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Abstract: The growing presence of converter interfacing with generation resources, such as renewable 

energy systems, and HVDC transmission is greatly changing what we view as "the grid" today. Converter 

interfacing in a traditional sense means that the way faults behave on the system has changed and so have 

the ways in which fault currents interact with the protection systems of the system. Synchronous generators 

are being replaced by converters and thus traditional protection methods that were developed for 

synchronous generators are no longer sufficient to protect the grid. This comprehensive review paper 

examines both the challenges associated with developing reliable protection methods in converter 

interfaced systems and identifies state of the art solutions. It describes the different types of faults that occur 

in converter interfaced systems, discusses some of the issues with existing protection methods, presents 

examples of new or emerging protection technology, and provides an overview of future areas of study and 

potential standards development needed to support the rapidly evolving nature of our electric grid 
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I. INTRODUCTION 

Modern power grids are undergoing a fundamental shift due to the influence of environmental policies and 

technological innovation which is leading to an increased focus on the integration of renewable sources into the power 

generation mix. In particular, the rapid deployment of inverter based renewable energy sources such as solar and wind, 

battery energy storage systems, and high voltage direct current (HVDC) transmission links is transforming the electrical 

properties of power grids from traditional synchronous generator dominated systems to converter dominated systems. 

This conversion of the electrical properties of power grids fundamentally changes the electrical characteristics of faults 

occurring within them and thus creates new challenges for designing protection systems for these faults. Protection 

systems that have been developed and refined over the past few decades were specifically designed to address faults in 

systems containing synchronous generators. These systems were developed based upon a number of assumptions 

concerning fault currents, their magnitudes and directions, as well as the impedance characteristics between the fault 

location and the protection system's measurement points. These assumptions will not apply in converter dominated 

systems [3]. In addition to displacing synchronous machines that provide both inertia and fault current contribution to 

the power grid, the use of converter technology has introduced the possibility of fault response that can be controlled 

through the application of control strategies to each converter in the system. Each converter can also respond differently 

depending on its topology and the grid codes being enforced [4]. Studies conducted around the world have shown that 

there are many areas with instantaneous penetration levels of inverter based renewables approaching or exceeding 70% 

of total generation. This level of penetration fundamentally changes how grids behave and what protection systems 

need to do to maintain reliability. There are numerous examples of this trend; in the United States for example, states 

such as Hawaii and Texas, as well as portions of Europe have reached levels of inverter based renewable penetration at 

which traditional protection schemes developed for synchronous generator dominated systems may no longer be 
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adequate for protecting these future renewable power systems [6]. Therefore, a thorough review of protection 

philosophies and development of new protection methods that can ensure reliable operation in emerging converter 

dominated systems is required. The protection systems will have to adapt to lower fault current levels, bidirectional 

power flow, nonstandard fault signatures, and the potential for protection blindness or false tripping [7]. Additionally, 

the heterogeneity of the control systems used in different types of inverter based renewable energy sources further 

complicates the issue of protection coordination and standardization [8]. 

The objective of this review paper is to identify the protection challenges and solutions associated with converter 

dominated power grids and provide a synthesis of recent research and practical experience. The paper first identifies 

and characterizes fault behaviors in converter dominated systems, then identifies the protection challenges associated 

with those fault behaviors. Next, it discusses the limitations of traditional protection schemes and introduces a number 

of emerging protection technologies including adaptive protection, wide area protection systems, and machine learning 

based protection schemes. Finally, the paper identifies the research gaps and future directions for ensuring reliable 

protection in power grids during the on-going energy transition. 

 

II. FAULT CHARACTERISTICS IN CONVERTER-DOMINATED GRIDS 

Understanding fault characteristics in converter-dominated grids is fundamental to designing effective protection 

schemes. Unlike synchronous generators that provide fault currents determined primarily by electromagnetic transients 

and machine impedances, converter-interfaced sources exhibit fault responses governed by semiconductor device 

ratings, control algorithms, and grid code requirements [9]. 

 

A. Converter Fault Current Contribution 

Converters interfaced to a power system differ from synchronous generators in their fault current contribution. 

Synchronous generators inherently contribute fault current up to five to ten times their nominal current in the initial 

sub-transient time frame until they decay to lower values while the fault continues. The behavior of synchronous 

generators is due to the electromagnetic interaction of the rotor and stator; the magnitude of the fault current is 

dependent upon the time constants and reactance’s of the machine. Converters interfacing to a power system through 

power electronics are restricted by the ratings of semiconductor devices which normally restricts the fault current 

contributed to be between one point two and two times the rated current to prevent the failure of the semiconductor 

device. Current limiting strategies activated by fault detectors operating in microseconds to milliseconds are typical for 

grid following converters used in renewable energy applications [12]. Current limiting strategies can include the use of 

several techniques such as instantaneous current clamping, voltage dependent current reduction, or converter blocking 

dependent on the type of fault detected and the design of the control strategy [13]. The IEEE Standard 2800-2022 

requires fault current contributions from IBRs in transmission systems and specifies a minimum amount of reactive 

current to be injected into the grid during voltage sags to assist in the restoration of grid voltage [14][15]. The 

requirements specified in this standard are primarily based on balanced faults and positive sequence reactive current 

support, thus providing much flexibility in the fault current contribution from converters in response to unbalanced 

faults. Therefore, the fault current contribution from IBRs has a wide range of variability dependent upon the converter 

technology, the control strategy implementation, and the compliance strategies with grid codes utilized by each 

converter manufacturer [16]. Grid forming converters are an emerging technology capable of producing voltage sources 

that are similar to those produced by synchronous generators and could potentially offer better fault current contribution 

than grid following converters [17]. The North America Electric Reliability Corporation (NERC) and Electric 

Reliability Council of Texas (ERCOT) have published standards for the control of grid forming inverters specifically 

referencing their importance for battery energy storage systems in areas dominated by inverter-based resources [18]. 

Various grid forming control strategies, including but not limited to droop control, virtual synchronous machine control, 

and matching control have been proposed and implemented [19]. Although grid forming converters can produce fault 

current with controlled magnitude and phase angle, the practical realization of grid forming inverters also face the same 

semiconductor device limitations as other inverter technologies, therefore fault current management must be carefully 

managed to prevent damage to the inverter [20] [21]. 
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B. CURRENT LIMITING STRATEGIES AND THEIR IMPACT 

The impact of the application of current limiting technology on the performance of protection systems in grid forming 

inverters is substantial. The research into current limiting methodologies has identified two primary classifications of 

current limiting as; direct current limitation techniques and indirect current limitation techniques. Each type of current 

limiting methodology presents different protection system limitations and challenges regarding fault detection and the 

coordination of protective relaying operations [22]. In general, a direct current limitation technique will provide a 

mechanism to limit the maximum output current from an inverter to a predetermined level by either modifying the 

PWM signal generation process or directly modifying the current at the output terminals of the inverter. On the other 

hand, an indirect current limitation technique modifies the reference signals used to determine the output current from 

an inverter to limit the output current indirectly. More recent research has provided the development of hybrid current 

limiting technologies that utilize combinations of direct and/or indirect current limiting methodologies to optimize both 

transient stability and compatibility with protective devices [24]. Research studies indicate that the choice of current 

limiting strategy is directly related to the determination of the critical clearing angle, which is critical for determining 

transient stability when faults occur in the system [25]. For example, using inductive virtual impedance-based limiters 

to limit the output current can improve the critical clearing angles, thus improving the transient stability against faults, 

while the use of capacitive virtual impedance-based limiters may decrease the critical clearing angles and subsequently 

reduce the stability margins [26]. The time-varying nature of the operation of current limiters also creates difficulties 

for protection algorithms that rely on steady-state assumptions of the fault currents. For example, during severe faults, 

current-reference limiters are generally the fastest acting current limiting methodologies and typically dominate the 

fault current limiting operation during the first few cycles of the fault, thus limiting the fault current to the 

predetermined maximum allowable limits, while virtual impedance limiters may become active during later phases of 

the fault and therefore introduce transients to the fault current that can create interference issues with conventional 

protection algorithms that rely on steady state assumptions of the fault current. 

 

C. FAULT CURRENT WAVEFORM CHARACTERISTICS 

Compared to fault currents generated by synchronous generators, the fault current waveforms of converter-interfaced 

power sources are distinctly different. While synchronous generator fault currents typically consist of well-defined sub-

transient, transient and steady-state components (with predictable time constants and decay characteristics), and 

therefore resemble sinusoids with primary frequency predominance and minimal harmonic content [28], fault currents 

from converter-interfaced power sources can display varying degrees of waveform distortion based upon the converter 

configuration, modulation technique and control system response [29]. Converter control systems will typically shift 

between different operating regimes in response to fault conditions resulting in transient responses that may include 

discontinuity, higher order harmonics and inter-harmonics. Studies have identified typical fault current characteristics 

for IBRs including; sustained fault current magnitudes which are generally low because of the current limitation 

imposed by the inverter, transient responses ranging from approximately half cycle to 1 and 1/2 cycles duration prior to 

being limited by allowable inverter limits, and control determined angular relationships between voltage and current 

during faults [30]. Experimental studies and field measurements have demonstrated considerable variability in 

converter fault current waveforms among various manufacturers and technologies [31]. Some converter fault currents 

appear to be very clean and sinusoidal in nature (via advanced control techniques) while other converter fault currents 

exhibit significant amounts of harmonic distortion, asymmetry and/or intermittent current injections into the faulted 

circuit during severe depression of the voltage levels at which the converters are attempting to operate [32]. Such 

variability creates challenges for fault detection and classification algorithms that depend on sinusoidal waveforms or 

specific harmonic content for fault identification and classification. 

 

D. SEQUENCE COMPONENT BEHAVIOR 

The main difference between synchronous generators and converter interfaced sources are fault response characteristics 

due to the nature of the source. Unbalanced faults result in different types of fault current produced by synchronous 

generators based on their machine and connecting network sequence impedances. The negative sequence impedance of 
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synchronous machines is relatively low; therefore, during unbalanced faults, significant negative sequence current will 

flow in the source [33]. Sequence component behavior of converter interfaced sources are controlled by algorithms 

versus impedances. In addition, most grid following converters have separate control loops for positive and negative 

sequences to control the magnitude and phase angle of each sequence separately [34]. There are two typical control 

methods used in IBRs during faults: Coupled Sequence Control (CSC) and Decoupled Sequence Control (DSC) [35]. 

Under the CSC method, there is no direct regulation of the negative sequence current by the controller and, as such, 

there may not be any negative sequence current flow during an unbalanced fault. Conversely, under DSC, both positive 

and negative sequence currents can be individually controlled and independently regulated, which reduces the potential 

for protection system misoperation [36]. While IEEE 2800-2022 requires negative sequence current generation from 

IBRs connected to transmission level power systems, performing EMT studies are essential to understand how IBRs 

respond to faults [37]. Studies have demonstrated that even if negative sequence current is required by grid codes, the 

maximum amount of negative sequence current that can be injected into the grid is limited due to the vector sum of the 

load current (if present), positive sequence reactive current, and negative sequence reactive current cannot exceed the 

maximum allowable current of the inverter [38]. As an example, when an IBR is operating at its rated capacity prior to 

a fault, it is likely that at least one phase will reach its maximum allowable current (approximately 120% of its rated 

current), which in turn limits the amount of negative sequence current that can be injected into the grid during an 

unbalanced fault [39]. The behavior of zero sequence current adds additional complexity to converter dominated 

systems. The ability of converters to generate zero sequence current is dependent on the type of converter and the 

grounding configuration [40]. Three phase three wire converters that do not have a neutral connection cannot generate 

zero sequence current; however, four wire converters or delta wye transformer configurations may allow for zero 

sequence current flow. Additionally, many grid connected converters utilize zero sequence blocking filters to prevent 

circulating current flow and mitigate common mode electromagnetic interference. Therefore, ground fault detection 

systems that measure zero sequence current will likely experience decreased sensitivity or may fail altogether in 

converter dominated systems [41]. 

 

III. CHALLENGES FOR CONVENTIONAL PROTECTION SCHEMES 

The altered fault characteristics in converter-dominated grids expose fundamental limitations of conventional protection 

schemes that have reliably served synchronous generator-dominated systems for decades. Understanding these 

challenges is essential for developing effective protection solutions for emerging grid structures [42]. 

 

A. Overcurrent Protection Challenges 

The use of overcurrent protection is the most commonly used protection method throughout the world's power systems. 

Overcurrent protection is based upon the detection of a current level that exceeds predetermined limits to indicate the 

occurrence of a fault condition [43]. To ensure effective operation of overcurrent protection, the fault current must be 

large enough to distinguish faults from the highest possible load currents, and there should be a reasonable amount of 

current differential between normal operation and a fault condition. Fault current contributions from converter-based 

renewable energy sources (IBRs) have been shown to greatly reduce the ability to rely on overcurrent protection as a 

means of protecting the system against faults [44]. Since converter fault current is generally limited to roughly twice 

rated current, the difference between fault current and maximum load current will be small enough to provide 

inadequate discrimination between faults and normal operating conditions for many distribution systems with high load 

diversity. Blinding of protection equipment occurs when the fault current is too small to cause the protective equipment 

to trip at its set point, thus preventing fault identification and removal [45]. The addition of distributed IBRs into power 

systems will introduce bidirectional fault current flow to the system, which will violate all previous assumptions made 

for the traditional coordinated operation of protective devices, and will cause sympathetic tripping of healthy feeder 

lines, or prevent the isolation of faulty sections [46]. A number of studies have shown that conventional protection 

methods developed for systems with high short circuit levels and one directional current flow are ineffective for 

microgrid systems with a high percentage of their generation coming from inverter-based distributed generation [47]. 

Depending upon how the microgrid is being operated, the nature of faults observed by protective relays will vary, 
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depending on whether they observe low levels of current, current that flows in the opposite direction, and/or increased 

frequency, and therefore conventional protection methods may operate improperly [48]. 

 

B. Distance Protection Challenges 

Distance protection, which operates based on impedance measurement to determine fault location, faces substantial 

challenges in converter-dominated networks [49]. Traditional distance relays calculate apparent impedance using 

voltage and current measurements, comparing the result against predefined zone characteristics to determine whether a 

fault is within the protected zone [50]. The low-magnitude and control-dependent nature of IBR fault currents can cause 

distance relay under reach or overreach [51]. Under reach occurs when the measured impedance appears larger than the 

actual fault impedance, potentially causing the relay to fail to trip for faults within its protection zone. Conversely, 

overreach happens when measured impedance appears smaller than actual, potentially causing tripping for faults 

outside the intended protection zone [52]. Recent research has proposed adaptive K-factor control schemes for IBRs to 

enhance distance relay operation during all fault types [53]. In these schemes, based on the fault type detected, the K-

factor and thus the IBR current references are adjusted so that the apparent reactance measured by the distance relay's 

corresponding element equals the actual line replica reactance. Such methods aim to fulfill all fault ride-through 

requirements of IEEE Standard 2800-2022 and applicable grid codes while maintaining proper protection operation 

[54]. The phase angle relationship between fault current and voltage in IBR-dominated systems differs significantly 

from conventional systems, further complicating distance protection [55]. During balanced voltage sags, grid codes 

typically mandate predominantly reactive current injection to support voltage recovery, resulting in fault current nearly 

perpendicular to pre-fault current. This controlled phase relationship can cause measured impedance to deviate 

substantially from the actual fault impedance, potentially leading to protection misoperations [56]. 

 

C. Directional Protection Challenges 

Directional elements in protective relays determine the direction of power or current flow to provide selectivity in 

protection schemes [57]. These elements typically rely on voltage and current phase angle relationships or sequence 

component comparisons to establish fault direction. However, the control-determined phase relationships in IBR fault 

currents undermine the fundamental assumptions of directional elements [58]. Memory-polarized zero-sequence 

directional protective relay elements, commonly used for ground fault protection, face challenges due to the absence or 

limited magnitude of zero-sequence currents from IBRs [59]. The lack of zero-sequence current contribution from 

three-wire converters can prevent proper polarization of directional elements, leading to incorrect fault direction 

determination or complete failure to operate [60]. Negative-sequence-based directional protection also experiences 

difficulties in converter-dominated grids [61]. The variable and often minimal negative-sequence current contribution 

from IBRs during unbalanced faults can prevent reliable direction determination. Furthermore, the independent control 

of positive and negative-sequence components in modern IBR control systems means that traditional relationships 

between sequence components may not hold, potentially causing directional element misoperations [62]. Permissive 

overreaching transfer tripping (POTT) and directional comparison blocking (DCB) schemes, which rely on directional 

elements at both ends of a protected line, may experience reliability issues when one or both terminals are connected to 

IBR generation [63]. The reduced fault current and altered phase relationships can prevent proper coordination between 

the protection zones, potentially resulting in delayed tripping or failure to trip for faults within the protected zone. 

 

D. Differential Protection Considerations 

Line current differential protection, which compares currents at both ends of a protected zone, generally performs better 

in converter-dominated grids compared to impedance-based schemes because it does not rely on specific fault current 

magnitudes or phase relationships [64]. However, current differential protection requires communication channels 

between relay terminals and may still experience challenges related to current transformer (CT) saturation during 

transient conditions or synchronization errors in time-stamping of measurements [65]. The initial transient response of 

IBR fault currents, which can last between half to one and a half cycles before stabilization, may cause temporary 

differential current that could be misinterpreted as an internal fault [66]. Modern differential relays incorporate 
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algorithms to distinguish between fault conditions and transient phenomena, but the unique transient characteristics of 

IBR fault currents may require adaptive thresholds or enhanced filtering techniques [67]. 

 

IV. ADAPTIVE PROTECTION SCHEMES 

Adaptive protection represents a promising approach to address the challenges posed by converter-dominated grids by 

automatically adjusting protection settings based on system operating conditions, network topology, or generation 

dispatch [68]. The fundamental principle of adaptive protection is to maintain optimal protection performance across 

diverse operating scenarios by modifying protection parameters in real-time or near-real-time [69]. 

 

A. Setting Group Approaches 

The simplest form of adaptive protection employs multiple predetermined setting groups that are selected based on 

system conditions [70]. Modern digital relays typically support multiple setting groups that can be activated through 

supervisory control and data acquisition (SCADA) commands, communication protocols, or local logic based on 

measured quantities [71]. For systems with IBR penetration, setting groups can be configured for different operating 

modes such as grid-connected operation with various levels of IBR output, islanded operation, or mixed operation with 

both synchronous generation and IBRs [72]. Research on microgrids has demonstrated adaptive overcurrent protection 

techniques where protection relay settings are updated to required trip values according to the state of the microgrid, 

accounting for changes in fault current contribution from distributed generators [73]. The challenge with setting group 

approaches lies in determining appropriate switching criteria and ensuring timely group selection without introducing 

protection security risks during transitional periods [74]. Furthermore, the number of possible system states in large 

interconnected networks with numerous IBR installations may exceed practical setting group capabilities, requiring 

more sophisticated adaptation mechanisms [75]. 

 

B. Real-Time Adaptive Algorithms 

Advanced adaptive protection schemes employ real-time calculation of protection settings based on current system 

conditions [76]. These approaches utilize measurements from multiple locations, often facilitated by phasor 

measurement units (PMUs) or synchro phasor technology, to continuously update protection parameters [77]. For 

overcurrent protection in distribution systems with IBRs, adaptive algorithms can adjust pickup settings and time-

current characteristics based on online assessment of available fault current at each protective device location [78]. 

Researchers have proposed adaptive protection schemes that combine current-based and voltage-based logic to enhance 

fault detection and relay response, addressing the impact of IBR momentary cessation modes on protection systems 

[79]. These schemes ensure rapid, accurate, and adaptive protection under diverse fault scenarios, thereby improving 

system reliability and operational resilience [80]. 

Distance protection can be adapted by modifying zone reach settings and characteristic angles based on real-time 

system impedance calculations that account for IBR fault current contributions [81]. Adaptive units based on weight 

calculation for online seen impedance have been developed to adjust trip characteristics of distance relays using local 

information, avoiding incorrect operation due to intermittent operation of wind farms [82]. 

 

C. Communication-Assisted Adaptive Protection 

Wide-area measurement systems (WAMS) and communication infrastructure enable sophisticated adaptive protection 

schemes that leverage system-wide information [83]. These schemes can coordinate protection across multiple devices, 

adjust settings based on global system state, and implement backup protection strategies when primary protection may 

be compromised by IBR characteristics [84]. Pilot protection schemes that rely on communication between protective 

devices at different locations generally provide more robust performance in IBR-dominated systems compared to non-

pilot schemes [85]. Phase comparison protection and line current differential protection, which compare quantities at 

both ends of protected elements through communication channels, maintain reliability even with reduced fault current 

magnitudes [86]. However, communication-assisted schemes introduce dependencies on communication system 

reliability, latency, and cybersecurity [87]. Protection systems must incorporate fallback modes or degraded operation 
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strategies for scenarios where communication is unavailable or compromised. The increasing prevalence of IEC 61850-

based substation automation and communication protocols provides standardized frameworks for implementing 

communication-assisted adaptive protection, though challenges remain in ensuring interoperability across multi-vendor 

environments [88]. 

 

V. EMERGING PROTECTION TECHNOLOGIES 

Beyond adaptive protection, several emerging technologies show promise for addressing protection challenges in 

converter-dominated grids. These technologies leverage advanced signal processing, pattern recognition, and data-

driven approaches to overcome limitations of conventional protection principles [89]. 

 

A. Signal Processing-Based Protection 

High-frequency transient-based protection methods utilize the unique frequency components present during fault 

initiation to detect and classify faults independently of fault current magnitude [90]. Traveling wave protection analyzes 

the propagation of electromagnetic waves initiated by fault events, providing extremely fast fault detection and accurate 

fault location without dependence on steady-state fault current characteristics [91]. These ultra-fast protection schemes 

operate on timescales less than the response time of IBR control systems, making them theoretically unaffected by 

control-induced fault current variations [92]. Wavelet transform-based methods extract transient signal features for fault 

detection in microgrids, requiring short time windows and therefore being less affected by inverter control system 

dynamics [93]. However, signal processing-based protection schemes require high-sampling-rate data acquisition 

systems and sophisticated processing algorithms [94]. They may also be sensitive to measurement noise, 

communication channel bandwidth limitations, and electromagnetic interference in substations. Practical 

implementation requires careful consideration of data acquisition infrastructure and computational resources available 

in protective relay platforms [95]. 

 

B. Machine Learning and Artificial Intelligence Applications 

Machine learning techniques have emerged as powerful tools for power system protection, offering capabilities to 

handle the complexity and variability introduced by IBRs [96]. The application of ML in protection and disturbance 

management has grown substantially, with research addressing fault detection, classification, location, and protection 

coordination [97]. Artificial neural networks (ANNs) have been proposed for fault detection and classification in 

systems with high IBR penetration [98]. These networks can be trained on diverse fault scenarios encompassing various 

IBR operating conditions, control strategies, and system configurations, potentially providing robust fault identification 

that adapts to IBR characteristics [99]. Adaptive neuro-fuzzy inference systems (ANFIS) have been developed for 

detecting and classifying faults within wind farms and other IBR installations [100]. Support vector machines (SVMs) 

and decision tree-based algorithms offer alternative ML approaches for protection applications [101]. Two-level SVM 

classifiers have been utilized for accurate fault identification in microgrids, using root mean square (RMS) values of 

both voltage and current as input data [102]. Deep learning algorithms, particularly long short-term memory (LSTM) 

networks, can capture temporal patterns in protection-relevant signals without requiring extensive feature engineering 

[103]. Despite promising research results, several challenges hinder widespread deployment of ML-based protection 

schemes [104]. Training data requirements are substantial, necessitating comprehensive datasets that capture the full 

range of fault scenarios, IBR behaviors, and system conditions [105]. The black-box nature of many ML models raises 

concerns about explainability and trustworthiness in safety-critical protection applications [106]. Regulatory and 

standardization frameworks have not yet established clear guidelines for validation and deployment of ML-based 

protection systems [107]. Recent scoping reviews have identified that while ML models often demonstrate high 

accuracy on simulated datasets, their performance under real-world conditions remains insufficiently validated [108]. 

The existing literature is fragmented, with inconsistencies in methodological rigor, dataset quality, and evaluation 

metrics [109]. Bridging the gap between research demonstrations and field deployments requires addressing these 

validation challenges and developing industry-accepted testing procedures [110]. 
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C. Hybrid Protection Approaches 

Recognizing that no single protection technology provides complete solutions for all challenges in converter-dominated 

grids, hybrid approaches that combine multiple protection principles show considerable promise [111]. These schemes 

leverage the complementary strengths of different protection methods while compensating for individual weaknesses. 

For example, combining traditional overcurrent protection with voltage-based protection can improve fault detection 

sensitivity in low-fault-current conditions [112]. When fault current magnitude is insufficient for reliable overcurrent 

detection, voltage magnitude and phase angle deviations can provide additional discrimination criteria. Adaptive 

schemes that combine current-based and voltage-based logic have been demonstrated to enhance fault detection and 

relay response under diverse fault scenarios in IBR-dominated distribution networks [113]. 

Multi-agent protection systems represent another hybrid approach, where autonomous intelligent agents coordinate 

protection decisions across distributed protective devices [114]. Each agent monitors local conditions and 

communicates with neighboring agents to achieve system-wide protection coordination. This decentralized architecture 

provides resilience to communication failures and computational scalability for large networks with numerous IBR 

installations [115]. 

The integration of synchronized measurement technology, such as PMUs, with conventional protection enables hybrid 

schemes that utilize both local measurements and wide-area information [116]. During normal conditions or minor 

disturbances, conventional protection based on local measurements provides fast primary protection. For complex fault 

scenarios or conditions where local protection may be compromised by IBR characteristics, wide-area backup 

protection utilizing synchronized measurements across multiple locations provides additional security [117]. 

 

VI. GRID CODE REQUIREMENTS AND STANDARDIZATION 

The development of comprehensive grid code requirements and standardization efforts plays a crucial role in ensuring 

reliable protection in converter-dominated grids [118]. Grid codes establish technical requirements that IBRs must meet 

for grid connection, including fault ride-through (FRT) capabilities, voltage support during faults, and reactive power 

injection requirements [119]. 

 

A. Fault Ride-Through Requirements 

IEEE Standard 2800-2022 establishes requirements for IBRs connected to transmission systems, specifying 

performance during voltage and frequency disturbances [120]. The standard mandates that IBRs remain connected 

during certain fault conditions and provide positive-sequence reactive current injection proportional to voltage 

deviation to support grid voltage recovery [121]. Specific requirements are defined for balanced three-phase faults, with 

additional considerations for unbalanced faults. The European Network Code for Requirements for Grid Connection of 

Generators (NC RfG) and similar international grid codes establish comparable FRT requirements, though specific 

technical parameters may differ across regions [122]. Coordination between different grid codes and regional 

requirements remains a challenge for IBR manufacturers serving global markets [123]. Grid-forming converter 

requirements are evolving rapidly as system operators recognize their importance for stability in high-IBR scenarios 

[124]. NERC's white paper on grid-forming functional specifications for battery energy storage systems provides 

detailed recommendations for GFM capabilities including frequency response, voltage control, fault current 

contribution, and black start capabilities [125]. ERCOT has been particularly active in developing GFM requirements, 

recognizing the critical role these resources will play in maintaining reliability as IBR penetration increases [126]. 

 

B. Protection-Oriented Requirements 

While most grid codes focus primarily on FRT performance and voltage support, protection-oriented requirements 

specifically addressing protection system compatibility are emerging [127]. These include requirements for minimum 

and maximum fault current contribution levels, negative-sequence current injection during unbalanced faults, and 

coordination with protective relay settings [128]. The German grid code (VDE-AR-N 4120) has been noted for 

including relatively detailed technical requirements that support protection system operation [129]. However, 

challenges remain in balancing prescriptive requirements that ensure protection compatibility with flexible 
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requirements that allow innovation in IBR control strategies [130]. Research and industry collaboration are advancing 

toward standardized IBR models for protection studies [131]. Generic models that capture essential fault current 

characteristics while abstracting manufacturer-specific control details enable protection engineers to conduct 

coordination studies without requiring detailed proprietary information. The development and validation of such models 

requires cooperation between IBR manufacturers, utilities, and standards development organizations [132]. 

 

C. Testing and Validation Requirements 

Comprehensive testing and validation procedures are essential to verify that IBRs comply with grid code requirements 

and behave as expected during fault conditions [133]. Type testing, commissioning tests, and periodic verification tests 

establish conformity with technical specifications. However, testing IBR fault response presents unique challenges 

compared to conventional synchronous generator testing [134]. Many grid codes now require manufacturers to 

demonstrate FRT performance through laboratory testing or field measurements [135]. Testing protocols must account 

for the diversity of fault types, voltage depression levels, and system conditions that IBRs may encounter. Dynamic 

simulation models validated against test data provide essential tools for protection studies, but model accuracy depends 

on the fidelity of control system representation [136]. The gap between laboratory testing conditions and actual field 

performance remains a concern [137]. Real grid faults may involve voltage unbalance, harmonic distortion, frequency 

deviations, and other complexities not fully captured in standardized test procedures. Field experience and disturbance 

monitoring data are gradually improving understanding of IBR behavior during actual grid events, informing 

refinements to testing requirements and model validation procedures [138]. 

 

VII. CASE STUDIES AND FIELD EXPERIENCE 

Analysis of actual field events and case studies provides valuable insights into protection performance in systems with 

significant IBR penetration, validating theoretical understanding and identifying practical challenges not always evident 

in simulation studies [139]. 

 

A. Field Event Analysis 

Several documented field events have illustrated protection challenges in converter-dominated systems. One notable 

case involved a solar generation facility connected through a dedicated transmission line experiencing a phase-to-phase 

fault [140]. The relay waveforms captured during the event showed dissimilar fault current characteristics supplied by 

the integrated system with synchronous generators versus the solar facility with IBRs [141]. The synchronous sources 

provided expected high-magnitude short-circuit currents, while the solar facility's fault current was limited to 

approximately twice rated current with control-determined phase relationships [142]. In another case, the impact of IBR 

momentary cessation on distribution system protection was observed [143]. When IBRs temporarily cease generation 

during severe voltage depressions, the sudden loss of fault current contribution can affect protection coordination and 

potentially prevent proper fault clearing. This phenomenon highlights the importance of considering all possible IBR 

operating modes, including protective functions that may disconnect generation, when designing protection schemes 

[144]. Utility experiences in regions with high renewable penetration have documented instances of protection 

miscoordination attributable to variable IBR fault current contribution [145]. Distribution systems originally protected 

with time-current coordinated overcurrent devices have required comprehensive protection studies and setting revisions 

as distributed solar and wind generation capacity increased. Some utilities have implemented multiple protection setting 

groups or time-scheduled protection adaptations to maintain coordination across varying generation and load conditions 

[146]. 

 

B. Microgrid Protection Implementation 

Microgrids with high IBR penetration provide controlled environments for testing and validating protection concepts 

applicable to larger converter-dominated systems [147]. Several demonstration projects and commercial microgrids 

have implemented novel protection approaches specifically designed for IBR-dominated operation [148]. A solar-plus-

storage microgrid project implementing protection schemes for both grid-connected and islanded operation 



I J A R S C T    

    

 

               International Journal of Advanced Research in Science, Communication and Technology  

                               International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 4, Issue 2, December 2024 

 Copyright to IJARSCT         DOI: 10.48175/IJARSCT-22800C  879 

www.ijarsct.co.in  

 
 

ISSN: 2581-9429 Impact Factor: 7.57 

 
demonstrates practical considerations for IBR protection [149]. The protection architecture utilizes a combination of 

traditional time-overcurrent coordination for grid-tied operation and modified schemes compensating for limited fault 

current in islanded mode. Programmable automation controllers provide centralized protection coordination, 

communicating with distributed protective devices through standardized protocols [150]. The deployment of grid-

forming battery energy storage systems in islanded microgrids has provided operational experience with GFM 

protection characteristics [151]. These systems must balance providing adequate fault current for protection operation 

with protecting converter hardware through current limiting. Field data indicates that well-designed GFM control can 

maintain stable fault current contribution for protection purposes while managing transient overloads through 

coordinated control actions [152]. 

 

VIII. FUTURE RESEARCH DIRECTIONS 

Despite significant recent progress in understanding and addressing protection challenges in converter-dominated grids, 

substantial research gaps remain. Identifying and pursuing these research directions is essential for developing 

comprehensive protection solutions that will ensure grid reliability as IBR penetration continues increasing [153]. 

 

A. Standardization of IBR Fault Behavior 

A critical need exists for greater standardization and consistency in IBR fault current characteristics across 

manufacturers and technologies [154]. While grid codes specify minimum performance requirements, significant 

variability remains in how different IBRs respond to faults, particularly for unbalanced fault conditions and transient 

behavior immediately following fault inception [155]. Research toward developing standardized control strategies that 

ensure predictable and protection-compatible fault responses while still allowing innovation in normal operating 

performance would benefit the industry [156]. This includes developing consensus on appropriate negative-sequence 

current injection strategies, current limiting approaches that balance converter protection with grid protection needs, 

and transient response characteristics during fault onset and clearing [157]. Enhanced collaboration between IBR 

manufacturers, protection equipment vendors, and system operators is needed to establish mutually acceptable fault 

behavior standards [158]. Industry working groups and standards development organizations provide forums for such 

collaboration, but achieving consensus requires balancing sometimes conflicting priorities of cost, performance, 

protection reliability, and design flexibility [159]. 

 

B. Advanced Protection Algorithms 

Continued development of advanced protection algorithms specifically designed for converter-dominated grids 

represents a high-priority research area [160]. This includes refining adaptive protection techniques to handle rapid 

changes in system conditions, developing robust ML-based protection that can be validated for safety-critical 

deployment, and creating hybrid protection schemes that leverage complementary strengths of multiple approaches 

[161]. Research is needed to develop protection algorithms that explicitly account for IBR control system dynamics and 

their interaction with grid conditions [162]. Current protection algorithms often treat IBRs as static impedances or 

current sources, but more sophisticated representations that incorporate control system response could enable more 

accurate fault detection and classification [163]. Ultra-high-speed protection techniques operating faster than IBR 

control system response times show promise but require further development for practical deployment [164]. Traveling 

wave-based protection and high-frequency transient analysis methods need enhancement to handle noise, measurement 

accuracy limitations, and coordination with conventional protection for comprehensive fault coverage [165]. 

 

C. System-Level Protection Coordination 

As IBR penetration increases, protection must be considered at the system level rather than as a collection of 

independent device settings [166]. Research into holistic protection coordination frameworks that simultaneously 

optimize protection across all devices in a network while accounting for IBR characteristics and operational variability 

is needed [167]. Wide-area protection and control systems that leverage communication infrastructure and synchronized 

measurements offer potential for adaptive system-level protection [168]. However, research must address 
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communication reliability requirements, cybersecurity vulnerabilities, and degraded operation strategies for 

communication failures before widespread deployment can be realized [169]. The interaction between protection 

systems and IBR control systems requires deeper investigation [170]. Coordinated design of protection schemes and 

IBR control could potentially improve both protection reliability and overall system performance, but achieving such 

coordination in multi-vendor environments with proprietary control systems presents substantial challenges [171]. 

 

D. Validation and Testing Methodologies 

Development of comprehensive validation and testing methodologies for protection systems in converter-dominated 

grids is essential [172]. This includes establishing standardized test scenarios, performance metrics, and acceptance 

criteria for evaluating protection scheme effectiveness across the range of operating conditions and fault types 

encountered in actual systems [173]. Hardware-in-the-loop (HIL) testing platforms that integrate actual protection 

relays with real-time simulation of converter-dominated power systems provide valuable validation tools [174]. 

Expanding HIL testing capabilities to encompass detailed IBR control system models, multi-manufacturer 

interoperability testing, and stressed system conditions would strengthen confidence in protection system performance 

before field deployment [175]. Field validation through controlled testing on actual power systems or comprehensive 

disturbance data analysis is crucial for verifying that protection performs as intended in real-world conditions [176]. 

Developing safe and effective procedures for field testing without compromising system reliability requires careful 

planning and coordination between system operators, protection engineers, and IBR operators [177]. 

 

E. Cybersecurity Considerations 

As protection systems increasingly rely on digital communication, data analytics, and software-based algorithms, 

cybersecurity becomes a critical consideration [178]. Research into secure protection architectures that maintain 

reliability even under cyber-attack, anomaly detection methods that identify compromised protection data or control 

signals, and secure communication protocols for protection-critical information exchange is needed [179]. The use of 

ML-based protection introduces additional cybersecurity considerations, as adversarial attacks on ML models could 

potentially compromise protection decision-making [180]. Developing robust ML algorithms resistant to adversarial 

manipulation and establishing security validation requirements for AI-based protection systems represents an important 

research frontier [181]. 

 

IX. CONCLUSION 

Converter-dominated grids represent a major paradigm shift in the history of power system, significantly changing 

many characteristics that protection systems have been relying on for decades. This paper presents a comprehensive 

overview of the challenges posed by the integration of IBRs into the existing conventional protection systems; and it 

reviews the last generation of solutions under development to mitigate those challenges. The limited fault currents (and 

dependent to the level of control) generated by IBRs make impossible the use of all the traditional protection methods 

based on the over-currents detection, impedance measurement and directional elements. Additionally, the variety of 

control schemes and the manufacturer-specific ways to manage faults during the operation of converters add 

complexity to the planning and coordination of protections. In fact, field experience shows that problems related to the 

protection of grids with high penetration of renewables are already present in the operational environment. Therefore, 

adaptive protection schemes capable of modifying their configuration depending on the environmental conditions seem 

to be a good solution to maintain the dependability of the protections in environments characterized by different levels 

of penetration of IBRs and operating modes. Although communication assisted protections with wide-area 

measurements have the potential of increasing the dependability of the protections thanks to the possibility of making 

decisions based on the analysis of information available from multiple locations; they also have the disadvantage of 

introducing new vulnerabilities due to the dependence on communication infrastructures. Additional tools for 

mitigating the protection challenges posed by IBRs can be provided by some emerging technologies such as advanced 

signal processing techniques, machine learning and hybrid protection schemes; however, before they can be used in 

practice, they need to be extensively validated. Standardization of the fault behaviors of IBRs, and therefore of their 
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compatibility with protection systems, is progressing at the international level; although the establishment of common 

rules between various stakeholders with different objectives and the definition of valid tests to check the compliance 

with those rules are still active areas of study. The introduction of the requirement for grid-forming capability of 

converters is an important step toward the creation of IBRs able to provide more conventional fault current 

characteristics than other converters while preserving the benefits of using power electronic devices. In the future, 

research must continue to develop standardization of IBR fault behaviors, design of protection algorithms specifically 

targeted to converter-based systems, framework for coordinating the protections at the system level, valid test 

procedures for checking the compliance of protection systems with those standards and methodologies for protecting 

those systems against cyber threats. For the successful completion of the energy transition and, in particular, the 

integration of large quantities of renewable sources, it is essential that the collaborative effort between researchers, 

manufactures of equipment, system operators and developers of standards continues in the next decade. Ensuring the 

dependability of the protections in the converter dominated grids will be crucial both to maintain the dependability of 

the power system and to allow the integration of large quantities of renewable sources that are essential to fight climate 

change. As demonstrated by the recent progresses reported in this paper and the numerous technologies under 

development, the protection challenges posed by IBRs are real but solvable. Therefore, it will be essential to continue to 

invest time and money in this critical area to enable the accelerated transformation of the power systems expected in the 

next ten years. 
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