.  Machine Learning Component (XGBoost Implemented Using PyCaret): 

The phishing detection model, built using PyCaret with the XGBoost algorithm, is trained on labeled datasets of 

phishing and legitimate URLs. It extracts features from each URL—such as length, presence of suspicious terms, and 

domain structure—and classifies them as either “Phishing” or “Benign” with high accuracy. 
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Fig. 1. System Architecture of the Real-Time Phishing URL Detection Chat Application 

 

IV. METHODOLOGY 

A.  Dataset Collection and Preprocessing 

A publicly available dataset containing labeled phishing and legitimate URLs was utilized for model training. The 

dataset had been processed in a variety of ways to ensure consistency and data quality: 

 Cleaning: Involved removing all missing values, duplicate entries, and URLs that did not conform to proper 

formatting standards.  

 Feature Extraction: Each URL was transformed into a structured feature set, including properties such as 

URL length, presence of special characters (e.g., '@', '-', '='), number of dots and subdomains, features such as 

the use of HTTPS, inclusion of IP addresses, and specific lexical characteristics commonly observed in 

phishing URLs were analyzed.  

 Normalization and Encoding: Numerical features were scaled to a uniform range, and categorical values 

were encoded as needed to facilitate compatibility with machine learning algorithms.  
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Fig. 2. Dataset After Preprocessing Unwanted Featur

 

B.  Model Training with PyCaret 

PyCaret was used as the machine learning framework for automating model training and evaluation. Multiple 

algorithms—including Extreme Gradient Boosting (XGBoost),Logisti

Vector Machine (SVM)—were employed in testing

 Model Selection: XGBoost emerged as the best

making it ideal for phishing detection whe

 Hyperparameter Tuning: Key parameters such as learning rate, max depth, and number of estimators were 

optimized for performance. 

 Model Export: The trained model was serialized and saved using pickle library for deploym
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Fig. 2. Dataset After Preprocessing Unwanted Feature 

PyCaret was used as the machine learning framework for automating model training and evaluation. Multiple 

including Extreme Gradient Boosting (XGBoost),Logistic Regression, Random Forest, and Support 

employed in testing the pre-processed data. 

XGBoost emerged as the best-performing model based on accuracy, recall, and F1

making it ideal for phishing detection where false negatives must be minimized. 

Key parameters such as learning rate, max depth, and number of estimators were 

The trained model was serialized and saved using pickle library for deploym
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PyCaret was used as the machine learning framework for automating model training and evaluation. Multiple 

c Regression, Random Forest, and Support 

performing model based on accuracy, recall, and F1-score, 

Key parameters such as learning rate, max depth, and number of estimators were 

The trained model was serialized and saved using pickle library for deployment. 
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Fig. 3. Selecting Best Performance Model Base on Multiple Parameter

 

C.  API Development with FastAPI 

The phishing detection model was deployed using FastAPI to allow RESTful interaction with the Flutter frontend.

A /predict-url endpoint was developed to accept POST requests containing URLs.

The backend performs: 

 Parsing and preprocessing of the input URL.

 Extracting features and transforming them to conform to the training data format.

 Real-time classification using the loaded model.

 Generation of responses in JSON format that signify if the URL is “phishing” or “safe”.

 

D.  Mobile App Development Using Flutter

 The Flutter framework was used to develop the mobile application's frontend.

 A conversational interface was developed to emulate real

 When a user sends a message, the app detects and extracts any URLs before submission.

 A REST API call is triggered to validate the detected URL using the backend phishing detec

 When the URL is flagged as phishing, the message still gets delivered, but a warning toast appears to notify 

the recipient. 

 Real-time messaging is handled using the socket.io Flutter plugin, ensuring smooth and low

communication. 

 

E.  Real-Time Communication Logic 

 Python socket servers are custom built for real

 The server maintains persistent connections for active users.

 Messages sent from the frontend are first routed through the backen

 If the message contains no URL or a safe URL, it is delivered normally to all connected users.
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Fig. 3. Selecting Best Performance Model Base on Multiple Parameter 

The phishing detection model was deployed using FastAPI to allow RESTful interaction with the Flutter frontend.

url endpoint was developed to accept POST requests containing URLs. 

Parsing and preprocessing of the input URL. 

Extracting features and transforming them to conform to the training data format. 

time classification using the loaded model. 

Generation of responses in JSON format that signify if the URL is “phishing” or “safe”. 

D.  Mobile App Development Using Flutter 

The Flutter framework was used to develop the mobile application's frontend. 

A conversational interface was developed to emulate real-time message exchange. 

When a user sends a message, the app detects and extracts any URLs before submission. 

A REST API call is triggered to validate the detected URL using the backend phishing detec

When the URL is flagged as phishing, the message still gets delivered, but a warning toast appears to notify 

time messaging is handled using the socket.io Flutter plugin, ensuring smooth and low

Python socket servers are custom built for real-time message transmission and session management.

The server maintains persistent connections for active users. 

Messages sent from the frontend are first routed through the backend API for phishing detection.

If the message contains no URL or a safe URL, it is delivered normally to all connected users.
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The phishing detection model was deployed using FastAPI to allow RESTful interaction with the Flutter frontend. 

A REST API call is triggered to validate the detected URL using the backend phishing detection model. 

When the URL is flagged as phishing, the message still gets delivered, but a warning toast appears to notify 

time messaging is handled using the socket.io Flutter plugin, ensuring smooth and low-latency 

time message transmission and session management. 

d API for phishing detection. 

If the message contains no URL or a safe URL, it is delivered normally to all connected users. 
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 If the message contains a URL classified as phishing:

 The message is still delivered to the recipient.

 A warning toast or alert is displayed in the app to notify the user of the potential phishing threat.

 The link is visually flagged or disabled to prevent accidental clicks.

 

V. 

The XGBoost-based model for detecting phishing URLs demonstra

metrics. During testing on the validation dataset, 

and an F1-score of 96.9%, which is better than

indicates the model’s strong ability to correctly identify phishing URLs, which is critical for minimizing security risks 

in real-time applications. 

In real-world testing within the chat application, the system successfully intercepted and blocked phis

affecting the flow of conversation. The average response time for URL classification via the FastAPI backend was 

under 250 milliseconds, ensuring minimal latency. Users received immediate feedback through toast messages, 

enhancing awareness and user experience. 

The integration of real-time sockets with phishing detection proved effective, as only validated messages were 

broadcasted, maintaining both performance and security. The modular design also allowed for smooth API 

communication, easy updates to the model, and potential scalability to larger datasets or user bases.

Overall, the system demonstrated practical viability for enhancing mobile chat security by actively detecting and 

neutralizing phishing threats before delivery.

Fig. 4. 

Fig. 5. Welcome screen of the application
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If the message contains a URL classified as phishing: 

The message is still delivered to the recipient. 

warning toast or alert is displayed in the app to notify the user of the potential phishing threat.

The link is visually flagged or disabled to prevent accidental clicks. 

V. RESULTS AND DISCUSSION 

based model for detecting phishing URLs demonstrated excellent performance on various evaluation 

metrics. During testing on the validation dataset, it achieved an accuracy of 97.3%, recall of 96.5%,

is better than other models like Logistic Regression and SVM

indicates the model’s strong ability to correctly identify phishing URLs, which is critical for minimizing security risks 

world testing within the chat application, the system successfully intercepted and blocked phis

affecting the flow of conversation. The average response time for URL classification via the FastAPI backend was 

under 250 milliseconds, ensuring minimal latency. Users received immediate feedback through toast messages, 

 

time sockets with phishing detection proved effective, as only validated messages were 

broadcasted, maintaining both performance and security. The modular design also allowed for smooth API 

sy updates to the model, and potential scalability to larger datasets or user bases. 

Overall, the system demonstrated practical viability for enhancing mobile chat security by actively detecting and 

neutralizing phishing threats before delivery. 

ig. 4. XGBoost Best Performing Model 

Fig. 5. Welcome screen of the application 
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warning toast or alert is displayed in the app to notify the user of the potential phishing threat. 

ted excellent performance on various evaluation 

an accuracy of 97.3%, recall of 96.5%, 

Logistic Regression and SVM. The high recall 

indicates the model’s strong ability to correctly identify phishing URLs, which is critical for minimizing security risks 

world testing within the chat application, the system successfully intercepted and blocked phishing links without 

affecting the flow of conversation. The average response time for URL classification via the FastAPI backend was 

under 250 milliseconds, ensuring minimal latency. Users received immediate feedback through toast messages, 

time sockets with phishing detection proved effective, as only validated messages were 

broadcasted, maintaining both performance and security. The modular design also allowed for smooth API 

 

Overall, the system demonstrated practical viability for enhancing mobile chat security by actively detecting and 
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Fig. 6. Display of the user's contact list in the application 

Fig. 7. Non-malicious text message recognized 
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Fig. 8. Phishing link recognized after being shared 

 

VI. CONCLUSION 

In an era where cyber threats are increasingly sophisticated and prevalent, phishing remains one of the most common 

and damaging attack vectors, especially within real-time communication platforms. A detailed approach was 

established to identify and prevent phishing URLs in chat applications through the implementation of machine learning 

models in combination with real-time networking and mobile development frameworks. 

By utilizing the capabilities of the XGBoost algorithm for URL classification, PyCaret for fast ML development, 

FastAPI for effective backend deployment, and Flutter for creating a user-friendly and responsive chat interface. the 

system ensures real-time, proactive protection against phishing attacks. Socket programming further supports seamless 

and secure message delivery between users. 

The model achieved high accuracy and recall, which are critical in minimizing false negatives and ensuring robust 

protection. The system's modular, scalable architecture also allows for easy adaptation and expansion across various 

platforms and communication tools. 

This research contributes significantly to mobile cybersecurity by demonstrating the feasibility of embedding machine 

learning-based phishing detection directly into user-facing chat applications. As digital communication continues to 

expand, such intelligent, automated defenses will become increasingly vital in safeguarding users and organizations 

from social engineering attacks. 

 

VII. FUTURE WORK 

Future enhancements could focus on improving detection accuracy by incorporating domain reputation checks and NLP 

techniques to better handle shortened or obfuscated URLs. The system can also be extended to scan images, 

attachments, or QR codes for hidden phishing content. Adding user feedback and reporting mechanisms would help 
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refine the model over time. The implementation of multilingual input and voice-based messaging will help increase 

user accessibility as well as model deployment on cloud infrastructure for scalability and reliability with larger user 

bases.  
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