

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT DOI: 10.48175/

www.ijarsct.co.in

Impact Factor: 7.67

Dual-OS Architecture: Integrating QNX and

Android for Next-

Abstract: This technical article explores the innovative

Android operating systems for next

technology, the proposed design creates a dual

functions with real-time performance while Android delivers rich infotainment experiences. The article

examines the foundational virtualization technology, implementation specifics for both operating systems,

inter-OS communication protocols, and practical challenges

to consolidate hardware, maintain safety certification requirements, and enhance user experiences while

providing the flexibility to adapt to evolving technology standards. The resulting architecture represent

significant advancement in embedded automotive systems, balancing the competing demands of safety,

performance, and user experience.

Keywords: Hypervisor Virtualization, Real

Critical Computing, Inter-OS Communication

The automotive industry is witnessing an unprecedented transformation in electrical/electronic (E/E) architectures,

evolving from distributed ECU networks to centralized domain and zonal controllers. Today's premium

contain between 80 to 120 ECUs with complex software stacks, representing a 40% increase from just five years ago

[1]. This dramatic growth in complexity necessitates innovative approaches to operating system integration that balance

safety requirements with consumer expectations for sophisticated digital experiences.

1.1 Evolution of Automotive Computing Platforms

Each function's traditional dedicated hardware approach has become unsustainable as vehicle software content expands

exponentially. High-end vehicles now run approximately 150

decade ago [1]. This software explosion has driven the shift toward domain controllers consolidating multiple functions

IJARSCT ISSN (Online) 2581

International Journal of Advanced Research in Science, Communication and Technology

Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, March 2025

DOI: 10.48175/IJARSCT-24467

OS Architecture: Integrating QNX and

-Generation Automotive Systems
Vijay Kumar Cheni
Globallogic Inc., USA

This technical article explores the innovative architecture that seamlessly integrates QNX and

Android operating systems for next-generation automotive applications. By leveraging hypervisor

technology, the proposed design creates a dual-environment system where QNX handles safety

time performance while Android delivers rich infotainment experiences. The article

examines the foundational virtualization technology, implementation specifics for both operating systems,

OS communication protocols, and practical challenges. This article allows automotive manufacturers

to consolidate hardware, maintain safety certification requirements, and enhance user experiences while

providing the flexibility to adapt to evolving technology standards. The resulting architecture represent

significant advancement in embedded automotive systems, balancing the competing demands of safety,

Hypervisor Virtualization, Real-Time Operating Systems, Automotive Infotainment, Safety

OS Communication

I. INTRODUCTION

The automotive industry is witnessing an unprecedented transformation in electrical/electronic (E/E) architectures,

evolving from distributed ECU networks to centralized domain and zonal controllers. Today's premium

contain between 80 to 120 ECUs with complex software stacks, representing a 40% increase from just five years ago

[1]. This dramatic growth in complexity necessitates innovative approaches to operating system integration that balance

ements with consumer expectations for sophisticated digital experiences.

1.1 Evolution of Automotive Computing Platforms

Each function's traditional dedicated hardware approach has become unsustainable as vehicle software content expands

end vehicles now run approximately 150-200 million lines of code, compared to just 10 million a

decade ago [1]. This software explosion has driven the shift toward domain controllers consolidating multiple functions

ISSN (Online) 2581-9429

Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 535

OS Architecture: Integrating QNX and

Generation Automotive Systems

architecture that seamlessly integrates QNX and

generation automotive applications. By leveraging hypervisor

environment system where QNX handles safety-critical

time performance while Android delivers rich infotainment experiences. The article

examines the foundational virtualization technology, implementation specifics for both operating systems,

. This article allows automotive manufacturers

to consolidate hardware, maintain safety certification requirements, and enhance user experiences while

providing the flexibility to adapt to evolving technology standards. The resulting architecture represents a

significant advancement in embedded automotive systems, balancing the competing demands of safety,

Time Operating Systems, Automotive Infotainment, Safety-

The automotive industry is witnessing an unprecedented transformation in electrical/electronic (E/E) architectures,

evolving from distributed ECU networks to centralized domain and zonal controllers. Today's premium vehicles

contain between 80 to 120 ECUs with complex software stacks, representing a 40% increase from just five years ago

[1]. This dramatic growth in complexity necessitates innovative approaches to operating system integration that balance

Each function's traditional dedicated hardware approach has become unsustainable as vehicle software content expands

200 million lines of code, compared to just 10 million a

decade ago [1]. This software explosion has driven the shift toward domain controllers consolidating multiple functions

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT DOI: 10.48175/

www.ijarsct.co.in

Impact Factor: 7.67

under unified hardware platforms. The industry is progressively moving from Stage 2 architecture (domain controllers)

to Stage 3 (cross-domain integration), with leading manufacturers already planning Stage 4 implementations that

feature central compute platforms managing multiple operating s

1.2 Challenges in Balancing Safety and User Experience

Automotive manufacturers face the complex challenge of integrating safety

performance with feature-rich infotainment platforms. QNX,

certification, has dominated critical automotive systems with deployments in over 175 million vehicles globally [2].

Concurrently, Android Automotive OS has emerged as the preferred platform for infotain

increasing by 145% between 2020 and 2023 [2]. The fundamental challenge lies in creating a cohesive architecture that

maintains ASIL-D certification requirements for safety

consumers demand.

1.3 The Business Case for QNX-Android Integration

The economic incentives for operating system integration through virtualization are compelling. Industry analysis

suggests that consolidated E/E architectures can reduce hardware costs

up to 40% [1]. Hypervisor-based virtualization enables QNX to maintain direct hardware access for safety

functions while Android handles user-facing applications, reducing the bill of materials while im

coherence. This approach addresses the market reality that 68% of consumers now consider digital experience a

primary factor in vehicle purchasing decisions [2]. Forward

advantage increasingly depends on software capabilities, with virtualization technology providing the foundation for

continued innovation while maintaining safety integrity.

Fig. 1: Evolution of Automotive EE Architectures [1, 2]

II. HYPERVISOR TECHN

Implementing multi-OS architectures in automotive systems relies fundamentally on hypervisor technology that

establishes secure partitioning and resource management for QNX and Android environments on shared hardware

platforms. Recent advancements in this domain have significantly enhanced the viability of such integrations for

production vehicles.

IJARSCT ISSN (Online) 2581

International Journal of Advanced Research in Science, Communication and Technology

Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, March 2025

DOI: 10.48175/IJARSCT-24467

industry is progressively moving from Stage 2 architecture (domain controllers)

domain integration), with leading manufacturers already planning Stage 4 implementations that

feature central compute platforms managing multiple operating systems simultaneously [1].

1.2 Challenges in Balancing Safety and User Experience

Automotive manufacturers face the complex challenge of integrating safety-critical systems requiring deterministic

rich infotainment platforms. QNX, with its microkernel architecture and proven safety

certification, has dominated critical automotive systems with deployments in over 175 million vehicles globally [2].

Concurrently, Android Automotive OS has emerged as the preferred platform for infotainment, with adoption

increasing by 145% between 2020 and 2023 [2]. The fundamental challenge lies in creating a cohesive architecture that

D certification requirements for safety-critical functions while providing the rich application ecosyst

Android Integration

The economic incentives for operating system integration through virtualization are compelling. Industry analysis

suggests that consolidated E/E architectures can reduce hardware costs by 30% while decreasing development time by

based virtualization enables QNX to maintain direct hardware access for safety

facing applications, reducing the bill of materials while improving overall system

coherence. This approach addresses the market reality that 68% of consumers now consider digital experience a

primary factor in vehicle purchasing decisions [2]. Forward-thinking OEMs have recognized that competitive

singly depends on software capabilities, with virtualization technology providing the foundation for

continued innovation while maintaining safety integrity.

Fig. 1: Evolution of Automotive EE Architectures [1, 2]

II. HYPERVISOR TECHNOLOGY: THE FOUNDATION FOR OS INTEGRATIO

OS architectures in automotive systems relies fundamentally on hypervisor technology that

establishes secure partitioning and resource management for QNX and Android environments on shared hardware

advancements in this domain have significantly enhanced the viability of such integrations for

ISSN (Online) 2581-9429

Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 536

industry is progressively moving from Stage 2 architecture (domain controllers)

domain integration), with leading manufacturers already planning Stage 4 implementations that

critical systems requiring deterministic

with its microkernel architecture and proven safety

certification, has dominated critical automotive systems with deployments in over 175 million vehicles globally [2].

ment, with adoption

increasing by 145% between 2020 and 2023 [2]. The fundamental challenge lies in creating a cohesive architecture that

critical functions while providing the rich application ecosystem

The economic incentives for operating system integration through virtualization are compelling. Industry analysis

by 30% while decreasing development time by

based virtualization enables QNX to maintain direct hardware access for safety-critical

proving overall system

coherence. This approach addresses the market reality that 68% of consumers now consider digital experience a

thinking OEMs have recognized that competitive

singly depends on software capabilities, with virtualization technology providing the foundation for

ON FOR OS INTEGRATION

OS architectures in automotive systems relies fundamentally on hypervisor technology that

establishes secure partitioning and resource management for QNX and Android environments on shared hardware

advancements in this domain have significantly enhanced the viability of such integrations for

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT DOI: 10.48175/

www.ijarsct.co.in

Impact Factor: 7.67

2.1 Fundamentals of Virtualization in Embedded Environments

Automotive hypervisors must satisfy stringent requirements that differ subst

solutions. Current production-grade automotive hypervisors achieve isolation between critical and non

workloads with minimal performance overhead, typically less than 3% for CPU

memory operations [3]. This efficiency is crucial when integrating resource

deterministic QNX subsystems. Modern implementations leverage hardware virtualization extensions in automotive

grade SoCs, with ARM-based platforms dominating 76% of new designs due to their robust virtualization capabilities

and power efficiency profiles [3]. The microkernel architecture employed by leading automotive hypervisors ensures a

minimal Trusted Computing Base (TCB) of typ

surface compared to monolithic alternatives that may exceed 100,000 lines [4]. This lean design facilitates formal

verification processes for meeting ISO 26262 certification requirements

2.2 Resource Allocation and Partitioning Strategies

Resource partitioning in automotive hypervisors employs sophisticated mechanisms to ensure QNX real

performance while maximizing Android functionality.

critical QNX processes receive 40-60% of CPU time regardless of Android load, with scheduling jitter contained to

under 100 microseconds even during peak system utilization [4]. Memory partitionin

establish strict boundaries between operating systems, with page tables managed exclusively by the hypervisor to

prevent cross-VM memory corruption. Contemporary implementations support asymmetric multiprocessing

configurations that dedicate specific cores to safety

cores to Android workloads based on demand. Benchmark data indicates that such configurations can reduce context

switching overhead by up to 35% compa

improvements in real-time response for safety

Fig. 2: New driver assistance systems [3, 4]

2.3 Security Considerations in Multi-OS Environments

The security architecture in virtualized automotive systems implements defense

external attacks and inter-OS vulnerabilities. Modern automotive hypervisors establish hardware

IJARSCT ISSN (Online) 2581

International Journal of Advanced Research in Science, Communication and Technology

Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, March 2025

DOI: 10.48175/IJARSCT-24467

2.1 Fundamentals of Virtualization in Embedded Environments

Automotive hypervisors must satisfy stringent requirements that differ substantially from conventional IT virtualization

grade automotive hypervisors achieve isolation between critical and non

workloads with minimal performance overhead, typically less than 3% for CPU-intensive tasks and unde

memory operations [3]. This efficiency is crucial when integrating resource-intensive Android environments alongside

deterministic QNX subsystems. Modern implementations leverage hardware virtualization extensions in automotive

based platforms dominating 76% of new designs due to their robust virtualization capabilities

and power efficiency profiles [3]. The microkernel architecture employed by leading automotive hypervisors ensures a

minimal Trusted Computing Base (TCB) of typically 8,000-12,000 lines of code, significantly reducing the attack

surface compared to monolithic alternatives that may exceed 100,000 lines [4]. This lean design facilitates formal

verification processes for meeting ISO 26262 certification requirements up to ASIL-D for safety-critical functions.

2.2 Resource Allocation and Partitioning Strategies

Resource partitioning in automotive hypervisors employs sophisticated mechanisms to ensure QNX real

performance while maximizing Android functionality. Time-division multiplexing techniques guarantee that safety

60% of CPU time regardless of Android load, with scheduling jitter contained to

under 100 microseconds even during peak system utilization [4]. Memory partitioning leverages hardware MMUs to

establish strict boundaries between operating systems, with page tables managed exclusively by the hypervisor to

VM memory corruption. Contemporary implementations support asymmetric multiprocessing

that dedicate specific cores to safety-critical functions while allowing dynamic allocation of remaining

cores to Android workloads based on demand. Benchmark data indicates that such configurations can reduce context

switching overhead by up to 35% compared to symmetric multiprocessing approaches, translating to measurable

time response for safety-critical functions [3].

Fig. 2: New driver assistance systems [3, 4]

OS Environments

chitecture in virtualized automotive systems implements defense-in-depth strategies that protect against

OS vulnerabilities. Modern automotive hypervisors establish hardware

ISSN (Online) 2581-9429

Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 537

antially from conventional IT virtualization

grade automotive hypervisors achieve isolation between critical and non-critical

intensive tasks and under 5% for

intensive Android environments alongside

deterministic QNX subsystems. Modern implementations leverage hardware virtualization extensions in automotive-

based platforms dominating 76% of new designs due to their robust virtualization capabilities

and power efficiency profiles [3]. The microkernel architecture employed by leading automotive hypervisors ensures a

12,000 lines of code, significantly reducing the attack

surface compared to monolithic alternatives that may exceed 100,000 lines [4]. This lean design facilitates formal

critical functions.

Resource partitioning in automotive hypervisors employs sophisticated mechanisms to ensure QNX real-time

division multiplexing techniques guarantee that safety-

60% of CPU time regardless of Android load, with scheduling jitter contained to

g leverages hardware MMUs to

establish strict boundaries between operating systems, with page tables managed exclusively by the hypervisor to

VM memory corruption. Contemporary implementations support asymmetric multiprocessing

critical functions while allowing dynamic allocation of remaining

cores to Android workloads based on demand. Benchmark data indicates that such configurations can reduce context

red to symmetric multiprocessing approaches, translating to measurable

depth strategies that protect against

OS vulnerabilities. Modern automotive hypervisors establish hardware-enforced security

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, March 2025

Copyright to IJARSCT DOI: 10.48175/IJARSCT-24467 538

www.ijarsct.co.in

Impact Factor: 7.67

domains that prevent Android security compromises from affecting QNX safety functions, with measured isolation

effectiveness exceeding 99.7% in penetration testing scenarios [3]. Secure inter-VM communication channels employ

message-passing interfaces with configurable permission models that restrict data flows based on predefined security

policies. Hardware-backed security features, including ARM TrustZone technology in 82% of new automotive SoC

designs, provide secure key storage and trusted execution environments independent of QNX and Android domains [4].

Runtime monitoring capabilities detect potential security violations with latencies under 500 microseconds, enabling

containment of threats before they can propagate across OS boundaries.

III. QNX IMPLEMENTATION: SAFETY-CRITICAL SUBSYSTEMS

Implementing QNX within virtualized automotive architectures establishes the foundation for safety-critical functions

that require deterministic performance and certified reliability. As automotive systems grow increasingly complex,

QNX provides the necessary framework for maintaining safety integrity while coexisting with feature-rich Android

environments.

3.1 QNX RTOS Capabilities and Certification Standards

QNX Neutrino RTOS delivers a robust platform for safety-critical automotive applications through its microkernel

architecture and comprehensive certification pedigree. The QNX Hypervisor enables virtualized deployments that

support up to 64 virtual machines on a single SoC, allowing precise separation between QNX safety domains and

Android infotainment environments [5]. This architecture maintains hard real-time performance for critical functions

while accommodating resource-intensive applications, with the QNX microkernel achieving deterministic scheduling

with sub-microsecond precision. The QNX adaptive partitioning technology ensures critical processes receive

guaranteed CPU time regardless of system load, maintaining safety integrity even when Android domains consume

significant resources. The platform has achieved ISO 26262 ASIL D certification, validating its suitability for systems

where failures could result in severe injury or loss of life. This certification encompasses the kernel and extends to the

file system, graphics subsystem, and networking stack, creating a comprehensive foundation for safety-critical

applications with verified functional safety mechanisms [5].

3.2 Hardware Access Management for Critical Components

QNX implementations in virtualized environments leverage sophisticated hardware partitioning to ensure deterministic

access to safety-critical peripherals. The system utilizes direct device assignment for time-sensitive hardware interfaces,

allowing the QNX domain exclusive control of safety-relevant peripherals, including CAN controllers, sensor

interfaces, and actuator systems [6]. This approach eliminates virtualization overhead for critical paths, with measured

interrupt latencies remaining under 5 microseconds even during peak system load from the Android domain. The QNX

Hypervisor Security Manager enforces hardware access controls through a secure boot process that authenticates each

software component before execution, establishing a chain of trust from boot ROM through application code [5]. This

secure initialization sequence prevents unauthorized code execution in safety domains, with cryptographic validation of

all software components before they gain access to critical hardware interfaces. Memory Protection Units (MPUs)

establish strict boundaries between virtual machines, with hardware-enforced separation preventing Android processes

from accessing memory regions assigned to QNX safety functions [6].

3.3 Fault Tolerance and Isolation Mechanisms

QNX implements comprehensive fault management strategies that are crucial for automotive safety applications. The

Health Monitoring framework continuously assesses system integrity through hierarchical monitoring that can detect

anomalies at the process, partition, or system level [6]. This monitoring framework supports sophisticated recovery

strategies that can restart individual components without affecting the overall system, maintaining safety functions even

when specific modules encounter faults. The QNX persistent publish/subscribe messaging system ensures reliable

communication between components with guaranteed message delivery even during system transitions or recoveries

[5]. High-availability frameworks support redundant configurations with rapid failover capabilities, essential for

systems like steer-by-wire and brake-by-wire that must maintain operation during component failures. The adaptive

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, March 2025

Copyright to IJARSCT DOI: 10.48175/IJARSCT-24467 539

www.ijarsct.co.in

Impact Factor: 7.67

time partitioning technology guarantees that safety-critical processes receive their allocated CPU budget regardless of

other system activities, preventing infotainment workloads from starving essential safety functions [6]. This separation

ensures that QNX safety domains maintain their deterministic performance characteristics even under maximum load

conditions with measured scheduling jitter below 100 microseconds.

IV. ANDROID INTEGRATION: ADVANCED INFOTAINMENT FEATURES

The integration of Android Automotive OS into virtualized vehicle architectures enables sophisticated infotainment

experiences while navigating the unique constraints of automotive environments. This section explores the technical

foundations and optimization strategies that make Android a viable companion to QNX in modern vehicle computing

platforms.

4.1 Android Automotive OS Architecture Overview

Android Automotive OS implements a specialized architecture designed specifically for in-vehicle deployment,

featuring three distinct layers that work in concert to deliver the infotainment experience. At its foundation, the

Hardware Abstraction Layer (HAL) contains vehicle-specific implementations through the Vehicle HAL (VHAL),

which exposes over 450 standardized vehicle properties to applications while maintaining security boundaries [7]. This

abstraction enables a consistent programming interface across diverse vehicle platforms while isolating safety-critical

systems. The Application Framework layer builds upon this foundation with automotive-specific services, including the

Car Service that manages vehicle-specific functionality and the specialized permission model that controls access to

sensitive vehicle data. When deployed in virtualized environments, the Android framework operates within memory

constraints typically limited to 4-6 GB of RAM shared with other systems, necessitating specialized resource

management beyond conventional Android implementations [7]. The System UI layer delivers the user-facing

experience with vehicle-optimized interfaces designed for driver safety, featuring larger touch targets averaging 10-15

mm compared to the 7-9 mm targets typical in mobile applications, reducing interaction errors during vehicle operation.

4.2 Hardware Virtualization for Optimal Performance

Achieving optimal Android performance in a virtualized automotive environment requires sophisticated resource

management techniques that balance user experience with system constraints. Graphics performance represents a

particular challenge, with virtualized GPU access introducing approximately 8-12% overhead compared to bare-metal

implementations [8]. This overhead can be mitigated through specialized rendering pipelines prioritizing critical UI

elements and employing aggressive frame prediction for non-essential animations. Memory management strategies

significantly impact perceived performance, with virtualized Android implementations typically employing

compression techniques that achieve 2.5-3x compression ratios for cached application data, effectively extending

available memory without increasing physical RAM [8]. Cold start optimization techniques incorporate preloading

mechanisms that can reduce application launch times by up to 45% compared to standard implementations. This is

critically important in the automotive context, where users expect immediate responsiveness after vehicle startup.

Power consumption in virtualized Android environments presents unique challenges that must be addressed through

coordinated power state management across virtual machines, with modern implementations achieving idle power

consumption under 50 mW while maintaining rapid resume capabilities essential for automotive systems [7].

4.3 Managing User Experience Expectations

Delivering consistent user experiences in virtualized automotive Android deployments requires specialized application

performance and stability management. Application Not Responding (ANR) events, which significantly impact user

satisfaction, can be reduced by up to 90% through specialized monitoring systems that detect potential blockages and

adjust thread priorities dynamically based on user interaction patterns [8]. Frame rate stability represents a critical

quality metric, with optimized implementations maintaining 60 FPS rendering for primary UI elements even during

resource-constrained conditions by employing context-aware rendering priority systems. User perception studies

indicate that interface responsiveness is judged primarily on input latency, with measurements showing that

maintaining touch-to-feedback latency below 70 ms results in 92% user satisfaction ratings regardless of background

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, March 2025

Copyright to IJARSCT DOI: 10.48175/IJARSCT-24467 540

www.ijarsct.co.in

Impact Factor: 7.67

processing delays [8]. This insight drives specialized input handling pipelines that prioritize immediate visual feedback

while queuing less critical operations. The Android runtime environment in automotive applications implements

specialized garbage collection strategies that reduce worst-case pause times to under 10 ms, eliminating the perceptible

stuttering that can occur with standard Android memory management during extended operation sessions in typical in-

vehicle environments [7].

Layer Component Function Automotive-Specific Optimization

Application

Layer

Automotive Apps
User-facing

applications

Distraction mitigation, larger touch

targets (10-15 mm)

Google Automotive

Services
Core Google services

Vehicle-optimized variants with

reduced resource usage

Third-Party Apps
Extended

functionality

The certification process for

automotive compatibility

Framework

Layer

Car Service
Vehicle-specific

functionality

Interface to 450+ standardized vehicle

properties

Window Manager Manages UI elements
Optimized for automotive displays

and driver attention

Activity Manager Application lifecycle
Modified for rapid availability of

critical functions

Input Manager Handles user input
Adapted for automotive input methods

(knobs, steering controls)

HAL Layer

Vehicle HAL

(VHAL)

Exposes vehicle

properties

Standardized interface across vehicle

platforms

Graphics HAL Rendering support
Virtual GPU support with 92% of

native performance

Audio HAL Audio routing
Entertainment vs. critical alerts

prioritize

Sensor HAL
Access to vehicle

sensors

Filtered access based on safety

considerations

Runtime

ART (Android

Runtime)
Executes applications

Modified GC strategies with <10ms

pause times

Memory Management Resource allocation
2.5-3x compression ratios for cached

app data

Power Management Energy conservation
Coordinated state management with

QNX VM

Table 1: Android Automotive OS Architecture Components in Virtualized Environments [7, 8]

V. INTER-OS COMMUNICATION AND RESOURCE SHARING

Integrating QNX and Android operating systems requires sophisticated communication channels that maintain strict

domain separation while enabling efficient data exchange. These mechanisms form the critical foundation for safety-

critical functions and rich infotainment features to coexist on unified hardware.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, March 2025

Copyright to IJARSCT DOI: 10.48175/IJARSCT-24467 541

www.ijarsct.co.in

Impact Factor: 7.67

5.1 Communication Protocols Between Isolated Environments

Inter-OS communication in virtualized automotive environments employs specialized mechanisms optimized for

performance and isolation integrity. Real-Time Inter-VM Shared Memory (RTISM) frameworks represent the current

state-of-the-art, implementing lockless ring buffer structures that achieve remarkable efficiency with measured worst-

case execution times (WCET) of just 21.7 microseconds for typical data transfers under 1 KB [9]. This performance

represents a significant advancement over traditional hypervisor-mediated approaches often introducing latencies

exceeding 500 microseconds. The communication architecture typically employs a multi-layered approach with

dedicated channels for different traffic classes, establishing separate paths for periodic sensor data, event notifications,

and bulk transfers. Performance analysis demonstrates that optimized implementations can sustain throughput

exceeding 5.3 Gbps between virtual machines while maintaining sub-100 microsecond latencies essential for time-

critical functions [9]. Specialized cache management techniques enhance performance by utilizing cache coherency

protocols to maintain data visibility across cores without explicit cache flushing operations, reducing latency variations

by up to 74% compared to naive implementations.

5.2 Shared Memory Approaches and Security Implications

Shared memory systems form the foundation of high-performance inter-OS communication while introducing

significant security considerations that must be carefully managed. Modern implementations utilize Non-Uniform

Memory Access (NUMA) aware designs that locate shared memory regions to minimize cross-node memory accesses,

reducing average access latencies by approximately 43% compared to topology-agnostic approaches [9]. Hardware-

enforced memory protection utilizes extended page table (EPT) violations as a security mechanism, with specialized

integrity monitoring systems capable of detecting unauthorized access attempts with detection latencies below 50

microseconds. Temporal partitioning strategies mitigate potential denial-of-service attacks from compromised Android

domains, with guaranteed bandwidth allocation ensuring that QNX safety functions maintain access to at least 68% of

communication channel capacity even during deliberate flooding attempts [10]. The communication frameworks

implement sophisticated priority inheritance mechanisms that mitigate priority inversion scenarios, with measured

worst-case blocking times reduced by up to 86% compared to non-priority-aware implementations—a critical

consideration for real-time safety functions [9].

5.3 Graphics Sharing and Rendering Techniques

Graphics virtualization and sharing between QNX and Android domains introduce unique challenges that demand

specialized solutions beyond conventional inter-OS communication. Surface-sharing mechanisms implement a complex

ownership model that enables controlled access to display regions while maintaining strict access boundaries. High-

performance implementations achieve composition latencies below 2.5 milliseconds when combining safety-critical

QNX elements with Android-rendered content, enabling seamless visual integration without perceptible delays [10].

Hardware-accelerated secure composition engines play a critical role in maintaining performance and security, with

dedicated hardware paths ensuring that potentially compromised Android applications cannot obscure safety-critical

visual elements. These systems implement sophisticated content protection strategies with measurements confirming

that critical warning indicators maintain guaranteed visibility, rendering latencies below 16.7 milliseconds (60 Hz

refresh) regardless of Android application behavior [10]. Modern implementations support dynamic quality scaling

based on safety contexts, with automatic resolution and refresh rate adjustments that can reduce GPU bandwidth

requirements by up to 42% during high-demand driving scenarios while maintaining essential information clarity [9].

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT DOI: 10.48175/

www.ijarsct.co.in

Impact Factor: 7.67

Fig. 3: Inter-OS Communication and Resource Sharing [9, 10]

VI. IMPLEMENTATION C

The practical deployment of multi-OS architectures in production vehicles presents substantial engineering challenges

that must be overcome through innovative approaches. As QNX

production, several key areas continue to evolve rapidly.

6.1 Performance Optimization and Resource Allocation

Virtualized automotive platforms face significant performance challenges that require sophisticated optimization

strategies to meet production requirements. Be

hypervisor overhead introduces an average performance penalty of 8.4% for CPU

for memory-intensive operations across typical automotive applications [

prominently in I/O operations, with virtualized disk and network throughput showing degradation of approximately

18% compared to bare-metal implementations due to the additional abstraction layers. Memory allocation strate

significantly impact overall system performance, with dynamic page

requirements by up to 27% in mixed QNX

pages across virtual machines [11]. Graphics performance optimization represents a challenge in automotive contexts,

with specialized passthrough techniques achieving near

strict isolation from safety-critical domains. Resource con

showing that unmanaged competition for shared resources can increase worst

285% for critical tasks—necessitating sophisticated allocation mechanisms prioritizi

6.2 Testing and Validation Methodologies

The validation of multi-OS architectures for automotive deployment demands comprehensive testing methodologies

that address functional correctness and safety integrity. Safety and security co

critical, with approximately 64% of security vulnerabilities in modern automotive systems potentially impacting safety

functions if not properly contained [12]. Formal threat modeling based on standardized methodologies like STRIDE has

become essential for multi-OS implementation

potential attack vectors that must be systematically addressed through architectural mitigations. Penetration testing

plays a crucial role in validating isolation properties, with specializ

against virtual machine boundaries to verify containment effectiveness under real

IJARSCT ISSN (Online) 2581

International Journal of Advanced Research in Science, Communication and Technology

Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, March 2025

DOI: 10.48175/IJARSCT-24467

OS Communication and Resource Sharing [9, 10]

VI. IMPLEMENTATION CHALLENGES AND FUTURE DIRECTIONS

OS architectures in production vehicles presents substantial engineering challenges

that must be overcome through innovative approaches. As QNX-Android integration moves from prototype to

eral key areas continue to evolve rapidly.

6.1 Performance Optimization and Resource Allocation

Virtualized automotive platforms face significant performance challenges that require sophisticated optimization

strategies to meet production requirements. Benchmark testing of virtualized vehicle-compute platforms reveals that

hypervisor overhead introduces an average performance penalty of 8.4% for CPU-intensive workloads and up to 13.7%

intensive operations across typical automotive applications [11]. This overhead manifests most

prominently in I/O operations, with virtualized disk and network throughput showing degradation of approximately

metal implementations due to the additional abstraction layers. Memory allocation strate

significantly impact overall system performance, with dynamic page-sharing techniques reducing total memory

requirements by up to 27% in mixed QNX-Android deployments by identifying and consolidating duplicate memory

. Graphics performance optimization represents a challenge in automotive contexts,

with specialized passthrough techniques achieving near-native performance for Android UI rendering while ensuring

critical domains. Resource contention remains a significant concern, with measurements

showing that unmanaged competition for shared resources can increase worst-case execution time variations by up to

necessitating sophisticated allocation mechanisms prioritizing safety-critical functions [11].

6.2 Testing and Validation Methodologies

OS architectures for automotive deployment demands comprehensive testing methodologies

that address functional correctness and safety integrity. Safety and security co-engineering approaches are increasingly

tely 64% of security vulnerabilities in modern automotive systems potentially impacting safety

functions if not properly contained [12]. Formal threat modeling based on standardized methodologies like STRIDE has

OS implementations, with comprehensive analyses typically identifying between 35

potential attack vectors that must be systematically addressed through architectural mitigations. Penetration testing

plays a crucial role in validating isolation properties, with specialized test frameworks that execute crafted attacks

against virtual machine boundaries to verify containment effectiveness under real-world conditions [12]. Safety analysis

ISSN (Online) 2581-9429

Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 542

OS architectures in production vehicles presents substantial engineering challenges

Android integration moves from prototype to

Virtualized automotive platforms face significant performance challenges that require sophisticated optimization

compute platforms reveals that

intensive workloads and up to 13.7%

11]. This overhead manifests most

prominently in I/O operations, with virtualized disk and network throughput showing degradation of approximately

metal implementations due to the additional abstraction layers. Memory allocation strategies

sharing techniques reducing total memory

Android deployments by identifying and consolidating duplicate memory

. Graphics performance optimization represents a challenge in automotive contexts,

native performance for Android UI rendering while ensuring

tention remains a significant concern, with measurements

case execution time variations by up to

critical functions [11].

OS architectures for automotive deployment demands comprehensive testing methodologies

engineering approaches are increasingly

tely 64% of security vulnerabilities in modern automotive systems potentially impacting safety

functions if not properly contained [12]. Formal threat modeling based on standardized methodologies like STRIDE has

s, with comprehensive analyses typically identifying between 35-60

potential attack vectors that must be systematically addressed through architectural mitigations. Penetration testing

ed test frameworks that execute crafted attacks

world conditions [12]. Safety analysis

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, March 2025

Copyright to IJARSCT DOI: 10.48175/IJARSCT-24467 543

www.ijarsct.co.in

Impact Factor: 7.67

methodologies are evolving to address the unique challenges of virtualized environments, with fault tree analyses and

failure mode and effects analyses (FMEA) now explicitly incorporating hypervisor failure modes within their scope.

These expanded analyses typically identify 25-30% more potential failure scenarios than traditional approaches

focusing solely on application-level failures, highlighting the critical importance of comprehensive validation [12].

6.3 Future Trends in Multi-OS Integration

The evolution of multi-OS automotive architectures continues to accelerate, with emerging trends shaping next-

generation implementations. Domain-specific hardware acceleration represents a significant development, with

specialized virtualization-aware accelerators for machine learning, computer vision, and signal processing achieving

performance improvements of 3-15x compared to general-purpose CPU implementations while maintaining isolation

properties [11]. Safety-security co-design methodologies are advancing rapidly, with integrated approaches that analyze

approximately 73% more attack scenarios than standalone security assessments by considering safety implications and

criticality ratings [12]. These methodologies employ sophisticated modeling techniques that evaluate potential

cascading effects across virtual machine boundaries, identifying non-obvious dependencies that could impact system

safety. Hardware root-of-trust implementations are becoming increasingly central to multi-OS designs, with secure boot

chains and remote attestation capabilities that can cryptographically verify system integrity with measured computation

times below 350 milliseconds [12]. These security mechanisms provide essential foundations for ensuring that

virtualization boundaries remain intact throughout the vehicle lifecycle, preventing malicious modifications that could

compromise isolation properties or enable privilege escalation between operating systems.

Area Methodology
Implementation

Technique

Development

Impact

Validation

Approach

Threat Modeling
STRIDE-based

analysis

Systematic identification

of 35-60 attack vectors

Early-stage

architectural

decisions

Adversarial testing

against identified

vectors

Safety Analysis
Extended

FMEA/FTA

Inclusion of hypervisor

failure modes (+25-30%

scenarios)

Comprehensive

hazard identification

Fault injection testing

(248,000+ scenarios)

Secure Boot Chain of trust

Cryptographic validation

of all software

components

Additional boot time

overhead

Hardware security

module verification

Resource

Isolation

Time and

space

partitioning

Hardware-enforced

boundaries between

domains

Complex resource

allocation planning

Resource contention

testing

Communication

Security

Message

authentication

Cryptographic verification

of inter-VM messages

Additional latency

for security

processing

Penetration testing of

communication

channels

Fault

Containment

Hierarchical

containment

Isolation of failures within

the originating domain

Increased system

complexity

Statistical fault

injection campaigns

Update Security
Secure over-

the-air updates

Signed packages with

rollback protection

Lifecycle

management

complexity

Twin-track

deployment with

fallback validation

Security

Monitoring

Runtime

attestation

Continuous verification of

system integrity

Performance

overhead during

verification

Measured verification

times under varying

loads

Safety-Security

Tradeoffs

Risk-based

approach

Balanced controls based

on combined risk

assessment

73% more scenarios

analyzed

Combined safety-

security test cases

Table 2: Safety-Security Co-Engineering Approaches for Multi-OS Automotive Architectures [11, 12]

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, March 2025

Copyright to IJARSCT DOI: 10.48175/IJARSCT-24467 544

www.ijarsct.co.in

Impact Factor: 7.67

VII. CONCLUSION

Integrating QNX and Android operating systems through hypervisor technology represents a paradigm shift in

automotive computing architecture that addresses the industry's most pressing challenges. This dual-OS approach

successfully bridges the gap between safety-critical systems and consumer-oriented infotainment, creating a cohesive

experience without compromising. While implementation challenges remain, particularly in resource allocation,

communication protocols, and certification processes, the benefits of hardware consolidation, development flexibility,

and enhanced user experience make this approach increasingly attractive to manufacturers. As automotive systems

continue to evolve, this architectural pattern provides a foundation that can adapt to new requirements and technologies

while maintaining the strict safety standards demanded by the industry. The future of automotive computing will likely

see further refinement of these multi-OS strategies, expanding beyond vehicles to other domains where safety-critical

functions must coexist with rich user interfaces.

REFERENCES

[1] Frank Schirrmeister, "The Path Towards Future Automotive E/E Architectures," Semiconductor Engineering, 25

April 2024. [Online]. Available: https://semiengineering.com/the-path-towards-future-automotive-ee-architectures/

[2] Daniel Davenport, "The Convergence of Linux, RTOS and Automotive-Specific Operating Systems in the Era of

Software-Defined Vehicles," Medium, 16 June 2024. [Online]. Available: https://danieldavenport.medium.com/the-

convergence-of-linux-rtos-and-automotive-specific-operating-systems-in-the-era-of-02812b75fb64

[3] Abderrazak Snoussi, "Hypervisor Selection and Configuration in Mixed-Criticality Systems: A Technical Deep

Dive," LinkedIn Pulse, 11 Nov. 2024. [Online]. Available: https://www.linkedin.com/pulse/hypervisor-selection-

configuration-mixed-criticality-systems-snoussi-k5ghe

[4] Matthias Gerlach and Stefaan Sonck Thiebaut, "Multicore and Virtualization in Automotive Environments," EDN,

25 Oct. 2012. [Online]. Available: https://www.edn.com/multicore-and-virtualization-in-automotive-environments/

[5] BlackBerry QNX, "QNX Hypervisor for Safety," BlackBerry QNX, 2019. [Online]. Available:

https://aditech.in/wp-content/uploads/2020/03/QNX_HypervisorAutomotive_ProductBrief.pdf

[6] Emiliano Costagli and James Stanley et al., "Safety RTOS for Automotive," WITTENSTEIN high integrity

systems. [Online]. Available: https://www.highintegritysystems.com/rtos/safety-critical-rtos/embedded-rtos-for-

automotive/

[7] Kaustubh R. Gawande, "Android Automotive OS: The Architecture," Medium, 9 Jan. 2024. [Online]. Available:

https://medium.com/@kaustubhrgawande/android-automotive-os-the-architecture-48246b2559b8

[8] WeTest, "Android Performance Optimization: Best Practices and Tools," WeTest, 28 Nov. 2023. [Online].

Available: https://kr.wetest.net/blog/android-performance-optimization-best-practices-and-tools-901.html

[9] Zonghong Li et al., "RTISM: Real-Time Inter-VM Communication Based on Shared Memory for Mixed-Criticality

Flows," ResearchGate, Dec. 2023. [Online]. Available:

https://www.researchgate.net/publication/378019696_RTISM_Real-Time_Inter-

VM_Communication_Based_on_Shared_Memory_for_Mixed-Criticality_Flows

[10] Marcello Cinque, "Virtualizing Mixed-Criticality Systems: A Survey on Industrial Trends and Issues,"

arXiv:2112.06875v1, 13 Dec., 2021. [Online]. Available: https://arxiv.org/pdf/2112.06875

[11] Christopher Hesse, "Performance analysis of a virtualized vehicle-compute platform: An experience report,"

ResearchGate, Jan. 2018. [Online]. Available:

https://www.researchgate.net/publication/330712562_Performance_analysis_of_a_virtualized_vehicle-

compute_platform_An_experience_report

[12] Árpád Török and Zsombor Pethő, "Introducing Safety and Security Co-engineering: Related Research Orientations

in the Field of Automotive Security," Periodica Polytechnica Transportation Engineering, Vol. 48, no. 4, Aug. 2020.

[Online]. Available: https://www.researchgate.net/publication/343512968_Introducing_Safety_and_Security_Co-

engineering_Related_Research_Orientations_in_the_Field_of_Automotive_Security

