

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, March 2025

Face Recognition Attendance System

Mr. Kaustubh Kathole, Mr. Darshan Patil, Prof. Mohan Mali Department of Computer Technology

Bharati Vidyapeeth Institute of Technology, Navi Mumbai, Maharashtra, India.

Abstract: The Face Recognition Attendance System (FRAS) is an advanced biometric authentication technology that automates attendance tracking using facial recognition. Traditional attendance systems, such as manual sign-in sheets or RFID cards, are often inefficient and prone to errors. FRAS eliminates these inefficiencies by utilizing deep learning-based face detection and recognition algorithms to ensure accurate and secure attendance tracking. The system includes key components such as facial enrollment, real-time recognition, attendance logging, and security features to protect biometric data. It enhances accuracy, reduces administrative workload, and prevents fraudulent attendance practices like proxy attendance. This project aims to implement a robust, scalable, and secure face recognition attendance system suitable for educational institutions and corporate environments.

Keywords: Face Recognition Attendance System

I. INTRODUCTION

Attendance tracking is crucial in organizations, schools, and businesses. Traditional methods like **manual registers** and **RFID-based attendance systems** are prone to inaccuracies and misuse.

This project proposes an **automated Face Recognition Attendance System (FRAS)**, leveraging advanced **image processing, machine learning, and biometric authentication** to identify individuals and mark attendance accurately. The system aims to **reduce human errors, enhance security, and ensure seamless attendance monitoring**.

1.1 Project Objectives

- To develop an automated attendance system using facial recognition technology.
- To enhance accuracy and security in attendance tracking.
- To implement a contactless system, reducing the need for manual entries.
- To provide real-time attendance data and analytics.

1.2 Problem Statement

- Traditional attendance systems are inefficient and can be manipulated.
- Proxy attendance and manual errors lead to inaccurate records.
- Contact-based systems (e.g., fingerprint scanners) raise hygiene concerns.
- A Face Recognition-based Attendance System provides a secure, accurate, and contactless alternative to solve these problems.

II. LITERATURE SURVEY

2.1 Related Work

Several biometric-based attendance systems have been developed, such as:

Fingerprint-based Attendance Systems - prone to hygiene issues.

RFID-based Attendance Systems - susceptible to proxy attendance.

Iris Recognition Systems - accurate but expensive and complex.

Facial Recognition Systems - accurate, contactless, and efficient.

Research has shown that facial recognition systems using **Deep Learning (e.g., FaceNet, OpenCV, Dlib)** achieve high accuracy in real-time attendance management.

Copyright to IJARSCT www.ijarsct.co.in DOI: 10.48175/IJARSCT-23734

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, March 2025

III. METHODOLOGY

3.1 System Architecture

The proposed system consists of the following modules:

- Face Enrollment Module Captures and stores facial data.
- Face Detection & Recognition Module Identifies individuals using OpenCV & Deep Learning.
- Attendance Logging Module Records timestamps and user details in a secure database.
- Admin Dashboard Allows administrators to monitor attendance records.

3.2 Data Collection and Processing

- Dataset Preparation Collecting facial images from a diverse set of users.
- Feature Extraction Using deep learning models to extract facial features.
- Recognition Algorithm Utilizing convolutional neural networks (CNNs) for accurate identification.

IV. DETAILS OF DESIGN, WORKING, AND PROGRESS

4.1 Hardware Components

- Camera Module Captures facial images.
- Microprocessor (e.g., Raspberry Pi/PC) Runs facial recognition algorithms.
- Database Server Stores attendance records securely.

4.2 Software Components

- **Programming Language:** Python (with OpenCV, TensorFlow, Dlib)
- Database: SQLite / MySQL for storing attendance records
- User Interface: Web-based dashboard for attendance monitoring

4.3 System Flow

- User stands in front of the camera.
- System detects and recognizes the face.
- Attendance is logged into the database.
- Admins can view and generate reports.

V. CONCLUSION AND FUTURE SCOPE

5.1 Conclusion

The Face Recognition Attendance System successfully eliminates common issues in traditional attendance systems by providing accuracy, security, and contactless usability. The system's ability to automate attendance tracking in real-time makes it highly efficient and suitable for educational institutions, offices, and corporate settings.

5.2 Future Scope

- Multi-camera Integration Expanding for larger environments.
- AI-based Spoof Detection Preventing fraud using deep learning techniques.
- Cloud-Based Centralized System Enabling remote monitoring.
- Mobile App Integration Allowing attendance tracking from smartphones.

REFERENCES

- [1]. OpenCV Documentation https://docs.opencv.org
- [2]. Dlib Library https://dlib.net
- [3]. FaceNet Paper "FaceNet: A Unified Embedding for Face Recognition and Clustering" by Schroff et al.
- [4]. TensorFlow Official Guide https://www.tensorflow.org

Copyright to IJARSCT www.ijarsct.co.in DOI: 10.48175/IJARSCT-23734

