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Abstract: This paper examines a proposed architecture pattern that has been evaluated to minimize data 

loss rates in AWS. Change Data Capture (CDC) is a methodology that detects and monitors alterations in a 

database, facilitating real-time or near-real-time data replication and synchronization among systems. 

When a CDC process is implemented within a database system, an effective failover mechanism is crucial 

to ensure the ongoing capture and transmission of changes. It is anticipated that some data loss may occur 

during the failover process. This article aims to explore the pattern designed to mitigate such data loss. 
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I. INTRODUCTION 

Change Data Capture: 

Change Data Capture (CDC) has become an optimal method for facilitating near real-time data transfer from relational 

databases, such as SQL Server or Oracle, to data warehouses, data lakes, or other database systems. CDC is a technique 

that detects and records modifications—such as inserts, updates, and deletions—occurring in a source database. This 

process is essential for ensuring data consistency across various platforms, including databases, applications, and data 

warehouses. 

 CDC is a software design pattern employed to identify and handle incremental modifications at the data 

source. It records changes—such as inserts, updates, and deletions—as they occur, enabling data consumers to 

respond immediately. 

 CDC serves as a technique within the ETL (Extract, Transform, Load) framework. This approach is especially 

beneficial for maintaining synchronization between systems, ensuring dependable data replication, supporting 

real-time analytics, and enabling database migrations without downtime. 

 

Data Loss in CDC: 

Data loss poses a considerable risk in change data capture implementations, which can result in interruptions in 

information flow. To address this challenge, organizations should establish a Failover system that consistently oversees 

data ingestion and processing pipelines to detect any irregularities that could lead to data loss. Additionally, this system 

must incorporate strong error handling procedures and ensure effective synchronization between source and destination 

systems. Proper synchronization is crucial in averting incidents of data loss. 

 

Reasons of Data Loss in CDC: 

 Inability to detect modifications: Should the Change Data Capture (CDC) process be unable to identify or 

record alterations in the source database, those modifications will not be transferred to the target systems. 

 Connectivity problems: Disruptions in the connection between the source and target systems may result in data 

being lost or duplicated. 

 Unavailability of the target system: If the target system is not operational or accessible during the CDC 

process's attempt to replicate changes, those changes might be lost or held in a buffer until the system becomes 

available again, which could result in data loss or duplication. 
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Impacts of Data loss in CDC: 

 Inconsistent Reporting: Failure to replicate changes can result in discrepancies across various systems, causing 

errors and misguided decisions. 

 Data Loss: The complete loss of changes may result in the absence of vital data, which can create operational 

challenges. 

 Interrupted Business Operations: Inconsistencies and data loss can interfere with business processes and 

adversely affect decision-making. 

 

Prevent data loss in CDC: 

• Effective CDC Implementation: Confirm that the CDC process is properly set up and continuously monitored 

to accurately record all changes. 

• Connection Stability: Establish strong protocols to guarantee dependable connections between the source and 

target systems. 

• Target System Accessibility: Ensure that target systems are consistently accessible and that there are strategies 

in place to manage temporary disruptions. 

• Data Backup and Recovery: Develop and enforce backup and recovery protocols to safeguard against potential 

data loss. 

 

Resilient Design Patteren for CDC-Data Loss: 

1. Database: 

It functions as the data repository, which can be categorized as either document based storage or relational database 

storage. Modifications to an existing table or document, such as inserts, updates, or deletions, initiate a Change Data 

Capture (CDC) event. For instance, in DocumentDB, there is an option that can be activated to capture this CDC event. 

This event includes metadata along with the changes in the document's state, indicating whether it has been inserted, 

updated, or deleted. 

 

2. Producer Service: 

The Producer Service will handle the retrieval of CDC events from the database. It gathers changes and disseminates 

the CDC event to the designated Queue or Kafka topic. This service can be developed using serverless Lambda, 

facilitating easier maintenance. 

 

3. Document Queue/Kafka topic: 

This middleware stream functions as the primary event broker. The Queue/topic retains events that are published by the 

Producer Service. It enables event-driven communication and promotes decoupling between the Database and 

downstream services. Additionally, it stores Change Data Capture (CDC) events from the database for later 

consumption. Furthermore, it guarantees message durability and resilience against faults. 

 

4. Consumer Service: 

This service functions as an intermediary for transmitting CDC events to the Data Lake or Secondary database, which 

serves as a replica. Additionally, it facilitates synchronous transmission and buffering by managing the flow of 

messages to the target system. It has the capability to batch or throttle messages as required. 

 

5. Fault Tolerance Queue/Topic: 

This Queue/Kafka topic is designated for the collection and storage of information regarding errors and faults that occur 

during the CDC event processing. In instances where the Producer Service is unable to address an error right away, the 

fault is sent to the Fault Tolerance Queue/Topic. This design enables the architecture to log and manage these faults 

independently, ensuring that the primary data flow remains uninterrupted. 
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6. Fault Handler Service: 

A specialized Service/Lambda function serves as a consumer for the Fault Queue/Topic. This function is tasked with 

managing error events, which includes retrying unsuccessful operations or executing designated error-handling 

workflows. The architecture distinctly separates error management from the primary event flow. 

 Additionally, it may initiate notifications to monitoring systems or prompt manual interventions. 

 

7. Dead Letter Queue (DLQ) Topic: 

Should an event fail to be processed successfully after a specified number of attempts, it will be directed to this 

Queue/Topic. This mechanism allows for the examination and subsequent processing of problematic events without 

hindering or endlessly retrying within the main data flow, thereby improving the overall resilience of the system. It 

guarantees that no data is lost and that issues can be addressed manually or rectified for future processing. 

 

Advantages: 

 The Producer and Consumer must be set up with retry mechanisms to manage temporary failures in 

Queue/Kafka. 

 Errors that cannot be resolved through immediate retries are directed to the Fault Queue, allowing them to be 

processed separately without disrupting the primary event flow. 

 For ongoing failures, events are forwarded to the Dead Letter Queue (DLQ). The DLQ facilitates the 

examination and future processing of problematic events, preventing them from being lost or subjected to 

endless retries. 

 This Fault Handler Service makes attempts to retry failed operations or address routing issues for manual 

intervention, thereby ensuring effective fault isolation and averting cascading failures. 

 

Future Considerations 

 AWS Lambda can be utilized to implement producer and consumer services, offering a serverless solution that 

is easy to maintain. Furthermore, the same producer/consumer configuration can be reused across different 

systems for similar functions. 

 In distributed systems, a failover mechanism can be established as a pattern to improve asynchronous 

communication between the systems. The integration of Kafka or message queues will facilitate better 

management of this process. 

 The system will automatically scale in response to the volume of Change Data Capture (CDC) events 

originating from the database. Additionally, it is feasible to link the scaling capabilities to the number of 

messages present in the Kafka topic. 

 

II. CONCLUSION 

This design offers a strong framework for managing Change Data Capture (CDC) modifications within a database and 

processing them via an event-driven architecture for real-time analytics. By carefully selecting and implementing 

resources, this design guarantees scalability, fault tolerance, and a clear division of responsibilities. It is particularly 

effective for data-centric applications that demand high throughput and reduced coupling between components. 
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