

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 8, March 2025

Thermoelectric Power Generation from Industrial Waste Heat: Challenges and Opportunities

Rajanda R. Gajbhiye¹, Yadvendra G. Virulkar², Ashwini K. Sambharkar³, Neha M. Burrewar⁴, Pranay P. Bhadade⁵, Lokesh V. Thombare⁶

> Assistant Professor, Mechanical Department¹ Students, Mechanical Department²⁻⁶ Shri Krushnaro Pandav Polytechnic, Nagpur, India

Abstract: The increasingly worldwide problem regarding rapid economy development and a relative shortage of energy, the internal combustion engine exhaust waste heat and environmental pollution has been more emphasized heavily recently. Out of the total heat supplied to the engine in the form of fuel, approximately, 30 to 40% is converted into useful mechanical work. The remaining heat is expelled to the environment through exhaust gases and engine cooling systems, resulting in to entropy rise and serious environmental pollution, so it is required to utilized waste heat into useful work. As waste heat recovering techniques, such as thermoelectric generator (TEG) is developed, Due to distinct benefits of thermoelectric generators, they have become a promising alternative green technology...

Keywords: Waste heat from I. C. Engine, waste heat Recovery, TEGs, Electricity

I. INTRODUCTION

The Internal Combustion Engine has been a primary power source for automobiles and automotives over the past century. Presently, high fuel costs and concerns about foreign oil dependence have resulted in increasingly complex engine designs to decrease fuel consumption.

In this project we are generating electrical power as non-conventional method by heat energy Non-conventional energy systems very essential at this time to our nation. Non-conventional energy using is converting mechanical energy into the electrical energy. Here in this project a mechanical arrangement is made. Use of embedded technology makes this system efficient and reliable. Micro controller allows dynamic and faster control. Liquid crystal display (LCD) makes the system user-friendly. Arduino controller is the heart of the circuit as it controls all the functions.

In this project the conversion of the Heat energy in to electrical energy. By using this energy fan will operates and the energy is stored in a battery. The control mechanism carries the A.C ripples neutralizer, unidirectional current controller and 12V, from this battery supply will pass to the inverter and it is used to drive AC/DC loads. The battery is connected to the inverter. This inverter is used to convert the 12 Volt D.C to the 230 Volt A.C. This 230 Volt A.C voltage is used to activate the loads. We are using conventional battery charging unit also for giving supply to the circuitry.

In this project we are using TEP Transducer .Transducer is a device which converts one form of energy in to another form of energy. This includes electrical, mechanical, light and heat energy also. While the term transducer commonly implies the use of sensors/detector any device which converts energy considered as Transducer.

II. OBJECTIVE

The current research is focusing on a technology, which is able to convert the thermal energy contained in the exhaust gas directly into electric power. In this project concept it invented exhaust gas-based thermoelectric power generator for an industry application.

In this invention, the exhaust gas gases in the pipe provide the heat source to the thermoelectric power generator. So, this project proposes and implements a thermoelectric waste heat energy recovery system from the exhaust heat from running machineries.

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-24556

418

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 8, March 2025

The key is to directly convert the heat energy from automotive waste heat to electrical energy using a thermoelectric generator. While the electric power generation by such a system is able to generate is still relatively small at a maximum of 10 W from a single TEG module, rapid progress in materials research can make the ambitious objective of generating higher watts by all means of feasible proposition.

III. LITERATURE REVIEW

This invention relates to the Internal Combustion Engine. Among all research directions, waste heat recovery (WHR) is most concerned, due to the widespread existence and high accessibility of suitable resources. According to India Bureau of Energy Efficiency, the benefits of WHR includes reduction in the process consumption and costs, reduction in pollution and equipment sizes, and also reduction in auxiliary energy consumption. While there are a number of devices to fulfil WHR, thermoelectric generator (TEG) has been utilized in most automotive applications.

Jihad G. Haidar, Jamil I. Ghojel, "waste heat recovery from the exhaust of low- power Diesel engine using thermoelectric generators, 20TH international conference on thermoelectric(2001), p413-417 From literature survey 1 we studied how to recover waste heat and how to utilize waste heat from different industries.

Mariem SAIDA, Ghada ZAIBI, Mounir SAMET, Abdennaceur KACHOURI, A new design of thermoelectric generator for health monitoring, 2017 International Conference on Smart, Monitored and Controlled Cities (SM2C), Kerkennah, Tunisia, February, 17-19, 2017, p 59-63, From literature survey 2 we analysed about thermoelectric generator and its specification.

Ahaad Hussein Alladeen, Shanshui Yang, Yazhu Liu, Feng Cao, Thermoelectric waste heat recovery with cooling system for low gradient temperature using power conditioning to supply 28V to a DC bus, 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), 2017, From literature survey 3 we studied different types of cooling system and different types of coolant.

Arash Edvin Risseh, Electrical Power Conditioning System for Thermoelectric Waste Heat Recovery in Commercial Vehicles, IEEE Transactions on transportation electrification, 2018, p 2-16, From literature survey 4 we got an idea about how to recover the waste heat from automobile application

IV. EXPERIMENTAL BLOCK DIAGRAM

Power generation from waste of industries

Fig.1. Block Diagram of system

V. WORKING PRINCIPLE

TEG consists of one hot side and one cold side. The hot side with higher temperature, will drive electrons in the n-type leg toward the cold side with lower temperature, which cross the metallic interconnect, and pass into the p-type leg, thus developing a current through the circuit.

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-24556

419

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 8, March 2025

If temperature difference is kept constant, then the diffusion of charge carriers will form a constant heat current, hence a constant electrical current.

Fig.2. Working Principle

VI. WORKING

Non-conventional energy using is converting mechanical energy into the electrical energy. Here in this project a power generation arrangement is made. Use of thermoelectric principle makes this system efficient and reliable.

In any industry machineries continuously run for their production. It release large amount of heat. This is wastage heat. We utilized this wastage heat to produce electricity. In this way we can minimize some amount air pollution also.

When we apply TEG with Heat sink module to wastage heat through heat pipe executed from machine. Then at the same time TEG starts converting Heat energy into Electrical energy. We can measure this heat with the help of temperature sensor attached to the system.

One DC fan is attached to system to indicates the flow and conversion of heat energy into Electrical energy. As the amount of temperature is increases, the flow of fan is also increases.

Generated electrical energy is stored in battery. This stored energy is supply to inverter to convert DC to AC.

At the output AC load is obtain. This AC load is utilized to run various loads in same industry like, fan, AC, light etc. We also attached 8051 microcontroller (AT89S52) with LCD display to measure the amount of voltage stored and remaining in battery.

In this way, whole system work. Start from wastage of heat dissipated in industry through production process. Then conversion of heat into electricity. Indication of conversion electricity through DC fan and motor. Storage of electricity in battery. Conversion of DC voltage to AC voltage with help of inverter. Microcontroller attached to show the voltage present at battery. And last AC load attached to inverter.

If such system utilized in automobiles industry, the amount of wastage heat we can utilized it. And also minimized air pollution problem cussing by vehicles.

VII. COMPONENTS SOECIFICATION

Thermoelectric plate Exhaust fan with Aluminum heat sink Silencer Heat source (Engine considered device) DC motor with fan Battery Inverter module

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-24556

420

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 8, March 2025

Temperature sensor Controller board (8051 controller) LCD display (16*2) wiring switches LED bulb Metallic Frame connector circuit board Adapter

VIII. BENEFITS

TEGs are solid-state device, which means that they have no moving parts during their operations. No moving parts so maintenance required is less frequently, no chlorofluorocarbons. Temperature control to within fractions of a degree can be maintained, flexible shape, very small size.

TEGs can be used in environments that are smaller or more severe than conventional refrigeration. TEG has long life, and also it can be controllable by changing the input voltage/current

IX. SCOPE OF THE STUDY

By using thermoelectric generator connecting in series /parallel we can generate the power for maximum level Even body heat also generate the heat that can be utilizing by using TEG to generate the power to charge the portable equipment like laptop mobile etc

By installed in the vehicle above the radiator means the vehicle battery will charge self.

X. ADVANTAGES

- Clean, Noise less, Cost is less.
- This is a Non-conventional system ,No fuel is require
- Easy maintenance, portable, Charging time is less (maximum temp)
- Promising technology for solving power crisis to an affordable extent.
- Simple in construction, Pollution free, Reduces transmission losses.
- Wide areas of application# Required less space
- It can be use at any time when it necessary.
- Less number of parts required.
- we can charge any electronic devices
- Electricity can used for many purposes
- Efficient and eliminate the grid searching.

XI. DISADVANTAGES

Improper variation of temperature gradient difference may damage the TEG, Complex design.

XII. APPLICATIONS

Thermoelectric Generators are basically used in where the power production is less.

In many industries amount of heat is executed and been wastage. We can used this hear for electricity using TEG.

In automobile vehicle produce heat that can be used for generating electricity by using TEG.

Recharge the battery where ever waste heat is obtained.

Self charging battery by fixing the TEG at radiator or two wheeler silencers pipe.

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-24556

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 8, March 2025

XIII. CONCLUSION

Waste heat recovery entails capturing and reusing the waste heat from machineries in industries and using it for generating electrical work. It would also help to recognize the improvement in performance and emissions of the machineries if these technologies were adopted by the production industries.

If this concept of thermoelectric system is taken to the practical level then there will be large amount of electricity can be generated, which will be used to run industrial load itself. Also large amount of wastage heat for pollution is also uses in this system in continue manner. And such industries also somehow help to protect the environmental pollution.

REFERENCES

[1] Taguchi, Tomanari. "Exhaust heat recovery power generation device and automobile equipped therewith", US Patent- US20070193617 (2007). (Conference)

[2] Ramesh Kumar C, Ankit Sonthalia, and Rahul Goel. (2011), "Experimental study on Waste Heat Recovery from an Internal Combustion engine using Thermo Electric Technology", Journal of Thermal Science Vol .15, Vol. 15, No. 4, pp. 1011-10220. (Journal)

[3] Engr. Bony Francis Rozario, Dr. Mohammad Abdul Mannan, "Designing Oil Fired Power Plant Incorporated with Renewable Energy and Analyzing Capacity Improvement", International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014, ISSN 2229-5518.(Journal)

[4] Chethan R Reddy, Shrikantha S Rao, Vijay Desai, Karthikeyan Ramachandran, "Modeling of an Automotive Thermo Electric Generator (ATEG)", International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064. (Journal)

[5] Adavbiele A.S. (2013), "Generation of Electricity from Gasoline Engine Waste Heat", Journal of Energy Technologies and Policy Vol.3 | ISSN 2224-3232 (Paper) | ISSN 2225-0573 (Online)

[6] Ajay Chandravanshi, Suryavanshi J.G. (2013), "Waste Heat Recovery from Exhaust Gases through I C Engine Using Thermoelectric Generator", International Journal of Applied Research Volume: 3 | Issue: 7 | ISSN - 2249-555X. (Journal)

[7] Baskar P, Seralathan S, Dipin D, Thangavel S, Norman Clifford Francis I J and Arnold C. (2014), "Experimental Analysis of Thermoelectric Waste Heat Recovery System Retrofitted to Two Stroke Petrol Engine", International Journal of Advanced Mechanical

Engineering - ISSN 2250-3234 | Volume 4 | pp. 9-14. (Journal)

[8] Jadhao J S, Thombare D G. (2013), "Review on Exhaust Gas Heat Recovery for I.C. Engine", International Journal of Engineering and Innovative Technology | Volume 2 | Issue 12 | June 2013 | ISSN: 2277-3754. (Journal)

[9] Birkholz E, Grob U, Stohrer and Voss K. (1988) 'Conversion of waste exhaust heat in automobiles using FeSi2 thermo-elements", Proceedings of 7th International Conference on Thermoelectric energy conversion, University of Texas, March 16-18, 1988, pp.124-128. (Conference)

[10]Xiaodong Zhang, K. T. Chau, and C. C. Chan. (2009), "Design and Implementation of a Thermoelectric-Photovoltaic Hybrid Energy Source for Hybrid Electric Vehicles", World Electric Vehicle Journal | Vol. 3 |May 13-16, 2009| ISSN 2032-6653 | (Journal)

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-24556

