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Abstract: Student dropout poses a major challenge to educational institutions, affecting academic
performance and institutional reputation. This study applies machine learning techniques to predict at-risk
students using data from the Department of Computer Science, University of Benin (2016-2020), with 906
records analyzed. Six classifiers—Naive Bayes, Logistic Regression, SVM, Decision Tree, KNN, and ANN—
were evaluated. Logistic Regression achieved the highest performance (98.9% accuracy) and was selected
for deployment due to its superior recall and FI-score.Advanced pre-processing, including SMOTE for
handling imbalanced data and feature standardization, improved model accuracy. Explainable Al
techniques (SHAP) provided transparency in prediction, helping educators understand key dropout factors.
The system enables early interventions, improves student retention, and offers personalized support. Future
work may include real-time monitoring, cross-institutional data, and NLP for deeper behavioral insights.
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L. INTRODUCTION

1.1 Statement of the Problem

In today’s digital age, social media has become an integral part of students' daily lives, shaping how they communicate,
access information, and spend their free time. While platforms like Facebook, Instagram, TikTok, and YouTube offer
educational content and opportunities for collaboration, excessive and unregulated use may negatively impact academic
focus and performance. For instance, a student who spends several hours daily scrolling through social media might
have less time for studying or completing schoolwork, leading to lower grades. This growing concern raises important
questions about the actual effect of social media usage on students’ academic outcomes. Thus, this study aims to
investigate the relationship between the frequency and purpose of social media use and the academic performance of
Grade 12 General Academic Strand (GAS) students at Talamban National High School for the school year 2023-2024.

1.2 Goals

The goal of this project is to examine the relationship between social media usage and the academic performance of
Grade 12 General Academic Strand (GAS) students at Talamban National High School. It aims to determine how
factors such as time spent on social media, the purpose of usage, and preferred platforms influence students’ general
academic averages. The study seeks to provide insights that can help educators, parents, and students develop healthier
social media habits and create strategies to balance academic responsibilities with online activities.

1.3Importance

This project is important because it addresses a growing concern among educators and parents regarding the impact of
social media on students' academic performance. By identifying how the frequency, purpose, and type of social media
usage affect learning outcomes, the study provides valuable insights for students to develop better time management
and study habits. It also helps teachers and school administrators understand students’ online behavior, allowing them
to design more effective academic support systems. Furthermore, the findings can serve as a guide for parents to
monitor and support their children's responsible use of social media. Overall, the project contributes to creating a more
balanced and productive learning environment in the digital age.
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1.4 Contributions

This project contributes to the growing body of research on the influence of social media on education by providing
localized and current data specific to Grade 12 GAS students at Talamban National High School. It offers a deeper
understanding of how social media habits can affect academic performance, which can help shape school policies and
student support programs. The study also equips educators, parents, and guidance counselors with evidence-based
insights to guide students in developing healthier digital habits. Additionally, it encourages students to reflect on their
social media usage and its impact on their studies, promoting responsible digital citizenship and academic success.

II. REVIEW OF LITERATURE
Impact of Social Media on Students’ Lives
Social media reshapes communication, learning, and access to information among students.
Positive Uses (Junco, 2012)
Platforms like Facebook and Twitter can enhance academic collaboration and engagement.
But excessive use may lead to distraction and reduced focus.
Negative Academic Effects (Kirschner&Karpinski, 2010)
Frequent social media users tend to have lower academic performance.
Multitasking affects cognitive efficiency.
Attention Issues (Ophir, Nass & Wagner, 2009)
Media multitaskers perform poorly on attention-related tasks, affecting study focus.
Potential Academic Benefits (Tess, 2013)
When used properly, social media supports learning through peer communication, online resources, and interactive
content (e.g., YouTube tutorials, academic forums).
Philippine Context (Cabral, 2011)
Filipino high school students use social media for both entertainment and academic purposes.
However, poor time management due to social media often affects academic performance.
Study Purpose
This study explores whether social media is more of a helpful academic tool or a harmful distraction for Grade 12 GAS
students at Talamban National High School.

1. METHODOLOGY

A. System Architecture

The system architecture for this study involves several key stages. First, data was collected through surveys
administered to Grade 12 GAS students at Talamban National High School, focusing on their social media usage and
academic performance. The responses were then cleaned and organized for analysis. Using statistical tools like
descriptive statistics and correlation analysis, the relationship between social media habits and academic outcomes was
examined. Finally, the findings were interpreted to draw conclusions and provide recommendations for students,
educators, and parents on managing social media use to support academic success. (Fig. 2).
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e  Start with Analysis Results: The process begins with analyzing collected data to generate insights.
e Generate Visual Outputs: Four outputs are created—Match Score, Skill Heatmap, Radar Chart, and

Explainable Al Insights.

e Display Results: Each output is displayed to the user for easy interpretation and understanding.
e Download Report: All visual insights are compiled into a report, which users can view or download for future

use

Mathematical Formulation
1. Evaluation Metrics

a. Accuracy

Formula:

Accuracy=TP+TNTP+TN+FP+FNAccuracy=TP+TN+FP+FNTP+TN

Example:
Suppose a model predicts:
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True Positives (TP) = 95 (students correctly predicted to drop out)

True Negatives (TN) = 98 (students correctly predicted to stay)

False Positives (FP) = 5 (students wrongly predicted to drop out)

False Negatives (FN) = 2 (students wrongly predicted to stay)
Accuracy=95+9895+98+5+2=193200=0.965 (96.5%)Accuracy=95+98+5+295+98=200193=0.965(96.5%)

b. Precision

Formula:

Precision=TPTP+FPPrecision=TP+FPTP

Example:

Using the same values as above:

Precision=9595+5=95100=0.95 (95%)Precision=95+595=10095=0.95(95%)

c. Recall (Sensitivity)

Formula:

Recall=TPTP+FNRecall=TP+FNTP

Example:

Recall=9595+2=9597~0.979 (97.9%)Recall=95+295=9795~0.979(97.9%)

d. F1-Score

Formula:

F1-Score=2xPrecisionxRecallPrecision+RecallF 1-Score=2xPrecision+RecallPrecisionxRecall

Example:

F1-Score=2x0.95%0.9790.95+0.979=2x0.9301.929~0.964 (96.4%)F 1-Score=2x0.95+0.9790.95%x0.979=2%1.9290.930
~0.964(96.4%)

2. ROC AUC

Calculation Steps:

Vary the classification threshold and compute True Positive Rate (TPR) and False Positive Rate (FPR) at each
threshold.

Plot TPR (y-axis) vs. FPR (x-axis).

Calculate the area under the curve (AUC).

Example:

Assume thresholds produce the following points:
Threshold TPRFPR
0.1 1.0 1.0
0.5 0.95 0.05
0.8 0.8 0.01

The ROC curve would form a trapezoid. Using the trapezoidal rule:
AUC=12%(0.05-0.01)x(0.84+0.95)+12x(1.0—0.05)*%(1.0+0.95)=~0.98 AUC=21x(0.05-0.01)%(0.8+0.95)+21
%(1.0-0.05)%(1.0+0.95)~0.98

3. Logistic Regression (Sigmoid Function)

Formula:

Logistic regression uses the sigmoid function to map predictions to probabilities:
P(y=1)=11+e—(BO+B1x1+--+fnxn)P(y=1)=1+e—(f0+L1x1+--+fnxn)1
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Example:

If a student has:

Attendance = 80% ($1=0.541=0.5)

GPA =3.0 (B2=—1.242=-1.2)

Intercept ($0=0.150=0.1)
Logit=0.1+(0.5x80)+(—1.2x3.0)=0.1+40—-3.6=36.5Logit=0.1+(0.5x80)+(—1.2x3.0)=0.1+40-3.6=36.5P(Dropout)=11+e
—36.5~1.0 (High risk)P(Dropout)=1+e—36.51~1.0(High risk)

4. SMOTE (Synthetic Minority Oversampling)

Mechanism:

For each minority class sample xixi:

Find its kk nearest neighbors.

Randomly select a neighbor xzixzi.

Create a synthetic sample:

XNew=Xi+AxX(Xzi—Xi)xnew=xi+Ax(xzi—xi)

where A€[0,1]A€[0,1].

Example:

Suppose xi=[70,2.5]xi=[70,2.5] (attendance=70%, GPA=2.5) and xzi=[65,2.0]xzi=[65,2.0].
If A=0.52=0.5:

xnew=[70+0.5%(65-70), 2.5+0.5%(2.0-2.5)]=[67.5,2.25]xnew=[ 70+0.5%(65-70),2.5+0.5%(2.0-2.5)]=[67.5,2.25]

5. SHAP Values (Shapley Additive Explanations)

Formula:

For a model ff, the SHAP value for feature ii is:

0i=Y SCF\ {i}ISII(IFI=ISI-D)NFN{(SU{i})—L(S)]gi=SSF\ {i} Y IFIN IS FI-ISI-DASU{i})-AS)]
Simplified Example:

Consider two features: x1x1 (GPA) and x2x2 (Attendance).

Model output with both features: f(x1,x2)=0.9/(x1,x2)=0.9 (high dropout risk).

Model output with only GPA: f(x1)=0.7£(x1)=0.7.

Model output with only Attendance: f(x2)=0.6f(x2)=0.6.

Model output with no features: f(@)=0.3/{@)=0.3.

0GPA=12[(0.7-0.3)+(0.9-0.6)]=0.4¢GPA=21
[(0.7-0.3)+(0.9-0.6)]=0.4¢Attendance=12[(0.6—0.3)+(0.9-0.7)]=0.25p Attendance=21[(0.6—0.3)+(0.9-0.7)]=0.25
Here, GPA contributes more to the prediction.

6. Bayesian Optimization

Objective: Minimize a loss function L(0)L(6).
Acquisition Function (Expected Improvement):
EI(0)=E[max (Lmin—L(0),0)]E/(#)=E[max(Lmin—L(#),0)]

Steps:

Use a Gaussian Process (GP) to model L(6)L(6).

Select 00 that maximizes EI(0)E1(6).

Example:

If the GP predicts L(0)~N(—0.2,0.1)L(6)~N(-0.2,0.1) and Lmin=—-0.1Lmin=-0.1:
EI(0)=/—cccomax  (—0.1-1,0)-N(1;-0.2,0.1) d1=0.05EI()=[—cccomax(—0.1-£,0)-N(/;~0.2,0.1)dl~0.05
This 06 is a candidate for evaluation.
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IV. RESULTS AND DISCUSSION
A. Input-to-Output Pipeline Demonstration
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V. DISCUSSION

2188239042

The study found a clear link between social media use and academic performance among Grade 12 GAS students. Most
students used platforms like Facebook, TikTok, and Messenger for both schoolwork and entertainment. While some
used these tools for academic collaboration, many spent excessive time online, which negatively affected their focus
and grades.
Students who used social media for over three hours daily, mainly for non-academic purposes, tended to have lower
grades. However, those who used it for studying and discussions often maintained or improved their performance. This
shows that social media can either support or hinder academic success, depending on usage habits.
The findings highlight the need for proper time management and responsible social media use. Parents and teachers
should guide students to use these platforms wisely to maximize their academic potential.
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Limitations:

e  This study was limited to Grade 12 GAS students at Talamban National High School, so results may not apply
to other strands or schools. Data relied on self-reported surveys, which may involve biases or inaccuracies.
The study also focused only on social media usage, excluding other factors that may influence academic
performance.

Future Directions:

e  Future research could include a larger, more diverse student population across different schools and grade
levels. Real-time tracking of social media usage and academic progress may provide more accurate insights.
Incorporating other factors like mental health, study habits, and family environment can also deepen
understanding.

VI. CONCLUSION

The student dropout prediction project aimed to develop a reliable model for predicting potential dropouts using various
machine learning techniques. Through comprehensive data preprocessing and analysis, models such as Logistic
Regression, Decision Trees, KNN, Naive Bayes, ANN, and SVM were evaluated for their predictive performance.
Among these, Logistic Regression demonstrated the highest accuracy and effectiveness in identifying students at risk of
dropping out, with a 98.9% accuracy rate. Furthermore, the integration of advanced approaches like LSTM networks,
XGBoost, and SMOTE in subsequent stages enhanced prediction accuracy and addressed class imbalance. The use of
SHAP values ensured interpretability, allowing educators to understand contributing factors and implement timely
interventions.
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