

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, January 2025

Tropical Floristics Extinction, Causes and Diversity Composition of Non-Timber Forest Products (NTFPs) in Kazaure Emirate, Jigawa State Nigeria

Yakubu M¹, Adamu S², Isa A. G², W. A Mahmud², Sa'idu I² and M. S Abdullahi³ Department of Forestry & Environmental Technology, Hussaini Adamu Federal Polytechnic Kazaure, Jigawa, Nigeria¹ Department of Agricultural Technology, Hussaini Adamu Federal Polytechnic Kazaure, Jigawa State, Nigeria² Department of Science Laboratory Technology, Hussaini Adamu Federal Polytechnic, Kazaure, Jigawa, Nigeria³ yakubujaja001@gmail.com

Abstract: The study looked into the extinction of tropical tree species and the composition of non-timber forest products (NTFPs) in the emirate of Kazaure. Because of the rapid growth of the human population, trees and their products are vulnerable to human encroachment, which can lead to the destruction of natural habitats. An oral interview was also conducted, and the results indicated that 81.2% of the respondent were males, with farming occupations of 55.8% and age ranging from (46-60) recorded with 62.3%. A total of forty species (40) belonging to twenty-three (23) families and thirty-two (32) genera were recorded extinct, and the major causes of their extinction were farming expansion with 33.1%, fuel wood collection with 31.8%, medicine with 22.7%, urbanization with 7.8%, and climate variability with 4.5%. Data on the composition of NTFPs were analyzed using the Simpson index and descriptive statistics. Eighteen (18) products were found, with Gwiwa having the highest Simpson diversity index (D- 0.955), followed by Roni (D- 0.948), Yankwashi (D- 0.942), and Kazaure (D- 0.905). Environmental education and competent law enforcement are the primary approaches for restoring diversity and preventing the extinction of tropical trees and NTFPs in the emirate.

Keywords: Tropical tree species, Extinction, Causes, Diversity, Composition, NTFPs and Kazaure emirate

I. INTRODUCTION

Tropical trees contribute to the livelihoods of communities by supplying a variety of items such as food, firewood, timber, medicine, and other functions including soil protection and water catchment (Bibianne et al., 2023). However, many parklands are vulnerable to human invasion due to the rapid rise of the human population, resulting in the degradation of natural habitats. Habitat loss endangers plant species' existence, particularly those that are endemic, sensitive, or endangered, necessitating mitigation actions to prevent extinction (Gonçalves-Souza et al., 2020). Approximately 20% of the world's plant population is under threat of extinction, with the majority of these species found in the tropics and woodlands (Razgour et al., 2020). Tropical trees support a vast range of vegetation and wildlife. Furthermore, they play an important role in climate regulation while providing a living for millions of people. In Nigeria, the use of trees and non-timber forest products affects people of all economic levels and livelihoods. Households typically use trees for firewood and charcoal to replace kerosene, whereas poor households use trees and NTFPs for medication, feed, and to sell for profit. The majority of NTFPs are harvested for subsistence, resulting in overexploitation and destruction of tropical tree species (FAO, 2018).

Non-timber forest products (NTFPs) emerged as a catchall term for products derived from various forest resources (Saka et al., 2020). Non-timber forest products are plants and/or forest products that are valuable for purposes other than timber. They have been defined as all biological materials of plant and animal origin other than wood extracted from forests for human use and primarily processed technologically (Ibrahim et al., 2016). Non-timber forest products are useful substances, materials, or commodities extracted from forests that do not require tree harvesting (FAO, 2018). More than two billion people worldwide live in forests and rely on forest resources for subsistence, income, and livelihood security (Ahenkan and Boon, 2011; Chepkoech, et- al, 2023).

Copyright to IJARSCT www.ijarsct.co.in DOI: 10.48175/IJARSCT-23054

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, January 2025

Islam (2017) defined NTFPs as forest-derived items other than timber. Extracting and collecting NTFPs, whether in part or completely, will have an impact on the ecology and environment of a particular ecosystem (Bista and Edward, 2006). According to the World Health Organization, around 80% of developing-country populations rely on non-timber forest products to meet their health and nutritional requirements. Non-timber forest products also provide numerous prospects for improving rural development and living standards (Ajake and Enang, 2012; Islam et al., 2013). Non-timber forest products are widely used across the tropics, frequently giving critical resources to individuals in areas where the state does not provide other forms of social security. (Ghosal, Z 2011).

The Study Area

II. MATERIALS AND METHODS

Kazaure emirates comprises of four local government areas i.eKazaure, Gwiwa ,Roni and Yankwashi and the head quarter is in the ancient city of Kazaure situated in Jigawa State of north-western Nigeria (Coordinate of Latitude 12°39'10''N'8° 24' 43'' E and longitude 8°41'94''E 12°65'27''N with a population of approximately 500, 000. It falls within the Sudan Savannah zone NPC 2006. The minimum and maximum temperature ranges from 15.85°C and 42°C and fall as low as 10°C during the Hamatan season between December and January. The emirates has two seasons: rainy and dry Seasons. Temperatures during the Dry Season can be as high as 42°C except in December and January when temperature could be as low as 15°C, and average temperature in the rainy season is 25°C. Annual rainfall ranges from 500mm to 1,200mm SOA, (2024). The people of the emirates are predominantly farmers who engage themselves in both rainy and dry season farming (irrigation). Kazaure has total area of 690sq mi (1,780km²). Abdullahi*et al.*, (2016).

Figure 1: Map of the study area.

Source: GIS Laboratory, Urban & Regional Planning Department, HAFEDPOLY, Kazaure, (2024)

Sampling Procedures

Reconnaissance survey was made in the emirate councils, catchment areas were identified. Stratify sampling method was adopted for the study according to existing local government areas (LGAs) viz Kazaure, Gwiwa, Roni and Yankwashi. One hundred and eighty (180) questionnaires was used, forty-five (45) each distributed to every LGA in

Copyright to IJARSCT www.ijarsct.co.in DOI: 10.48175/IJARSCT-23054

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, January 2025

three randomly selected locations from each LGAs. Oral interview was also conducted. Data collected was effectively use with clear expression and recorded for further analysis.

III. Data Analysis

The checklist of theextinct tropical Tree species diversity was presented and causes of their extinction in the study areas in a tabular form and graph.

Simpson diversity index was employed to assessing the compositions of non- timber forest products (NTFPs) in the study areas.

Simpson index $D = 1 - \left(\frac{\sum n(n-1)}{N(N-1)}\right)$

D = Diversity index

Where n = total number of organism of a particular species,

N = the total number of organisms of all species Saka et-al, (2020).

The widely use NTFPs were also presented in a chart respectively.

IV. RESULTS

 Table 1: Tropical floristic diversity and possible causes of their extinction in kazaure emirate

S/N	Scientific Name	Family	Local	Possible causes of their extinction			
			name(hausa)				
1.	Adansonia digitate	Malvaceae	Kuka	Extensive exploitation for food, feeds and medicinal Uses.			
2		Combretaceae		Exploitation for construction,			
	Anogeissuslieocarpus		Marke	fuelwood implements production such as pestle and mortar and poor			
				coppicing capacity of the species			
3.		Zygophyllaceae		Overexploitation for medicine and			
	Balaniteaegyptiaca		Aduwa	implement production such as woody handles of different local tools and			
				livestock feeds.			
4.	Borassusaethiopum	Arecaceae		As construction, fuel wood, local			
			Giginya	as food and livestock feed			
5.		Burseraceae		Overexploitation for traditional			
				medicine, fuelwood and implement			
	Boswelliaodorata		Hano	production such as mortar, charcoal			
				production and poor coppicing			
6		Fahaceae		Destruction of the plant reduces it			
0.	Cassia singuena	1 ubuccuc	Runhu	capacity and they are critically			
	e marine a la gare an			endangered species.			
7.		Amaranthaceae		The species had long gestation period,			
	Celosia argentea		Rimi	but overexploitation may lead to			
				disappearance.			
8.	Combretumglutinosum	Combretaceae	Tarauniya	Agricultural exploitation			
9.		Dioscoreaceae		Overexploitation coupled with the			
	Combretummicranthum		Geza	fact that the plant is implements			
				production such baskets for storage of			
10	Deuterium microcarnum	Fabaceae	Taura	They are critically endangered			
10.	Dealer tam microcarpum	1 ubuccuc	Taura	ISSN 2581 9429			
Copyright to IJARSCT www.ijarsct.co.in		DOI: 10.48175/IJ	ARSCT-23054	1JARSCT 464			

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, January 2025

Copyr www.	ight to IJARSCT <mark>ijarsct.co.in</mark>	DOI: 10.48175/IJARSCT-23054		JJARSCT 465
26.	Parkiasoniaacculeata	Fabaceae	Sharannabi	Due to the personeus substance in the latex people appre this plant because
	č		Dorowa	preparation of local food, medicinal and livestock feeds
25.	Parkiabiglobosa	Fabaceae		endangered. As fuel wood, roofing materials, for
	Neocaryamacrocapum	-	Gawasa	fact that the plant are critically
23. 24.	Lanneamicrocarpa	Anacardiaceae Chrysobalanaceae	Faru	Agricultural exploitation Overexploitation coupled with the
			Madachi	available seeds of the species within the study location
22.	Khayasenegalensis	Maliaceae		Use for medicinal and lack of
21.	Hyphaenethebaica	Arecaceae	Goruba	variability and has a poor coppicing capacity Destruction of the plant reduces it capacity
20.	Hippocrateaguineensis	Celastraceae	Gwaɗayi	purposes. The plant cannot withstand changes in the environment in terms of climate
19.	Guierasenegalensis	Combretaceae	Sabara	species. More pressure are mounted on this species for medicinal
10		Combustassas		activities like road construction and other infrastructural development, we lose them
18.	Gardenia aqualla	Rubiaceae	Gaude	exploitation reduces it capacity. Due to expansion of economic
17.	Ficusvallis- choude	Moraceae	Lubiya	It is habitat specific, it is found in moist places like riverbank, over
16.	Ficusthonningii	Moraceae	Cheediya	The plant cannot withstand changes in the environment in terms of climate variability.
15.	Ficussycomorus	Moraceae	Baure	Extensive exploitation for medicinal Uses and Agricultural expansion
14.	Ficusptatyphylla	могасеае	Gamji	other uses.
14	Ficuspolita	Manage	Durumi	expansion and climate variability may be the reason for it disappearance.
13		Moraceae		disappearance because they cannot withstand the environmental stresses. Over exploitation for Agricultural
12.	Faidhebiaalbida	Fabaceae	Gawo	coppicing capacity. Farming and Urbanization in the area over the years help in their
11.	Diospyrosmespiliformis	Ebenaceae	Kanya	on this species. Overexploitation for medicinal, fuelwood and other purposes like Charcoal production and poor
				species. More pressure are mounted

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, January 2025

27		T		of certain superstition and suspicion
27.		Lauraceae		Climate variability in the area over
	Paulliniapinnata		Farundaula	because they cannot withstand the
				anvironmental stresses
28		Fabaaaa		Exploitation for construction and
20.		rubuceue		implements production such as pestle
	Pericopsislaxiflora		Makarho	and mortar and poor connicing
				capacity
20		Loguminosacaaa		Due to expansion of economic
29.		Leguminosuceue		activities like road construction and
	Piliotigmarecticulatum		Kalgo	other infrastructural development we
				loss them
30		Loguminasae		As fuel wood medicinal local
50.		Leguminusue		roofing materials fruits is utilized as
	ProsopisAfricana		Kirya	food and as livestock feeds, it has a
				poor copping capacity
31		Fabaceae		Exploitation for construction and
51.		1 ubuccuc		implements production such making
	Pterocarpuserinaceus		Madobiya	rope medicinal and for preparation
				of food livestock feed
32		Polvgalceae		Due to the poisonous substance in the
52.	Securidacalongepedunculata	1 olyguleeue	Sanva	latex people arbore this plant because
	Seem have all style permitten and		Sulfu	of certain superstition and suspicion.
33.		Sterculiaceae		They are critically endangered
	Sterculiasetigera		Kukkuki	species. More pressure are mounted
				on this species.
34.	Strychnos spinose	Loganiaceae	Koƙiya	As fuel wood, making rope, medicinal
	× 1	0	5	and for preparation of food, livestock
				feed
35.		Fabaceae		As fuel wood, roofing materials, for
	Tamarindusindica		Tsamiya	preparation of fermented local food,
				medicinal and livestock feeds.
36.	Terminalia macroptera	Combretaceae	Kandare	The species had long gestation period,
	-			but overexploitation may lead to
				disappearance
37.	Vitellaria paradox	Sapotaceae	Kaɗanya	Urbanization, medicine and fruits is
				utilized as food and as livestock feed
38.		Verbenaceae		Over exploitation, for firewood and
				charcoal production may be the
	Vitexdoniana		Dinya	reason for it disappearance and
				species haven a poor coppicing
				capacity.
39.	Zizinhusmauritiania	Rhmnaceae	Magarya	As fuel wood, medicinal and for
	pmomun nunnu		inugui yu	preparation of food, livestock feed
40.	Ziziphusspinsa- Christi	Rhamnaceae	Kurna	As fuel wood, medicinal and for
				preparation of food, livestock feed

Source: Field survey 2024

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-23054

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, January 2025

Figure 2: Possible causes of tropical tree species extinction

S/No	Products	No of products Kazaure	n(n-1)	No of products Gwiwa	n(n-1)	No of products Roni	n(n-1)	No of product Yankwa shi	n(n-1)
1.	Dry leaves	20	380	07	42	10	90	00	00
2	Bark powder	14	12	18	306	23	506	11	110
3.	Dry Root	10	90	12	132	29	812	00	00
4.	Fibre	11	110	37	1,332	20	380	14	182
5.	Stems	05	20	20	380	21	420	04	12
6.	Fruits	06	06	15	210	16	240	06	30
7.	Bamboo	02	02	13	156	00	00	09	72
8.	Honey	00	00	00	00	13	156	16	240
9.	Dry Barks	07	42	16	240	32	992	33	1,056
10.	Resin	00	00	00	00	00	00	08	56
11.	Vegetables	00	00	07	42	08	56	16	240
12.	Fresh roots	05	20	13	156	16	240	13	156
13.	Bones of wildlife	11	110	29	812	16	240	09	72
14.	leaves powder	16	240	25	600	20	380	12	132
15.	Seeds	00	00	16	240	36	1,260	06	30
16.	Vegetable oil	01	00	06	30	15	210	11	110
17.	Bush meat	05	20	02	02	30	870	05	20
18.	Dry skin of wild animals	14	182	07	42	14	182	32	992
	Total	117	1,234	243	4,722	319	7,034	205	3,510
Di	iversity Index	0.90)5	0.94	8	0.95	5	0.94	2

Table 2: Diversity and composition of the Non-timber forest products in kazaureemirate

Source: Field survey 2024

Copyright to IJARSCT www.ijarsct.co.in DOI: 10.48175/IJARSCT-23054

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, January 2025

Figure 3: The widely used Non-timber forest products (NTFPs) in the study areas

V. DISCUSSION

Diversity provide vital information regarding the composition and extinction status of floristic species. Trees and their products are prone to human invasion due to the rapid rise of the human population, leading to deforestation and the destruction of natural habitats. Findings on tropical tree species diversity and extinction revealed that the Kazaure emirates has a large diversity of tropical/indigenous tree species, with a total of forty (40) species belonging to twenty-three (23) families and thirty-two (32) genera recorded, along with scientific and local names for each species, as shown in table 1. The findings also revealed that farming was the leading cause of their potential extinction at 33.1%, followed by fuelwood collection at 31.8%, medicine at 22.7%, and climate variability at 4.5%, as shown in (table 1 and figure 2), respectively. According to the oral interview, respondents also stated that overexploitation of tropical trees through pruning/shading leads to their extinction, despite the fact that they all know that the species of the study areas have very poor coppicing capacity and insufficient seeds for regeneration. This could be due to population growth in the emirate, which leads to rises in their demands on the species for their livelihood and economic activities such fuelwood collecting, farming, road construction, and other infrastructural development, and this contributes to the extinction.

However, many tree species are prone to human encroachment due to the rapid growth of human population, leading to deforestation and the destruction of natural habitats. This study is in line with Bibianne et al, (2023) in their recent research on plant species composition, abundance, diversity, and threats affecting their survival, and Gonçalves-Souza et al, (2020) in their finding on habitat loss, extinction predictability, and conservation efforts in the terrestrial ecosystem.

According to the study conducted across the emirate, approximately 96.7% of respondents are aware of NTFPs, and 89% of the people in the emirate use the products in various ways. The major NTFPs are leaves (33.1%), fruits (31.8%), bark (22.7%), roots (7.8%), and fiber (4.5%), as shown in (Figure 3). The diverse composition of NTFPs also demonstrated that the emirate has a wide range of the products, with eighteen (18) detected. The diversity was great throughout the emirate's four local government areas; namely Kazaure, Gwiwa, Roni, and Yankwashi, were disproportionately distributed among NTFPs, across the LGAs indicates that Gwiwa had the highest Simpson diversity index of D- 0.955, followed by Roni D- 0.948, Yankwashi D- 0.942, and Kazaure D- 0.905, as shown in (table 2). As per Aramde et al. (2017)The value of D runs from 0 to 1, with 0 signifying considerable diversity and 1 representing no diversity. The lower the value of D, the greater the abundance diversity. This finding indicates that the emirate is diverse in terms of NTFPs because the diversity of all habitats spans between 0.905 and 0.955. Perhaps the even distribution of non-timber forest products contributed to a uniform habitat structure in the research locations. This is

Copyright to IJARSCT www.ijarsct.co.in DOI: 10.48175/IJARSCT-23054

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, January 2025

consistent with the findings of Saka et al. (2020), who reported diversity values of (94, 1464, D-0.981), (63, 842, D-0.970), and (60, 805, D-0.969) with a similarity index of 78.5%. Suraj (2016) also reported that the Simpson of diversity index among the three different sites were 0.988 (Control site3), 0.328 (Site 1), and 0.213 (Site 2), indicating that (Site3) has higher diversity values than Sites 1 and 2.

VI. CONCLUSION

Many researchers have revealed the exploration of tropical floristic extinction and the composition of NTFPs. The preceding study shows that an increase in human population and poverty creates a high demand for insufficient renewable resources such as trees in the savannah region. Overreliance on this resource (topical trees) has resulted in the extinction of several important species, including *Tamarindusindica, Adansoniadigitata, Parkiabiglobosa, Vitellariaparadoxa, Hyphaenethebaica, Farderbiaalbida, Khayasenegalensis*, and *Borassusaethiopica*. Environmental education and proper law enforcement are the preferred methods for restoring NTFPs and endangered tree species and preventing their extinction.

Conflict of Interests

The authors have not declared any conflict of interest.

Acknowledgment

Let me extend my profound gratitude to TETFUND for sponsoring this research work, HussainiAdamu Federal Polytechnic Managementand entire staff for their support and guides rendered during the research.

REFERENCES

- [1]. Abdullahi A. M., Arma y., Surayya M. L., Sarki A. S., Muhammad B. I., Nura B. (2016), Characterization of Municipal Solid Waste, In Kazaure Local Government Area, Jigawa State, Nigeria. *International Journal of Engineering Sciences & Research Technology Issn: 2277-9655 IcTM value: 3.00 Impact factor: 4.116.*
- [2]. Ahenkan, A. and Boon, E. 2011. Non-timber forest products (NTFPs): Clearing the confusion in semantics. *Journal of Human Ecology*, 33(1): 1-9.
- [3]. Ajake, A.O. and Enang, E.E. (2012). Demographic and socio-economic attributes affecting forest ecosystem exploitation and management in the rural communities of cross river state, Nigeria. *American International Journal of Contemporary Research*, 2(1): 174-184
- [4]. AramdeFetene, Tsegaye Bekele and MulugetaLemenih, (2017) Diversity of non-timber forest products (ntfps) and their source species in Menageshasuba forest *Ethiopia. Journal. biol. sci.*, 9(1): 11-34, 2010 © the biological society of ethiopia, 2010 issn: 1819-8678 Vol-2, *Issue-4, Jul-Aug*, 2018]<u>https://dx.doi.org/10.22161/ijfaf.2.4.1</u>ISSN:2456-8791
- [5]. Bibianne W, Gervason M, Elias N and Jared O. (2023) Plant species composition, abundance, diversity, and threats affecting their survival in Kiang'ombe and Kianjiru hills of Embu County, Kenya
- [6]. Bista, S. and Edward W.L. (2006) Collection and marketing of non-timber forest products in the far western hills of Nepal. Environmental Conservation 33 (3): 244-255.
- [7]. Chepkoech E., Agevi H., Lung'ayia, H and Tsingalia, H.M.(2023), Woody Species Composition, Tree Diversity and Regeneration Status of Londiani Forest, Kenya
- [8]. Food and Agricultural Organisation FAO (2018). Global Forest Resources Assessment 2010, Country Report Nigeria FRA2010/151 Rome, 2010. P. Forest Products (NTFPs): A Provisioning Ecosystem Services among the Marwet
- [9]. Ghosal, S. (2011). Importance of non-timber forest products in native household economy. *Journal of Geography and Regional Planning*, 4(3): 15
- [10]. Gonçalves-Souza D, Verburg PH, Dobrovolski R (2020). Habitat loss, extinction predictability and conservation efforts in the terrestrial ecoregions. Biological Conservation 246:108579. <u>https://doi.org/10.1016/j.biocon.2020.108579</u>

Copyright to IJARSCT www.ijarsct.co.in DOI: 10.48175/IJARSCT-23054

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, January 2025

- [11]. Ibrahim. A.O.1, Ampitan.T.A.1, Adeniji.O.A.1, Olayinka, A.P.1, Babatunde, K.O.1 (2016) utilization of nontimber forest products (ntfps) in new bussa, nigeria*International Journal of Research in Agriculture and Forestry* Volume 3, Issue 10, October 2016, PP 1-7 ISSN 2394-5907
- [12]. Islam, M.A. and S.M. S. Quli (2017). The Role of Non-Timber Forest Products (NTFPs) in Tribal Economy of Jharkhand, India M.A. Islam1* and S.M. S. Quli2 *International Journal of Current Microbiology and Applied Sciences* Volume 6 Number 10 (2017) pp. 2184-2195
- [13]. NPCN (2006) National population Commission Kazaure L.G.A office
- [14]. Razgour O, Kasso M, Santos H, Juste J (2020). Up in the air: Threats to Afromontane biodiversity from climate change and habitat loss revealed by genetic monitoring of the Ethiopian Highlands bat. Evolutionary Applications 14(3):794-806.
- [15]. Saka, M. G., Aujara, Y. I., Ilu K. J., Salami , K. D. and Yakubu M. (2020) Composition and Diversity of Non-Timber Forest Products (NTFPs) in Baturiya Wetland Game Reserve, Jigawa State, Nigeria Vol. 4 No. 3, September, 2020, pp 416 – 425 DOI: <u>https://doi.org/10.33003/fjs-2020-0403-402</u>
- [16]. School of Agriculture, (2024) Metrological station data. HussainiAdamu Federal Polytechnic, Kazure, Jigawa State, Nigeria.
- [17]. Suraj Sharma1; Parthankar Choudhury and Narayan Chetry(2016): Diversity of Non-Timber The Economist (2000). *Poverty and property rights*. 358 (8215): 19-22 The effect of wealth and markets on the economic behaviour of Tawahka Amerindians in Honduras. (PhD Thesis University of Amsterdam). Tropenbos Series 19. Wageningen: Tropenbos International
- [18]. Urban & Regional Planning Department, (2024) GIS Laboratory data. HussainiAdamu Federal Polytechnic, Kazure, Jigawa State, Nigeria.

