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Abstract: Enhancing the efficiency of software vulnerability detection has become increasingly 

important as software systems grow and complexity. In this study, we propose a comprehensive and 

innovative framework that brings together four essential techniques—Source Embedding, Feature 

Learning, Data Resampling, and Classification—to tackle the critical challenges of identifying 

vulnerabilities in source code. The process begins with Source Embedding, where Abstract Syntax 

Trees (ASTs) generated using the Joern tool are analysed with advanced data mining techniques to 

capture both the structural and semantic characteristics of the code. These embedded 

representations form the basis for Feature Learning, which applies machine learning and deep 

learning algorithms to extract meaningful insights from the AST nodes, enabling the detection of 

both known vulnerabilities and subtle, hidden code anomalies. Recognizing the issue of data 

imbalance in real-world datasets, we integrate the Borderline SMOTE algorithm to generate 

synthetic examples near class boundaries, helping to create a more balanced and representative 

dataset. With this enriched dataset, the Classification stage leverages robust models trained to 

accurately identify potential vulnerabilities. What sets our approach apart is the seamless 

integration of varied techniques, which allows us to discover intricate patterns that traditional 

static analysis tools often miss. We validate our framework using the Verum dataset, where it 

delivers outstanding results across multiple performance metrics including precision, recall, F1-

score, and accuracy. The findings affirm the model’s capability to deliver reliable predictions while 

reducing false positives and negatives. This holistic methodology not only raises the bar for source 

code vulnerability detection but also lays a solid foundation for building more secure and resilient 

software. By addressing the core aspects of code representation, feature extraction, and imbalanced 

learning, our study contributes significantly to the development of smarter, more adaptive security 

tools for modern development environments. 
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I. INTRODUCTION 

In today’s software-driven world, the complexity and scale of codebases are expanding at an unprecedented rate. As 

developers strive to deliver faster and more feature-rich applications, security often becomes an afterthought, leading to 

hidden vulnerabilities that can be exploited by attackers. Traditional static and dynamic analysis tools, while useful, 

often rely on predefined rules or known vulnerability patterns, limiting their ability to detect novel or deeply embedded 

flaws. These limitations have prompted a growing interest in data-driven, intelligent systems that can automatically 

analyse source code and identify potential threats with greater accuracy and context awareness. Detecting 

vulnerabilities early in the development lifecycle is crucial not only for reducing risk but also for saving time, effort, 

and costs associated with post-deployment fixes. 

This research introduces a comprehensive and intelligent framework that leverages a combination of structural analysis, 

deep learning, and synthetic data augmentation to detect vulnerabilities in source code more effectively. Using Abstract 
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Syntax Trees (ASTs) generated by the Joern tool, the system captures both the structural and semantic features of the 

code. These features are then processed through machine learning and deep learning models to uncover both explicit 

vulnerabilities and more subtle, context-dependent code anomalies. To address the common issue of data imbalance—

where non-vulnerable samples vastly outnumber vulnerable ones—the Borderline SMOTE algorithm is used to 

generate synthetic data near decision boundaries, helping models learn more effectively. Finally, the classification 

module analyses the balanced, feature-rich dataset to accurately detect vulnerable code segments. The approach is 

validated on the Verum dataset and shows strong performance across key metrics, highlighting its potential to enhance 

modern software security practices with minimal manual effort. 

 

II. LITERATURE SURVEY 

The study "A Novel Approach for Software Vulnerability Detection Based on Intelligent Cognitive Computing" by Cho 

Do Xuan et al. (2023) introduces the EFRC Framework, which uses Code Property Graphs (CPGs) to enable semantic 

analysis of source code. To address class imbalance, it employs the SMOTE algorithm for generating synthetic data 

points, though it may introduce irrelevant code variations. The framework also uses a triplet loss function for 

classification, clustering vulnerable instances while separating them from non-vulnerable ones [1]. In "Data-driven 

Software Vulnerability Assessment and Prioritization" (2022), Triet H. M. Le and Huaming Chen explore how machine 

learning (ML) and deep learning (DL) techniques, such as BERT and word2vec, are used for semantic feature 

extraction from textual data. While these methods can analyze small datasets effectively, they face challenges with 

domain-specific vulnerabilities and data quality issues, limiting their generalizability [2]. 

In "SQVDT: A Scalable Quantitative Vulnerability Detection Technique for Source Code Security Assessment" (2021), 

Junaid Akram proposes detecting vulnerabilities using CVE numbers, mapping patch files to these numbers to identify 

vulnerabilities in source code. This method leverages a reference fingerprint index of vulnerable files for scalability and 

proactive vulnerability detection [3]. In "Detecting Software Vulnerabilities Using Language Models" (2023), Marijke 

de Vet presents VulDetect, which fine-tunes a pre-trained GPT model to detect vulnerabilities by learning contextual 

patterns in code. The effectiveness of this approach depends on the quality and relevance of the pre-trained model used, 

but it offers an automated and promising method for vulnerability detection [4]. 

The study "Fine-Tuning Pre-Trained CodeBERT for Code Search in Smart Contract" (2023) by Huan Jin and Qinying 

Li discusses how fine-tuning CodeBERT improves code search accuracy in smart contracts. By using domain-specific 

datasets, the approach enhances the model’s performance in understanding both programming languages and natural 

language [5]. Finally, in "Research on Customer Churn Intelligent Prediction Model based on Borderline-SMOTE and 

Random Forest" (2022), L. Feng introduces a model that combines Borderline-SMOTE with Random Forest to address 

class imbalance in customer churn prediction. This method generates synthetic samples near the decision boundary, 

improving the model's predictive accuracy and robustness [6]. 

The surveyed studies collectively highlight the evolving methods for software vulnerability detection, combining 

advanced techniques from machine learning, deep learning, and cognitive computing. From utilizing graph-based 

structures like Code Property Graphs (CPGs) for semantic analysis to fine-tuning transformer models like GPT and 

CodeBERT for vulnerability detection, these approaches offer innovative ways to address issues like class imbalance 

and contextual understanding of code. Additionally, methods such as the use of CVE numbers for pattern detection and 

combining SMOTE-based resampling with machine learning models show a holistic approach to improving 

vulnerability detection accuracy. While challenges remain, particularly with domain-specific issues and data quality, the 

research demonstrates significant progress in automating and enhancing software security through intelligent, data-

driven techniques. 

 

III. METHODOLOGY 

Multilayer Perceptron (MLP) 

Purpose: In this project, the Multilayer Perceptron (MLP) is used to understand the relationships between different 

parts of the source code — such as how variables, functions, and logic blocks are connected. These connections are 

captured from the edges of something called an Abstract Syntax Tree (AST), which visually maps out the structure of 
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the code. Since many vulnerabilities arise from how different parts of the code interact, rather than from individual 

lines, MLP helps us focus on these relationships. By learning patterns in these connections, MLP enables the system to 

spot vulnerabilities that are subtle and not easily visible through surface-level code analysis. 

How it Works: An MLP is a type of feedforward neural network composed of multiple layers: an input layer, one or 

more hidden layers, and an output layer. It transforms input features through a series of weighted connections and non-

linear activations. In this case, the input x consists of edge features from the AST. 

The computation in an MLP follows this formula: 

 y = σ (W2 . σ( W1 . x + b1 ) + b2 ) 

Where: 

x is the input feature vector. 

W1, W2, are the weight matrices. 

b1, b2 are the bias terms. 

σ is the activation function (typically ReLU or Sigmoid). 

 

Graph Convolutional Network (GCN) 

Purpose: The Graph Convolutional Network (GCN) is used to capture features from the nodes of the Abstract Syntax 

Tree (AST), which represent individual components like functions, variables, or expressions. Unlike other models, 

GCN is designed to work with graph-based data, making it well-suited for processing the AST. By focusing on the 

nodes and their relationships, GCN helps us understand how components in the code interact, allowing the model to 

detect subtle vulnerabilities that may arise from these interactions. 

How it Works: GCN learns by aggregating information from neighbouring nodes in the graph. Each node in the AST 

starts with its own feature set, representing its characteristics. GCN then updates these features by combining them with 

the features from neighboring nodes, essentially learning from the relationships between different components of the 

code. This process happens across multiple layers, refining the node representations and helping the model capture 

complex patterns in the code structure. By considering the context around each node, GCN improves its ability to detect 

vulnerabilities based on how the code components are interconnected. 

The computation in an GCN follows this formula: 

 H(K+!) = σ ( A . H(K) . W(K) ) 

Where: 

H(k) is the feature matrix at the k-th layer. 

A is the normalized adjacency matrix (structure of the graph). 

W(k) is the weight matrix at the k-th layer. 

Σ is the activation function (commonly ReLU). 

 

Borderline SMOTE 

Purpose: Borderline SMOTE is used to address the class imbalance problem by generating synthetic samples of the 

minority class, especially near the decision boundary. This helps the model focus on the more challenging areas where 

misclassifications are likely to occur, improving its ability to detect vulnerabilities in edge cases. 

How it Works: Borderline SMOTE works by creating new synthetic data points near the border between the majority 

and minority classes. It identifies the instances that are closest to the decision boundary and generates new samples by 

interpolating between them. This helps balance the dataset and makes the model more sensitive to subtle vulnerabilities. 

The formula for Borderline SMOTE is: 

 x(new) = x(minority) + λ . ( x(near) – x(minority) ) 

Where: 

x(minority) is a point from the minority class (vulnerable code). 

x(near)  is a nearest neighbor of the minority class point. 

λ is a random value between 0 and 1, which controls the interpolation between points. 
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Triplet Loss 

Purpose: Triplet Loss is used to optimize the model's ability to differentiate between similar and dissimilar examples. 

It helps the model learn a feature space where vulnerable code is distinct from non-vulnerable code, improving its 

classification accuracy. 

How it Works: Triplet Loss works by comparing three inputs: an anchor (original sample), a positive (similar sample), 

and a negative (dissimilar sample). The goal is to minimize the distance between the anchor and positive samples while 

maximizing the distance between the anchor and negative samples. This ensures that the model learns to better 

distinguish between vulnerabilities and non-vulnerabilities. 

  

IV. RESULT ANALYSIS 

The vulnerability detection system performed effectively across its various phases, each contributing to the successful 

identification of vulnerabilities in source code. In the Source Embedding phase, the system converted the source code 

into Abstract Syntax Trees (ASTs), providing a structured representation of the code. This transformation was crucial as 

it laid the groundwork for the next phase, enabling the extraction of meaningful features that captured the relationships 

between different components of the code. 

In the Feature Extraction phase, the combination of Graph Convolutional Networks (GCN) and Multilayer 

Perceptron (MLP) allowed the system to capture intricate patterns in the code. The GCN efficiently aggregated 

information from neighbouring nodes in the AST, helping to identify complex relationships between code components, 

while the MLP focused on the edges, which represent interactions between various code elements. Together, these 

techniques enabled the system to uncover both overt vulnerabilities and more subtle anomalies that could indicate 

potential risks. 

The challenge of class imbalance, where vulnerable code is far less frequent than non-vulnerable code, was addressed 

through the Borderline SMOTE technique. By generating synthetic samples near the decision boundary, this approach 

ensured a more balanced dataset, allowing the model to learn better from both the majority and minority classes. This 

helped the system avoid bias towards non-vulnerable code and improved its ability to detect vulnerabilities. In the final 

Classification phase, the Triplet Loss function fine-tuned the model’s feature representations, enabling it to more 

accurately classify whether a code snippet was vulnerable or not. The overall approach proved to be effective in 

improving software security by providing a more robust and reliable vulnerability detection system. 

TABLE I: SMOTE & Borderline SMOTE comparison: 

Feature SMOTE Borderline SMOTE 

Sampling Area Uniform Decision Boundary 

Sample Quality Low High 

Over Fitting Less More 

Accuracy (in project) ~84.2% 
~92% 

 

Improvement (%) - ↑7.8% 

This is a comparative performance analysis between SMOTE and Borderline-SMOTE in the context of source code 

vulnerability detection. Borderline-SMOTE outperforms SMOTE across all key evaluation metrics, including accuracy, 

precision, recall, and F1 score. Specifically, Borderline-SMOTE achieves a higher accuracy of 92%, compared to 86% 

with SMOTE. This improvement is reflected in the other metrics as well, indicating that Borderline-SMOTE generates 

more relevant synthetic samples near the decision boundary, leading to better model learning and more reliable 

classification results. 
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In this article, we introduced a novel Source Code Vulnerability Scanner that combines Abstract Syntax Tree (AST) 

graph generation, graph-based feature learning with MLP and GCN, and classification using a Triplet Loss

model. To combat data imbalance, the framework incorporates Borderline

SMOTE by focusing on hard-to-classify sa

between vulnerable and secure code, offering high accuracy, precision, and F1 scores. The user

interface simplifies interaction, enabling practical use for developers a

system provides a robust and scalable solution for automated vulnerability detection in source code.

real-world scenarios. 

While the current architecture demonstrates promising results, fu

integrating real-time threat intelligence, and improving explainability of predictions. Additionally, we plan to 

incorporate dynamic code analysis to complement the existing static analysis framework. Enh

continual learning and feedback loops can also improve adaptability to newly discovered vulnerabilities. Deploying the 

system in real-world development environments and extending it to detect zero

strengthen its impact and applicability in modern secure software engineering.

 

Heartfelt thanks are extended to all those who contributed to the successful completion of this project on source 

code vulnerability detection using graph-

not have been possible without the unwavering support and collaboration of a dedicated group of individuals who 

guided, reviewed, and contributed their knowledge at every phase of the research.

Special thanks go to our technical mentors and advisors whose insights into deep learning, feature engineering, 

and graph-based architectures were crucial in shaping the foundation of this system. Their experience in designing 

intelligent, secure, and efficient detection frameworks has played a vital role in realizing this end

We also deeply appreciate the discussions with cybersecurity practitioners and software engineers who provided 

real-world perspectives that informed the practical desig
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Final Prediction 

IV. CONCLUSION 

In this article, we introduced a novel Source Code Vulnerability Scanner that combines Abstract Syntax Tree (AST) 

based feature learning with MLP and GCN, and classification using a Triplet Loss

model. To combat data imbalance, the framework incorporates Borderline-SMOTE, which outperforms traditional 

classify samples near decision boundaries. The system effectively distinguishes 

between vulnerable and secure code, offering high accuracy, precision, and F1 scores. The user

interface simplifies interaction, enabling practical use for developers and security analysts alike. Overall, the proposed 

system provides a robust and scalable solution for automated vulnerability detection in source code.

While the current architecture demonstrates promising results, future work will focus on expanding language support, 

time threat intelligence, and improving explainability of predictions. Additionally, we plan to 

incorporate dynamic code analysis to complement the existing static analysis framework. Enhancing the model with 

continual learning and feedback loops can also improve adaptability to newly discovered vulnerabilities. Deploying the 

world development environments and extending it to detect zero-day vulnerabilities will further 

ngthen its impact and applicability in modern secure software engineering. 
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