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Abstract: This paper investigates the use of deep learning architectures for recognizing 3D gestures, 

particularly focusing on air-writing, performed using hand or finger movements. Unlike traditional 

handwriting, which involves distinct pen-up and pen-down actions, air-writing lacks a defined sequence of 

such events. Additionally, the absence of visual or tactile feedback and the high dependency among target 

gestures pose significant challenges for accurate character recognition. 

From the user's perspective, air-writing can be executed in three distinct styles: connected, isolated, and 

overlapped. In the connected style, users write sequences of characters in free space, similar to writing on 

paper from left to right. The isolated approach confines each character’s gesture within an imaginary 3D 

box, making segmentation easier but less natural. The overlapped method is the most complex, as it 

involves stacking adjacent characters within the same imaginary space. Variations in character size and 

shape during connected writing can impact recognition accuracy, even for the same user, while the 

constrained isolated style offers more consistent segmentation. 

Advancements in Motion Capture (MoCap) technologies and increased computational capabilities have 

encouraged the exploration of air-writing in human-computer interaction (HCI) systems. Some systems 

utilize handheld tools or custom gloves for tracking motion trajectories, while low-cost depth sensors, such 

as Microsoft Kinect, Intel RealSense, and Leap Motion Controller (LMC), offer non-intrusive, real-time 

tracking solutions. Kinect focuses on long-range 3D posture detection, whereas LMC and RealSense 

provide millimeter-level precision for tracking hand and finger movements. However, distinguishing actual 

writing gestures from arbitrary hand movements in continuous motion streams remains a significant 

challenge, independent of character recognition. 

Existing air-writing systems primarily target letter and digit recognition due to the limited availability of 

word-level training datasets. To address this gap, we propose a solution capable of both detecting and 

recognizing air-written characters within continuous motion data. Our system, based on the LMC sensor, 

includes a web interface for capturing 1,200 air-written digits (0–9) while providing real-time visual 

feedback. An efficient fingertip tracking mechanism simulates pen-up and pen-down states. The air-writing 

recognition process is framed as a classification task, utilizing both dynamic 3D trajectories (time-series 

data) and static 2D stroke projections (images) to train deep learning models with convolutional and 

recurrent architectures. Experimental results demonstrate near-perfect recognition rates achieved within 

milliseconds, making the system suitable for real-time deployment. 

The paper is organized as follows: Section II reviews related works in air-writing. Section III outlines the 

methodology, including the LMC interface, dataset collection, and employed deep learning models. Section 

IV describes the experimental setup and evaluation results. Finally, Section V concludes with key findings 

and future research directions.. 
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I. INTRODUCTION 

Over the past decade, numerous interfaces have been developed to facilitate air-based writing. These systems primarily 

focus on capturing the spatiotemporal trajectory of hand movements during air-writing. The trajectory of an air-written 

character can be represented through two core dimensional approaches. Specifically, air-writing recognition can either 

be analyzed by exploring the temporal dependencies within the trajectory's sequential steps or by examining spatial 

projections of the motion on vertical and horizontal imaginary 3D planes. These two methods are referred to as the 

dynamic and static approaches, respectively. 

In the static approach, the air-writing trajectory is treated as a 2D image, resembling conventional handwriting. This 

enables the application of established techniques from Optical Character Recognition (OCR). Conversely, the dynamic 

approach represents the motion trajectory's temporal characteristics as a sequence of signal measurements over time. 

Each frame in the sequence typically contains features such as hand velocity, coordinates relative to the sensor's 

reference point, and additional calculated metrics like angles between consecutive trajectory points and angular 

velocities. These are often referred to as hand-crafted features. Dynamic gesture recognition methods can thus be 

adapted for air-writing recognition. 

For analyzing static trajectory images, Convolutional Neural Networks (CNNs) are widely used. For example, one 

study introduced a marker-based air-writing framework employing a standard video camera with color-based 

segmentation to track trajectories. The system then classified static trajectory images using a pre-trained CNN. 

However, this method was prone to performance degradation under varying lighting conditions due to the reliance on 

color-based segmentation. 

Alternatively, a marker-less approach utilized 3D fingertip coordinates captured by an LMC sensor, which were 

converted frame-by-frame into consecutive trajectory images. After preprocessing and normalization, these images 

were used to train a CNN model, achieving an average recognition rate of 98.8%. Despite this high accuracy, deep 

CNN architectures often include many redundant filters, resulting in significant computational overhead. To address 

this, a study proposed an efficient pruning algorithm for deep CNN models in air-written Chinese character recognition. 

This method reduced computational costs with only a 0.17% accuracy drop, compared to a baseline VGG-like CNN 

achieving 95.33% accuracy. 

Dynamic air-writing gesture recognition traditionally employed methods such as Hidden Markov Models (HMMs), 

Dynamic Time Warping (DTW), and Support Vector Machines (SVMs). However, these techniques are more 

effective for simple gestures with low inter-class similarities and tend to deliver lower accuracy for complex air-writing 

tasks. To overcome these challenges, Recurrent Neural Networks (RNNs), particularly those using bidirectional Long 

Short-Term Memory (BLSTM) units have demonstrated significant performance improvements. 

More recently, fusion-based techniques combining CNNs with LSTM or BLSTM classifiers have been introduced. 

These hybrid networks effectively integrate spatial and temporal feature learning, outperforming earlier methods in air-

writing recognition tasks. 

 

II. METHODOLOGY 

A. Data Collection 

To facilitate the collection of air-written digits (0-9), a user-friendly web interface was developed utilizing the LMC 

JavaScript API (version 2). The interface was designed to require minimal instructions, making it accessible and 

efficient. As illustrated in Fig. 1, the LMC device was positioned on a tabletop in front of a display screen, which 

provided visual feedback to users. Through a calibration process, an air-writing spotting algorithm was implemented to 

detect the start and end points of gestures dynamically. This approach allowed the screen to serve as a virtual boundary 

for writing. Additionally, a blue box displayed on the screen specified the active writing area, which could be adjusted 

by users without affecting the captured frame data. 

For the dataset collection, 10 participants (8 males and 2 females) aged between 23 and 50 years were included, with no 

constraints on stroke patterns or other writing styles. Each participant wrote every digit at least 10 times, resulting in 

approximately 1,200 samples. Each recording consisted of time-series data representing raw tracking information from 

the LMC API, sampled at 60Hz. The web interface and the collected dataset are hosted online and are accessible for 

further research purposes [25]. 



 

 

       International Journal of Advanced 

                               International Open-Access, Double

Copyright to IJARSCT DOI: 10.48175/

www.ijarsct.co.in 

Impact Factor: 7.53 

Fig. 1: An example of the LMC orientation and the web interface

 

B. Architectures 

A variety of machine learning methods were explored to address the challenge of digit recognition. These methods were 

categorized into two main approaches: dynamic and static. Extensive experiments were conducted to compare and, in 

some cases, combine these approaches for optimal results.

 

1. Dynamic Approach 

In this method, the input was represented as a sequence of 2D points traced by the user’s

was to leverage sequential models capable of learning the trajectory and distinguishing between digits effectively. Due 

to the variability in how digits can be written, robustness was a critical consideration when selecting m

sequential architectures tested included: 

 CNN-LSTM: This architecture added a 1D convolutional layer immediately after the input to extract spatial 

features. A total of 300 filters with a kernel size of 2 and a stride of 1 were employed. Fig. 3 

architecture. 

 LSTM and BLSTM: These recurrent architectures were employed to capture long

sequential data. The LSTM used 300 hidden units in each block, while the BLSTM combined outputs from 

both forward and backward passes. A linear fully connected layer with log

outputs into 10 digit classes. The configuration is depicted in Fig. 2.

 TCN-Dynamic: Temporal Convolutional Networks (TCNs) were utilized due to their ability to handle 

sequential data effectively. A specific configuration with a kernel size of 7, 25 hidden units per layer, and a 

stack of 6 layers was chosen. The dilation factor doubled with each successive layer, ensuring a receptive field 

of 64 frames. This configuration was inspired by its success on the Sequential MNIST dataset [27].

In all dynamic models, a "many-to-one" configuration was used, where only the final output was considered for 

calculating the cross-entropy loss. 

 

2. Static Approach 

The static approach involved converting the air

mapped onto a 28x28 binary image by assigning points to corresponding pixels. Min

ensure consistency in size and positioning across the dataset. The following architectures were tested:

 CNN: This model comprised two 2D convolutional layers, each followed by batch normalization, a ReLU 

activation, and max pooling. The first convolutional layer had 16 filters, and the second had 

sizes of 5. The encoded representations were passed through a two

softmax activation for classification. Fig. 4 illustrates this architecture.
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A variety of machine learning methods were explored to address the challenge of digit recognition. These methods were 

approaches: dynamic and static. Extensive experiments were conducted to compare and, in 

some cases, combine these approaches for optimal results. 

In this method, the input was represented as a sequence of 2D points traced by the user’s fingertip over time. The goal 

was to leverage sequential models capable of learning the trajectory and distinguishing between digits effectively. Due 

to the variability in how digits can be written, robustness was a critical consideration when selecting m

LSTM: This architecture added a 1D convolutional layer immediately after the input to extract spatial 

features. A total of 300 filters with a kernel size of 2 and a stride of 1 were employed. Fig. 3 

LSTM and BLSTM: These recurrent architectures were employed to capture long-term dependencies in the 

sequential data. The LSTM used 300 hidden units in each block, while the BLSTM combined outputs from 

rd passes. A linear fully connected layer with log-softmax regression classified the 

outputs into 10 digit classes. The configuration is depicted in Fig. 2. 

Dynamic: Temporal Convolutional Networks (TCNs) were utilized due to their ability to handle 

quential data effectively. A specific configuration with a kernel size of 7, 25 hidden units per layer, and a 

stack of 6 layers was chosen. The dilation factor doubled with each successive layer, ensuring a receptive field 

was inspired by its success on the Sequential MNIST dataset [27].

one" configuration was used, where only the final output was considered for 

involved converting the air-written digits into image representations. Each digit’s trajectory was 

mapped onto a 28x28 binary image by assigning points to corresponding pixels. Min-max normalization was applied to 

across the dataset. The following architectures were tested:

CNN: This model comprised two 2D convolutional layers, each followed by batch normalization, a ReLU 

activation, and max pooling. The first convolutional layer had 16 filters, and the second had 

sizes of 5. The encoded representations were passed through a two-layer fully connected network with a 

softmax activation for classification. Fig. 4 illustrates this architecture. 
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A variety of machine learning methods were explored to address the challenge of digit recognition. These methods were 

approaches: dynamic and static. Extensive experiments were conducted to compare and, in 

fingertip over time. The goal 

was to leverage sequential models capable of learning the trajectory and distinguishing between digits effectively. Due 

to the variability in how digits can be written, robustness was a critical consideration when selecting models. The 

LSTM: This architecture added a 1D convolutional layer immediately after the input to extract spatial 

features. A total of 300 filters with a kernel size of 2 and a stride of 1 were employed. Fig. 3 illustrates this 

term dependencies in the 

sequential data. The LSTM used 300 hidden units in each block, while the BLSTM combined outputs from 

softmax regression classified the 

Dynamic: Temporal Convolutional Networks (TCNs) were utilized due to their ability to handle 

quential data effectively. A specific configuration with a kernel size of 7, 25 hidden units per layer, and a 

stack of 6 layers was chosen. The dilation factor doubled with each successive layer, ensuring a receptive field 

was inspired by its success on the Sequential MNIST dataset [27]. 

one" configuration was used, where only the final output was considered for 

written digits into image representations. Each digit’s trajectory was 

max normalization was applied to 

across the dataset. The following architectures were tested: 

CNN: This model comprised two 2D convolutional layers, each followed by batch normalization, a ReLU 

activation, and max pooling. The first convolutional layer had 16 filters, and the second had 32, with kernel 

layer fully connected network with a 
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 TCN-Static: Following the methodology used in the Sequential

was transformed into a 1D sequence by appending rows sequentially. This sequence was used as input for an 

8-layer TCN. 

 

3. Combining Static and Dynamic Approaches

To overcome the limitations of individual methods

implemented. This model integrated an LSTM and a CNN as its primary components. The outputs of these models (10

dimensional vectors) were concatenated and passed through a two

activation function for final predictions. This combination aimed to leverage the strengths of both approaches for 

improved accuracy. 

Fig. 3: 1D Convolutional Filtering followed by a LSTM (CNN

Fig. 4: 2D CNN fed with image representations (28x28) of the drawn digits.

 

III. EVALUATION AND 

A. Experimental Setup 

During the data collection process, a few erroneous recordings were identified, s

right hand was misinterpreted as the left hand. A total of 35 such cases were removed from the dataset. After filtering, 

the dataset was divided into training, validation, and test sets, with 200 samples allocated f

validation. The sequence lengths varied significantly among the recordings. For instance, the digit "1" typically 

required fewer frames for its recording compared to other digits. To address this, zero

standardize the sequence lengths within each batch, matching the maximum sequence length of that batch. This 

approach ensured that during training, only the final timestep's output was considered for evaluation.

Each network was developed and trained using PyTorch

training data were shuffled at the start of each epoch, and the validation loss and accuracy were used to determine the 

optimal model parameters. The experiments were conducted on a system equipped wi

8750H CPU, and a GeForce GTX 1060 GPU with 6 GB of VRAM. The training code is available for access at [25].

 

B. Results 

The best-performing models for each architecture were evaluated on the test set, and their accuracies are s

Table I. Both static and dynamic approaches demonstrated impressive performance. Among the architectures, the 

LSTM achieved the highest accuracy, followed closely by the BLSTM. The CNN ranked third, surpassing the hybrid 

LSTM-CNN model. The CNN-LSTM and TCN
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Static: Following the methodology used in the Sequential MNIST dataset [27], the 28x28 binary image 

was transformed into a 1D sequence by appending rows sequentially. This sequence was used as input for an 

3. Combining Static and Dynamic Approaches 

To overcome the limitations of individual methods, a hybrid model combining static and dynamic architectures was 

implemented. This model integrated an LSTM and a CNN as its primary components. The outputs of these models (10

dimensional vectors) were concatenated and passed through a two-layer fully connected network with a softmax 

activation function for final predictions. This combination aimed to leverage the strengths of both approaches for 

 
Fig. 3: 1D Convolutional Filtering followed by a LSTM (CNN- LSTM) trained on an oversampled

dimensional digit trail points. 

 
Fig. 4: 2D CNN fed with image representations (28x28) of the drawn digits. 

III. EVALUATION AND RESULTS 

During the data collection process, a few erroneous recordings were identified, such as instances where the participant's 

right hand was misinterpreted as the left hand. A total of 35 such cases were removed from the dataset. After filtering, 

the dataset was divided into training, validation, and test sets, with 200 samples allocated for testing and 100 for 

validation. The sequence lengths varied significantly among the recordings. For instance, the digit "1" typically 

required fewer frames for its recording compared to other digits. To address this, zero-padding was applied to 

ize the sequence lengths within each batch, matching the maximum sequence length of that batch. This 

approach ensured that during training, only the final timestep's output was considered for evaluation.

Each network was developed and trained using PyTorch over 1,000 epochs with a batch size of 64 samples. The 

training data were shuffled at the start of each epoch, and the validation loss and accuracy were used to determine the 

optimal model parameters. The experiments were conducted on a system equipped with 16 GB of RAM, an Intel i7

8750H CPU, and a GeForce GTX 1060 GPU with 6 GB of VRAM. The training code is available for access at [25].

performing models for each architecture were evaluated on the test set, and their accuracies are s

Table I. Both static and dynamic approaches demonstrated impressive performance. Among the architectures, the 

LSTM achieved the highest accuracy, followed closely by the BLSTM. The CNN ranked third, surpassing the hybrid 

LSTM and TCN-Dynamic architectures achieved similar results, while the TCN
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MNIST dataset [27], the 28x28 binary image 

was transformed into a 1D sequence by appending rows sequentially. This sequence was used as input for an 

, a hybrid model combining static and dynamic architectures was 

implemented. This model integrated an LSTM and a CNN as its primary components. The outputs of these models (10-

ected network with a softmax 

activation function for final predictions. This combination aimed to leverage the strengths of both approaches for 

LSTM) trained on an oversampled sequence of 2-

uch as instances where the participant's 

right hand was misinterpreted as the left hand. A total of 35 such cases were removed from the dataset. After filtering, 

or testing and 100 for 

validation. The sequence lengths varied significantly among the recordings. For instance, the digit "1" typically 

padding was applied to 

ize the sequence lengths within each batch, matching the maximum sequence length of that batch. This 

approach ensured that during training, only the final timestep's output was considered for evaluation. 

over 1,000 epochs with a batch size of 64 samples. The 

training data were shuffled at the start of each epoch, and the validation loss and accuracy were used to determine the 

th 16 GB of RAM, an Intel i7-

8750H CPU, and a GeForce GTX 1060 GPU with 6 GB of VRAM. The training code is available for access at [25]. 

performing models for each architecture were evaluated on the test set, and their accuracies are summarized in 

Table I. Both static and dynamic approaches demonstrated impressive performance. Among the architectures, the 

LSTM achieved the highest accuracy, followed closely by the BLSTM. The CNN ranked third, surpassing the hybrid 

Dynamic architectures achieved similar results, while the TCN-Static 
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model performed the least effectively. Notably, the TCN models exhibited approximately double the runtime efficiency 

compared to other architectures, attributed to their smaller number of trainable parameters and the use of dilations. 

Analysis of the confusion matrices revealed distinct sources of error for the two top-performing models: the LSTM and 

the CNN. For the LSTM, only one instance was misclassified, where a "9" was mistaken for a "2." This error can be 

attributed to the sequential similarity between the trails of these digits. On the other hand, the CNN misclassified three 

samples. Interestingly, the hybrid LSTM-CNN model resolved the LSTM's single error but retained the CNN's three 

errors and introduced an additional one. 

Increasing the number of convolutional layers in the CNN led to diminished performance, likely due to the simplicity of 

the 28x28 binary image inputs. Similarly, adding layers or enabling bidirectional configurations for the LSTM did not 

yield significant improvements and only prolonged training times. 

To evaluate the influence of user-specific traits on model performance, a participant cross-validation protocol was 

employed. In this setup, one participant's data were excluded from the training set and used exclusively for testing. 

Each fold included 100 samples per participant, 10 from each digit class. Table II highlights a noticeable performance 

drop across all models in this  user-independent setup. Static models, particularly the CNN, outperformed dynamic 

models, which proved more susceptible to errors. Performance variability across different folds was also more 

pronounced for dynamic architectures, suggesting the dataset size and diversity were insufficient for building 

generalized models. 

Fine-tuning the models by incorporating samples from the test participant into the training set significantly improved 

performance. This strategy was applied to the CNN and LSTM models for participants #5 and #8, as shown in Table 

III. The results consistently demonstrated improved recognition rates with this approach. 

 

IV. CONCLUSIONS AND FUTURE WORK 

The strong performance of relatively small models in digit label prediction highlights the effectiveness of the data 

collection strategy. The use of a vertical plane, such as a computer screen, combined with a distance threshold to 

indicate breaks in drawing, proved instrumental in achieving these results. 

The experiments underscored the strengths and limitations of static and dynamic approaches, as well as the neural 

architectures employed. While static methods are traditionally favored for handwriting recognition, this study 

showcased the potential of sequential modeling for the task. 

Future work could involve expanding the Leap Motion air-writing dataset to include letters. Additionally, a comparison 

with other publicly available datasets, such as the 6DMG motion and gesture dataset, would provide further insights. 

Exploring innovative ways to combine dynamic and static approaches to leverage their respective advantages is another 

promising direction. Finally, real-time implementation of the recognition system could be pursued, enabling sequential 

architectures to predict digit labels at shorter time intervals, even before the completion of a drawing. 
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