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Abstract: Rayleigh distribution has many applications in lifetime studies. In this article, a new three 

parameter lifetime model called Inverse Truncated Negative Binomial Rayleigh (ITNBR) distribution is 

introduced and its various properties are discussed. This new distribution is obtained by compounding 

inverse truncated negative binomial and Rayleigh distribution. The shape properties of the probability 

density function and hazard rate, model identifiability, moments and median of the ITNBR are studied. The 

unknown parameters of the distribution are estimated using maximum likelihood method. Simulation is 

carried out to illustrate the performance of maximum likelihood estimates of model parameters. 
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I. INTRODUCTION 

In the last two decades researchers have greater intention toward the inversion of univariate probability models and 

their applicability under inverse transformation. The inverse distribution is the distribution of the reciprocal of a random 

variable. Dubey[1] proposed inverted beta distribution, Voda[2] studied inverse Rayleigh distribution, Folks and 

Chhikara[3] proposed inverse Gaussian distribution, Prakash[4] studied the inverted exponential model, Sharma et al. 

[5] introduced inverse Lindley distribution, Gharib et al.[6] studied Marshall-Olkin extended inverse Pareto 

distribution, Al-Fattah et al.[7] introduced inverted Kumaraswamy distribution and Rana and Muhammad[8] introduced 

Marshall-Olin extended inverted Kumaraswamy distribution. 

The inverse rayleigh (IR) distribution is commonly used in statistical analysis of lifetime or response time data from 

reliability experiments. For the situations in which empirical studies indicate that the hazard function might be 

unimodal, the IR distribution would be an appropriate model. Initially, Treyer[9] introduced the inverse Rayleigh 

distribution as a model for analyzing reliability and survival data. The model later underwent further examination by 

Voda[2], who observed that the lifetime distributions of various experimental units could be closely approximated with 

the inverse Rayleigh distribution. Additionally, Voda[2] explored its properties and provided a maximum likelihood 

(ML) estimator for the scale parameter. Gharraph[10] conducted an in-depth analysis of the inverse Rayleigh 

distribution, deriving five key measures of location: the mean, harmonic mean, geometric mean, mode, and median. 

Furthermore, Gharraph[10] explored various estimation methods to determine the unknown parameter of 

thisdistribution. Almarashi et al.[11] propose a two-parameter extension of the inverse Rayleigh distribution, employing 

the half-logistic transformation to address limitations in modeling moderately right-skewed or near-symmetrical 

lifetime data. Furthermore, Chiodo et al.[12] introduce the compound inverse Rayleigh distribution as a model tailored 

for extreme wind speeds, essential in wind power generation and turbine safety evaluation. They provide a practical 

framework for real-world data analysis, accompanied by a novel Bayesian estimation approach, supported by extensive 

numerical simulations and robustness assessments. 

The addition of parameters has been proved useful in exploring skewness and tail properties, and also for improving the 

goodness-of-fit of the generated family. Introduction of a scale parameter leads to accelerate life model and taking 

powers of survival function introduces a parameter that leads to proportional hazards model. Also, the extended 

distributions have attracted several statisticians to develop new models because the analytical and computational 

facilities available in programming softwares such as Mathcad, Mapple, MathLab and R can easily tackle the problems 

involved in computing special functions in these extended distributions. 
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Marshall and Olkin[13] discussed a method of adding a new parameter to an existing distribution. It includes the 

baseline distribution as a special case, and gives more flexibility to model various types of data. One of the important 

properties of this family is that Marshall-Olkin family of distributions possess stability property in the sense that if the 

method is applied twice, it returns to the same distribution. Also this family satisfies geometric extreme stability 

property. 

Marshall and Olkin [13] started with a parent survival function ��(�)and considered a family of survival functions given 

by 

 
They described the motivation for the family of distributions (1) as follows: 

Let X1, X2,  … be a sequence of independent and identically distributed (i.i.d.) random variables with  survival function 

��(�). Let 

 
where N is the geometric random variable with probability mass function (pmf) P(N = n) = α(1- α)n-1, for n =1,2,…  and 

0 < α  < 1 and independent of Xi’s. Then the random variable UN hasthe survival function  given by (1). If α > 1 and N 

is a geometric random variable with pmf of the form P(N = n) = 
�

∝
(1-

�

∝
 ) n-1,  n = 1, 2, . . . then the random variable VN = 

max(X1,X2, . . . XN)also has the survival function as (1). 

Nadarajah, Jayakumar and Ristic[14] proposed a new generalization of the Marshal-Olkin family of distributions, by 

replacing the geometric distribution of N in (2), as truncated negative binomial distribution with pmf given by 

 
where α >0 and θ > 0.The authors showed that the random minimum, UN = min(X1, X2, . . . XN) has the survival 

function of the form 

 
Note that if α tend to 1, then �̅(x; α, θ)tends to ��(x). The family of distributions given in (3) is a generalization of 

Marshall-Olkin family of distributions, in the sense that when θ = 1, (3) reduces to(1). 

Sankaran and Jayakumar [15] introduced a family of distributions by replacing the distribution of N in (2) as the 

discrete Mittag-Leffler distribution, a generalization of geometric distributionwhose probability  generating function 

(pgf) is given by 

 
Using truncated discrete Mittag-Leffler distribution, they derived a family of distributions with parameters βand c 

having survival function 

 
Note that, the Marshall-Olkin method applied to Fβ the exponentiated form of a parent distribution function F, will also 

gives rise (4). The family of distributions generated using truncated discrete Mittag- Leffler distribution can also be 

considered as a generalization of Marshall-Olkin family of distributions, since it reduces to Marshall-Olkin family, 

when β = 1 and c =  
���

∝
. 
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A non negative integer valued random variable is said to be discrete Linnik distributed, if it has the pgf 

 
Jayakuamar and Sankaran[16] using truncated discrete Linnik family of distributions with parameters β, θ and c have 

the survival function 

 
In (5), when θ = 1 and β ≠ 1, we obtain the survival function of the family of distributions generated using truncated 

discrete Mittag-Leffler distribution. When β = 1 and θ ≠ 1 in (5), we obtain the survival function of the family of 

distributions generated using truncated negative binomial distribution in (3). Also when  β = 1 and θ = 1 in (5), we 

obtain the survival function of Marshall-Olkin scheme, in (1). 

In this paper, we study inverse truncated negative binomial Rayleigh (ITNBR) distribution. The new proposed 

distribution is a generalization of Marshall-Olkin extended inverse Rayleigh, Marshall-Olkin extended inverse 

exponential, inverse Rayleigh and inverse exponential distribution. 

The rest of the paper is organized as follows. In Section II, we discuss a family of distributions, namely inverse 

truncated discrete Linnik G distribution and their sub model inverse family of distributions generated through truncated 

negative binomial G family of distributions. In particular, we study inverse truncated negative binomial Rayleigh 

(ITNBR) distribution in Section III. The shape properties of density and hazard function are studied. The model 

identifiability of the distribution is proved. In Section IV, some structural properties of ITNBR distribution such as 

moments and quantiles. Method of generation of random variate from ITNBR distribution is also discussed. Estimation 

of the model parameters by maximum likelihood estimation is performed in Section V. Simulation study is also carried 

out in order to establish the consistency property of the maximum likelihood estimates of our proposed model. 

 

II. INVERSE FAMILY OF DISTRIBUTIONS GENERATED THROUGH TRUNCATED NEGATIVE 

BINOMIAL DISTRIBUTION 

Let X follows  truncated discrete Linnik family of distributions with survival function S(.) and baseline  distribution 

function F(.). Then Y = 
�

�
 is an inverse truncated discrete Linnik random variable with  cumulative distribution function 

(cdf) G(x) given by 

 
Hence, we obtain a new family of distributions, which we named as inverse family of distributions generated through 

discrete Linnik G distribution. 

The probability density function (pdf) and the hazard rate function (hrf) of a random variable from the introduced 

family are respectively 
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and 

 

When in equation(6), β = 1 and c =  
���

∝
 , the cdf reduces to inverse truncated negative binomialG family of 

distributions. So the cdf, pdf and hrf of inverse truncated negative binomial G familyof distributions are respectively: 

 
and 

 
A new generalization of inverse rayleigh distribution  

Now we consider, generalized inverse Rayleigh distribution generated through inverse truncated negative binomial and 

Rayleigh distribution. Negative binomial is a generalization of the geometric, and Poisson distributions is a limiting 

particular case. The negative binomial distribution with support over the set of all non-negative integers is also a 

generalization of the Poisson distribution in the sense that it can deduced as a hierarchical model if X follows  Poisson 

(∆) with  ∆ being a gamma random variable. 

 

III. A DISTRIBUTION FUNCTION 

Let X follows Rayleigh distribution with parameter λ > 0 having cdf F(x) = 1- ��(��)�
 and pdf f(x) = 2λ2x��(��)�

. 

Hence from (9), the cdf of the random variable Y is given by 

 

 
 

III.B  PROBABILITY DENSITY  FUNCTION 

The pdf of the new distribution is given by 

 
We refer to this new distribution having cdf (12) as inverted truncated negative binomial Rayleigh distribution with 

parameters α, θ and λ We write it as ITNBR(y; α, θ, λ). 

The graph of g(y) for different values of the parameters is given in Figure 1. 
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III. C UNIMODALITY 

The pdf of the ITNBR model is either decreasing or unimodal. In order to investigate the critical points of density 

function, its first derivative with respect to y is 

 
g’(y) = 0 implies, 

 
Since equation (14) is a nonlinear equation in y, there may be more than one positive root to (14). If y = y0 is a root of 

(14), then it corresponds to a local maximum if g’(y) > 0 for all y < y0. It corresponds to a local minimum if g’(y) < 0 

for all y < y0 and g’(y) > 0 for all y > y0. It corresponds to a point of inflexion if either g’(y) > 0 for all y  ≠ y0 or g’(y) < 

0 for all y ≠ y0. 

 

III. D HAZARD RATE 

The hazard rate is given by 

 
The graph of h(y) for different values of the parameters is given in Figure 2. 
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III.E MODEL IDENTIFIABILITY 

We have to prove model identifiability only with respect to the parameters  α and θ, since theother parameter  λ is from 

the parent distribution. Let us suppose that G(y; α1, θ1) = G(y; α2, θ2) for all y > 0. We will show  that this condition 

implies that α1 = α2  and  θ1 =  θ2 For proving model identifiability, we use Theorem 2.4 of Chandra[17]. 

 

Proposition : The class of all mixing distribution relative to the ITNBR distribution is identifiable. 

Proof : If Ni is truncated negative binomial random variable, truncated at 0, then the probabilitygenerating function is 

 
From the cdf of Ni, we have 

G1< G2 when α1= α2  and  θ1<θ2  and  G1< G2 when   θ1 =  θ2  and α1<α2 . 

Let Dφ1(s) = (-∞,α1) and Dφ2(s) = (-∞,α2) and s = 
�

��
. Hence 

 
When θ1= θ2 and α1<α2, we obtain 

 
So 

 
and thus the identifiability is proved. Hence the cdf G is identifiable with respect to  α  and  θ. 

 

III.F EXPANSION FOR DISTRIBUTION FUNCTION AND DENSITY FUNCTION 

If |z| < 1 and k > 0, we have 

 
where ℾ(.) is the gamma function. 

By using (17), the cdf of ITNBR distribution can be expressed as  

 
In similar manner the pdf of ITNBR distribution can be expressed as 
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IV. GENERAL PROPERTIES OF ITNBR DISTRIBUTION 

 

IV. A  MOMENTS 

We know that moments are important in any statistical analysis. In this subsection, we presentrth moments of ITNB 

distribution. 

From the definition of moments, we have 

 
Put x=λ2 (j+1) y-2. Then 

 
By putting r = 1 and r = 2 in (20), we can easily obtain the mean and variance of ITNBR distribution. 

 

IV.B  SIMULATION AND QUANTILES 

Random variable Y having ITNBR distribution can be easily simulated by inverting the cdf. Let U has unformU(0; 1) 

distribution, then 

 
which yields 

 
In addition, the qth quantile yq of ITNBR distribution is given by 

 
0 < q < 1. 

In particular, the median of ITNBR distribution on quantiles: 
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The Bowley’s Skewness based on quantiles : 

 
and the Moors’ Kurtosis based on octiles:  

 
where Q(.) represents the quantile function of X. These measures are less sensitive to outliers and they exist even for 

distributions without moments. Skewness measures the degree of the long tail and kurtosis is a measure of the degree of 

peakedness. When the distribution is symmetric, S = 0 and when the distribution is left(or right) skewed, S < 0 (or S > 

0). As K increases, the tail of the distribution becomes heavier. 

 

V. ESTIMATION OF THE PARAMETERS 

V.A  MAXIMUM LIKELIHOOD ESTIMATION 

Several approaches for parameter estimation have been proposed in the literature, but maximum likelihood method is 

the most commonly employed. We consider estimation of the unknown parameters of ITNB distribution by the method 

of maximum likelihood. Let y1, y2, . . .yn be observed values from the ITNB distribution with parameters α, θ and  λ. 

The log-likelihood function for (α, θ, λ)is given by 

 
The derivatives of the log-likelihood function with respect to the parametersα, θ and  λ  are givenby respectively, 

 

The maximum likelihood estimates of (α, θ,  λ), say  ( ∝�, θ�, λ�) are the simultaneous solutions ofthe equation 
� ��� �

��
 =0, 

� ��� �

��
  = 0  and 

� ��� �

��
  =  0 .Maximization of the likelihood function canbe performed by using nlm or optim in R 

Statistical package. 

The normal approximation of the maximum likelihood estimates of the parameters can beadopted for constructing 

approximate confidence intervals and for testing hypotheses on the parameters (α, θ,  λ). Under conditions that are 

fulfilled for the parameters in the interior of the parameterspace and applying the usual large sample approximation, it 

can be shown that√�(∅ − ∅)� canbe approximated by a multivariate normal distribution with zero means and  variance-

covariancematrix K-1(∅) where K(∅) is the unit expected information matrix. 

As n tends to infinity, we have the asymptotic result 
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K(∅) = lim�→�
�

�
 � (∅) 

where� (∅)is the observed Fisher information matrix. Since K(∅) involves the unknown parameters of ∅, we may 

replace it with the MLE ∅�. Thus, the average matrix estimated at∅�, say � (∅), can be used to estimate K(∅). The 

estimated multivariate normal distribution can thus be used to construct approximate confidence intervals for the 

unknown parameters and for the hazard rateand survival function. 

 

V.B  SIMULATION 

We asses the performance of the maximum likelihood estimates of ITNBR (α, θ,  λ) distribution by conducting 

simulation for different sample sizes and parameter values. We use equation (21) to generate random samples from the 

ITNBR distribution with parameters α, θ and λ. The different sample sizes considered in the simulation are n = 30; 70; 

100 and 200. We have used nlm package in R software to find the estimate. We have repeated the process 1000 times 

and report the average estimates and associated mean square errors in Table 1. 

n  ∝� MSE(∝�) θ�  MSE(θ�) λ� MSE(λ�) 

30 α  =  0.5 

 θ =  0.5 

 λ = 1.0 

0.599 0.295 0.573 1.056 1.234 0.267 

70 0.483 0.028 0.580 0.841 1.056 0.145 

100 0.563 0.016 0.432 0.184 0.984 0.127 

200 0.541 0.012 0.506 0.071 1.051 0.112 

30 α  =  1.5 

 θ =  0.5 

 λ = 1.0 

1.539 0.295 0.487 0.267 1.341 0.243 

70 1.578 0.244 0.522 0.165 0.896 1.420 

100 1.560 0.196 0.476 0.093 1.254 0.937 

200 1.553 0.144 0.523 0.051 1.187 0.532 

30 α  =  0.5 

 θ =  1.5 

 λ = 1.0 

0.829 4.329 1.554 0.507 0.831 2.354 

70 0.432 3.012 1.468 0.302 0.776 1.423 

100 0.306 2.019 1.547 0.187 0.813 0.937 

200 0.458 1.282 1.459 0.103 0.913 0.532 

30 α  =  5.0 

 θ =  1.5 

 λ = 1.0 

6.265 0.304 1.732 0.159 1.541 1.056 

70 5.661 0.109 1.624 0.127 1.320 0.841 

100 4.847 0.085 1.485 0.098 1.023 0.821 

200 5.062 0.021 1.526 0.074 0.994 0.563 

Table 1 : Simulation results for different values of the parameters α, θ and  λ. 

 

From Table 1, we can see that as the sample size increase, the estimated values are close to theactual values and the 

mean square errors decreases, which establishes the consistency property ofthe MLEs. 

 

VI. CONCLUSION 

We discussed a new family of inverse distribution namely Inverse truncated negative binomial family of distribution. A 

particular member of the family, three parameter inverse truncated negative binomial Rayleigh distribution studied in 

detail. The density function can be expressed as compact form. The explicit expression for the ordinary moments and 

Quantiles are derived. We discuss the maximum likelihood estimation of the model parameters and simulation for 

different sample sizes and parameter values 
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