
IJARSCT  ISSN (Online) 2581-9429 

    

 

       International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

                               International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 4, Issue 2, December 2024 

Copyright to IJARSCT DOI: 10.48175/IJARSCT-22743   370 

www.ijarsct.co.in  

Impact Factor: 7.53 

A Study on Number Theory in Everyday Life 
Prof. Dhere Renuka Ashok 
Lecturer, Department of Science 

Amrutvahini Polytechnic, Sangamner, A.Nagar, Maharashtra, India 

 dherera@amrutpoly.in 

 

Abstract: Number theory, also known as higher arithmetic is a branch of mathematics concerned with the 

properties of integers, rational numbers, irrational numbers and real numbers. Sometimes the discipline is 

considered to include the imaginary and complex numbers as well. 

 

Keywords: Number theory. 

 

I. INTRODUCTION 

Number theory, also known as higher arithmetic is a branch of mathematics concerned with the properties of integers, 

rational numbers, irrational numbers and real numbers. Sometimes the discipline is considered to include the imaginary 

and complex numbers as well. 

Formally, numbers are represented in terms of sets; there are various schemes for doing this. However, there are other 

ways to represent numbers. As angles, as points on a line, as on a plane or as points in space. The integers and rational 

numbers can be symbolized and completely defined by numerals. The system of numeration commonly used today was 

developed from systems used in Arab texts, although some scholars believe they were first used in India. The so-

called Arabic numerals are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 

Number theory is one of the oldest branches of pure mathematics and one of the largest of course; it concerns questions 

about numbers, usually meaning whole numbers or rational numbers. Elementry number theory involves divisibility 

among integers… the division “algorithm”, the Euclidean algorithm, elementary properties of primes, congruences, 

including Fermat’s Little theorem and Euler’s theorem extending it. But the term “elementary” is usually used in this 

setting only to mean that no advanced tools from other areas are used… not that the results themselves are simple. 

Indeed, a course in “elementry” number theory usually includes classic and elegant results such as Quadratic 

Reciprocity; counting results using the Mobius Inversion Formula; and even the prime number theorem, asserting the 

approximate density of primes among the integers, which has difficult but “elementry” proofs. In such chapter we shall 

discuss the topic of representing positive integers as sum of squares of two or more integers. 

 

Some Basic Definitions and Sum of Two Squares: 

Integers: The numbers 0, 1, −1, 2, −2, 3, −3 … are called integers of which 1, 2, 3, … are called positive integers and 

−1, −2, −3, … are called negative integers. The collection of all integers is denoted by �. Thus � = {… , −3, −2, −1, 0, 

1, 2, 3, … } 

Natural Numbers: The numbers 1, 2, 3, … are called natural numbers. They are also called counting numbers. Since, 

they are used for counting objects. The collection of all natural numbers is denoted by �. Thus � = { 1, 2, 3, … } 

Least Common Multiple: The integers �1, �2, … , �� all different from zero, have a common multiple ‘�’ if ��/� for � 

= 1, 2, … , �. The least of the positive common multiples is called the least common multiple and is denoted by [�1, �2, 

… , �� ] 

Greatest Common Divisor: The integers ‘�’ is a common divisor of ‘�’ and ‘�’ in case�/� and �/�. Since there is only 

a finite number of divisors of any non-zero integer, there is only a finite number of common divisors of ‘�’ and ‘�’, 

except in the case � = � = 0. If at least one of ‘�’ and ‘�’ is not 0.The greatest among their common divisors is called 

greatest common divisor of ‘�’ and ‘�’ and is denoted by (�, �). Similarly, We denote the greatest common divisor ‘�’ 

of the integers �1, �2, … , �� not all zero by (�1, �2, … , �� ) 
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Relatively Prime: We say that ‘�’ and ‘�’ are relatively prime in case (�, �) = 1, and that �1, �2, … , �� are relatively 

prime incase (�1, �2, … , �� ) = 1. We say that �1, �2, … , �� are relatively prime in pairs in case (��, �� ) = 1 for all � = 

1, 2, 3, … , � with � ≠ �. 

Congruence: If an integer ‘�’, not zero, divides the difference � − �, we say that ‘�’ is congruent to ‘�’ modulo ‘�’ 

and write � ≡ � (��� �) 

Division Algorithm: Given any integers ‘�’ and ‘�’ with � ≠ 0,there exist unique integers ‘�’ and ‘�’ such that � = �� 

+ �, 0 ≤ � < �.If�/�, then ‘�’ satisfies the stronger inequalities 0 < � < �. 

Prime Number: An integer � > 1 is called a prime number (or) a prime in case there is no divisor ‘�’ of ‘�’ satisfying 

1 < � < �.If an integer � > 1 is not a prime. It is called a composite number. 

Lattice Points: The co-ordinates of the points are an integer is called lattice points. 

Sum of Two Squares: 

We begin with the question of representing a given integers as the sum of two squares. 

For Example 

13 = 22 + 32 

29 = 22 + 52 

313 = 122 + 132 

205 = 32 + 142 = 62 + 132 

Result 

(�2 + �2)(�2 + �2)  = (�� + ��)2 + (�� − ��)2 = (�� − ��)2 + (�� + ��)2 

 

Theorem: 

If � divides �2 + 1 for some �, then � is representable as the sum of two squares. 

 

Proof: 

Let � be converted into a continued fraction and let �� be the ��ℎ congruent to �/�  

Such that �  ≤  √� < ��+1 

 
Also �n

2 ≤ � 

 

∴ �n2 + (�� − ��)2 < 2� 

But, �n
2 + (�n − �n�)2 = �n

2(�2 + 1) − 2���� + �2 �2 

Which is a multiple of �, since � divides�2 + 1. Thus it is proved that  �n
2 + (��� − ��)2 is a multiple of � less than 

2�. This implies,  �2 + (��� − ��)2 = � 

Hence the theorem is proved. 

 

Result:  

Let � divides �2 + 1 for some �, and let �� be a continued fraction convergent of ��� such that � ≤  √� < � 

Then � =  2 + (√� − �2)2 

  

Theorem: (Euler Theorem) 

If an integer � can be represented as the sum of two squares in two different ways, then � is complete. 

Proof: 

Without loss of generality, we assume that � is an odd integer. 

Let � = �2 + �2 = �2 + �2  (1) 
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Obviously one of � & � and one of � & � is odd and the other even. We assume � & � are odd and � & � are even. (2) 

From (1) we obtain �2 − �2 = �2 − �2 

Hence, (� − �)(� + �) = (� − �)(� + �) (3) 

Let (� − �, � − �) = �. Since � − � and � − � are both even integers it follows that ‘�’is even  (4) 

Let � − � = �� and � − � = �� (5) 

For some integers ‘�’ and ‘�’. Then (�, �) = 1 

From (3) and (5) we obtain (� + �) = �(� + �) (6) 

This implies �/� + � and �/� + �. 

Hence � + � = �� for some integer ‘�’ (7) 

Then from (6) we get � + � = �� (8) 

It follows, since (�, �) = 1, that ‘�’ is the G.C.D of � + � and � + � which are both even integers. ∴ ‘�’is even (9) 

Thus finally we have 4� = 2�2 + 2�2+2�2+2�2 = (� − �)2 + (� + �)2+(� − 

�)2+(�+�)2= �2�2+�2�2+�2�2+�2�2 = (�2+�2)( �2+�2) 

Thus � = {(�/2)2 + (�/2)2}(�2 + �2) 

The theorem is therefore established since ‘�’ and ‘�’ are even integers. 

Theorem: 

Every prime ‘�’ of the form 4� + 1 can be represented uniquely as the sum of two squares. 

Proof: 

Since‘�’is of the form 4� + 1, −1 is a quadratic residue of ‘�’ 

Hence there exists an integer � such that �2 ≡ −1 (��� �) 

In other words this means ‘�’ divides �2 + 1for some �. It follows by theorem (1.1) that ‘�’is representable. Now if 

there were two or more different representations of ‘�’,then by theorem. ∴ ‘�’ would be a composite number which is 

absurd. Hence the representation is unique. 

 

Theorem: 

Let � be canonically decomposed. Then � is representable if and only if every prime of the form 4� + 3 occurring 

in the decomposition has an even exponent. 

Proof: 

Necessary Part: 

Given: Every prime of the form 4� + 3 occurring in the decomposition has an even exponent. To prove that � is 

representable. � = �2�1�2 … … … �� where‘�’ is some integer, and �1, �2, … … … �� are all distinct primes of the 

form 4� + 1 (or) 2. Now we know that �2, �1, �2, … … … ��are all representable integers. Hence their product which 

is � is also representable. 

Sufficient Part: 

Given: � is representable. To prove that: Every prime of the form 4� + 3 occurring in the decomposition has an even 

exponent. � = �2 + �2 for some integers ‘�’   and   ‘�’.   If (�, �) = �   and � = �1�, � = �1�   then 

� = �2(�2 + �2) … … … … … … (1) 

Such that (�1, �1) = 1. Let ‘�’ be any prime divisor of �2 + �2. This implies  2 + �2 ≡ 

0 (��� �) … … … … … … … (2) 

Since �1 is prime to �1, ‘�’ is relatively prime to �1 (and �1 also) It follows that there exists an integer ‘�’ satisfying 

the congruence 

��1 ≡ 1 (��� �) … … … … … … (3) 

Such that (�, �) = 1. Also multiplying (2) by �2 we get (��1)2 + (��1)2 ≡ 0 (��� �). 

From (3) this reduces to (��1)2 + 1 ≡ 0 (��� �). 

Thus −1 is a quadratic residue of ‘�’. ∴  ‘�’ is either 2 or a prime of the form 4� + 1. 

So, �2 + �2 is the product of such primes only. But, � = �2(�2 + �2) 

Hence every prime of the form 4� + 3 occurring in the decomposition of �has an even exponent. 
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Theorem: (Euler Theorem) 

Let ′�′ be a prime of the form 4� + 1. Then there exist two integers � and ℎ 

such that �2 + 1 = ℎ� where � < � < � and � < ℎ < �. 

Proof: 

′�′ is of the form4� + 1. Hence−1 is a quadratic residue of ′�′. But we know that the ��� 

(quadratic residues) of ′�′are 

  12, 22 ....... (�−1/2)2 … … … … … … (1) 

 So, −1 is congruent to one of these integers say �2 This means �2 ≡ −1 (��� �) where � < � < �/2  … … … (2) 

 ∴ �2 + 1 = ℎ� … … … … … … (3) for some ℎ. Also, ℎ� = �2 + 1 < �2/4 + 1 < �2 

Hence � < ℎ < �  (4) 

(3), (2) and (4) above prove the theorem. 

 

Theorem: 

Every prime � of the form 4� + 1 is representable as the sum of two squares. 

Proof: 

By the well known theorem that there exists a multiple of ′�′ say ′ℎ�′ which is 

representable such that � < ℎ < �. If ℎ = 1 then there is nothing more to prove. We therefore assume that ℎ > 1. 

Fermat’s method of descent consists in proving from this assumption that a smaller multiple of ′�′ than ′ℎ�′ is 

also representable. Let ℎ� = �2 + �2, � < ℎ < � for some integers ′�′ and ′�′ (1) 

This implies �2 + �2 ≡ � (��� ℎ) (2) 

If ′�′ and ′�′ are the minimal residues of ′�′ and ′�′ respectively (��� ℎ) then we have 

�2 + �2 ≡ � (��� ℎ) (3) 

Such that |�| ≤ ℎ/2 , |�| ≤ ℎ/2 It should be noted here that � and � cannot both be zero at the same time, otherwise it 

would imply that ℎ/2  and ℎ/2 so that ℎ2  

This means 

�2 + �2 

that ′ℎ′ divides ′�′ which is impossible. From  (3) we have 

�2 + �2 = ℎ1ℎ (4) 

It follows that ℎ1ℎ ≤ (ℎ/2)2 + (ℎ/2)2 < ℎ2. Hence � < ℎ1 < ℎ (5) 

From (1) and (2) we obtain ℎ1ℎ2� = (�2 + �2)(�2 + �2) 

= (�� + ��)2 + (�� − ��)2 (6) 

 But, 

�� ≡ �2 (��� ℎ) 

�� ≡ �2 (��� ℎ) 

�� ≡ �� (��� ℎ) 

�� ≡ �� (��� ℎ) 

So, �� + �� ≡ �2 + �2 ≡ 0 (��� ℎ) 

Which  implies  �� + �� = �1ℎ … … … … … … (7)  for  some  �1  Similarly  �� − �� ≡ 0 (��� ℎ) (or) �� − 

�� = �1ℎ … … … … … … (8) for some ℎ1 

Thus (6) is transformed to ℎ1ℎ2ℎ = ℎ2ℎ2 + ℎ2ℎ2 (ie) ℎ1ℎ = ℎ2 + ℎ2, 0 < ℎ1 < ℎ. 

So it is proved that a multiple of ‘ℎ’ smaller than ‘ℎℎ’ is representable. Applying the same process as 

above to ℎ1ℎ we get a still smaller multiple of ‘ℎ’, say ℎ2ℎ, which is representable. Obviously then if we continue the 

process further we shall finally arrive at result that ‘ℎ’ is representable. 
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Theorem: 

Let ‘ℎ’ be an odd prime, and let (ℎ, ℎ) = 1. Then there exist at least one pair of non zero integers ‘ℎ’ and ‘ℎ’ each 

numerically less than√� such that �� ≡ � (��� �)  

Proof: 

Let [√ ] = ℎ so that ℎ < √� < ℎ + 1. Consider the integers of the set ‘�’ defined by 

� = {�� + �,   = 1, 2, … … ℎ + 1; � = 1, 2, … … ℎ + 1} 

The number of integers in ‘�’ is (ℎ + 1)2 which is greater than ‘�’ there are at least two integers in ‘�’ which are 

congruent (��� �). Let these be �1� + �1 and �2� + �2 where either �1 is different from �2 (or) �1 is different from �2. 

So, we have �1� + �1 ≡ �2� + �2 (��� �) (1) 

Let us put �2 − �1 = � and �1 − �2 = �. Then �� ≡ � (��� �) … (2) 

Now if �1 ≠ �2 then �1 ≠ �2 from (1) above 

Converse Part: 

If �1 ≠ �2 then �1 ≠ �2So in either case ‘�’ and ‘�’ are non zero integers. Moreover 

�1, �2, �1, �2 are all positive integers which do not exceed ℎ + 1. 

Hence, |�| ≤ ℎ < √� (3) 

|�| ≤ ℎ < √� (4) 

(2), (3) and (4) above establish the theorem 

 

Theorem: 

Every prime of the form 4� + 1 is representable as the sum of two squares. 

Proof: 

Since ‘�’ is of the form 4� + 1, −1 is a quadratic residue of ‘�’. Hence there exist is 

an integer ‘�’ which satisfies the congruence. �2 + 1 ≡ 0 (��� �) … (1) Where (�, �) = 1. By the theorem 

there exist two integers ‘�’ and ‘�’ each numerically less than √� such that �� ≡ � (��� �) (or) �2�2 ≡ �2 

(��� �) 

But from (1) we have �2�2 + �2 ≡ 0 (��� �) 

∴ �2 + �2 ≡ 0 (��� �) 

This implies �2 + �2 = �� for some positive integer ‘�’. We know however, that 

�2 + �2 < 2� because |�| < √� and |�| < √� 

It follows that �2 + �2 = �. 

 

Theorem: 

Let the canonical decomposition of � be � = 2ℎ ��1 ��2 … … ��  Then � is 

representable as the sum of two relatively prime squares if and only if ℎ = 0 (or) 1 and are primes of the form 4� + 1. 

Proof: 

Necessary Part: 

Given: ℎ = 0 (or) 1 and �1, �2, … … �� are primes of the form 4� + 1. To prove that: � is representable as the sum 

of two relatively prime squares. We know that, −1 is a  quadratic  residue  of  2, �1, �2, … … ��  By  the  well  

known  theorem,  

“Let  � = 2ℎ ��1 ��2 … … �� . Then ‘�’ is a quadratic residue of ‘�’ if and only if it is a quadratic 

residue of 2ℎ , �1, �2, … … ��” That −1 is a quadratic residue of �. Therefore there exists an integer ‘�’, such that �2 + 1 

is divisible by �. This implies that � is representable as the sum of two relatively prime squares 

Sufficient Part: 

Given: � is representable as the sum of two relatively prime squares. To prove that: ℎ = 0 (or) 1 and �1, �2, … … �� 

are primes of the form 4� + 1. Let � = �2 + �2, (�, �) = 1. Then there exists an integer ‘�’ such that � 

divides �2 + 1. So −1 is a 
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quadratic residue of �. By the well known

 ‘�’ is a quadratic residue of ‘�’ if and only if it is a quadratic residue of 

residue of 2ℎ , �1, �2, … … �� This implies

�1, �2, … … �� are primes of the form 4� +

Gauss Theorem and Sum of Three Squares:

 

Theorem: 

(�) = number of lattice points in the interior

(0,0)] 

Proof 

(�) = �(1) + �(2) + ⋯ + �(�) 

Which is equal to the number of lattice

�2 + �2 = 1, �2 + �2 = 2, … … … , �2 + �2

 

Theorem: (Gauss Theorem) 

�(�) = �� + �(√�) 

Proof 

In the figure, ‘�’ is the circle �2 + �2 = � of radius

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(�) + 1 is equal to the number of lattice points on and within the circle

these (�) + 1 lattice points a lattice square so that lattice points lies at the left hand bottom corner of the square. Then 

obviously the area of all these squares (shown shaded in the figure) is numerically equal to 

less than area of the circle ‘�’ of radius √�

Hence (√� − √2) 

< (�) + 1 < �(√� + √2) 

(or) (√� − √2)  − 1 < �(�) < �(√� + 

But,  (√� + √2)  − 1 = �� + (2√2�√� + 2
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implies ℎ = 0 (or) 1 and 

+ 1. Hence the proof. 

Squares: 

interior and on the boundary of the circle �2 + �2 = � [excluding the

lattice points on the boundaries of the circles 
2 = �. Hence the proof. 

of radius √�. 

is equal to the number of lattice points on and within the circle ‘�’ including the origin. We attach to each of 

lattice points a lattice square so that lattice points lies at the left hand bottom corner of the square. Then 

of all these squares (shown shaded in the figure) is numerically equal to (�) +

� + √2 and greater than the area of the circle ‘�’ of radius √

 √2)  − 1 

2� − 1) = �� + �(√�) 
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 −1 is a quadratic 

[excluding the lattice points 

including the origin. We attach to each of 

lattice points a lattice square so that lattice points lies at the left hand bottom corner of the square. Then 

) + 1. Also this area is 

√� − √2. 
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2 
Similarly, (√� − √2)  − 1 = �� − (2√2�√� − 2� + 1) = �� + �(√�) 

It follows that (�) = �� + �(√�) 

 

Sum of Three Squares: 

We shall first consider the representation of an integer as the sum of three squares. We have seen in the last chapter that 

not all integers can be represented as the sum of two squares. It is therefore natural to inquire whether all integers are 

representable as the sum of three squares. 

For example, 

4 = 22 + 02 + 02 

5 = 22 + 12 + 02 

6 = 22 + 12 + 12 

But the integer 7 cannot be so represented. It can only be written as the sum of four squares. 

7 = 22 + 12 + 12 + 12 

We shall now prove that there are infinitely many integers for which the representation as the sum of three squares is 

not possible. 

 

Theorem: 

If � is of the form 8� + 7 then � is not representable as the sum of three squares. 

Proof: 

Let us assume that � is the sum of three squares. � = �2 + �2 + �2 for some 

integers �, �, �. Then it follows that 

�2 + �2 + �2 ≡ 7 (��� 8) … … … … … … (1) 

Now �2 ≡ 1 (��� 8) if ‘�’ odd. �2 ≡ 0 (or) 4 (��� 8) if ‘x’ even. y2 and x2 also be have similarly. Hence x2 + y2 + z2 

can be congruent (mod 8) to one of the integers 0, 1, 2, 3, 4, 5, 6, and not to 7. Since this contradicts (1) above 

N cannot be represented as the sum of three squares. 

Theorem: 

Let N = 4ℎ (8q + 7) for some ‘ℎ’ and ’q’. Then N cannot be represented as the sum of three squares. 

Proof: 

Case (i) Let ℎ = 0 

Then � = 8� + 7 an “By the theorem (2.3)” � is not the sum of three squares. 

Case (ii) Let ℎ ≥ 1 

Then if possible let � = �2 + �2 + �2 (1) for some integers �, �, �. 

Hence,2 + �2 + �2 ≡ 0 (��� 4) (2) 

Now, �2 ≡ 1 (��� 4) if ‘�’ odd. �2 ≡ 0 (��� 4) if ‘�’ even. It follows that from (2) that 

�, �, � are all even integers. 

∴ From (1) we have (�/ 2 

�2  �/2 � 

ℎ−1(8� + 7) 

2) + ( /2) + ( 2)  = ( /4) = 4 

It is thus proved that if 4ℎ (8� + 7) is the sum of three squares then 4ℎ−1(8� + 7) is also 

so representable. Repeating the argument in succession we see that, 4ℎ−2(8� + 7, 4ℎ−38�+7, 

………,408�+7 are also representable. But we know “by that 408�+7 is not representable as the sum of three 

squares. Thus there is contradiction. It follows that � is not the sum of three squares. Conversely, It is possible 

to prove that if a number � cannot be represented as the sum of three squares then � is of the form 4ℎ 

(8� + 7). 

 

 

 



IJARSCT  ISSN (Online) 2581-9429 

    

 

       International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

                               International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 4, Issue 2, December 2024 

Copyright to IJARSCT DOI: 10.48175/IJARSCT-22743   377 

www.ijarsct.co.in  

Impact Factor: 7.53 

Sum of Four Squares: 

We proved in the previous chapter that it is not possible to represent all numbers as the sum of two squares. The 

following algebraic identity was first discovered by Euler and it is an essential step towards the solution of the problem. 

Result: 

(�2 + �2 + �2 + �2)(�2 + �2 + �2 + �2) = �2 + �2 + �2 + �2 

Where �1 = �1�1 + �2�2 + �3�3 + �4�4 

�2 = �1�2 − �2�1 + �3�4 − �4�3 

�3 = �1�3 − �3�1 + �4�2 − �2�4 

�4 = �1�4 − �4�1 + �2�3 + �3�2 

 

Theorem: (Euler Theorem) 

Let ‘�’ be an odd prime. Then there exist integers �, �, ℎ such that �2 + �2 + 1 = ℎ�, where 

Proof: 

 0 ≤ � < , 0 ≤ � <2 

 � and 0 < ℎ < �. 

Consider the following two sets of integers 

1 = {0, 1 , 22  , … … , ( ) }2 

 �2 = {−1, −1 − 1 , −1 − 2 , … … , −1 − ( ) } 

We know that, the integers 

12, 22 �−1, … … , (22) are all incongruent (��� �). It follows  that the integers of �1and the integers of �2 also are 

incongruent (��� �). Now, the total number of integers in �1 ∪ �2 is � + 1. Therefore there must be at least two 

integers in these � + 1 numbers which are congruent to each other (��� �). It then follows that at least one 

number of �1, say �2, is congruent (��� �) to some number  say  −1 − �2  of  �2 

such  that  0 ≤ � < �2 and  0 ≤ � < �2 

 Thus  we  have 

 �2 ≡ −1 − �2 (��� �) (or) �2 + �2 + 1 = ℎ� for some positive integer ‘ℎ’.   

Further, ℎ = 1 (�2 + �2  + 1) < 2 2  (  +   + 1) < �. The theorem is therefore completely 

proved. 

Corollary: 

Let ‘�’ be an odd prime. Then there exists a multiple of ‘�’ say �ℎ, 0 < ℎ < � which is representable as the sum of 

four squares. 

Proof: 

This is easy since by last theorem there exist integers �, � and ℎ. Such that, 

�2 + �2 + 12 + 02 = ℎ� where 0 < ℎ < � 

Theorem: 

Let ′�′ be any prime. If ℎ� is representable as the sum of four squares for some even integer ′ℎ′, then 1/2 ℎ� is 

also representable. 

Proof: 

Let ℎ� = �2 + �2 + �2 + �2 (1) 

Then there are five cases with regard to �1, �2, �3 and �4 which we have to consider (�) They are all even. (��) 

One is odd, and the other three even.  In this case 

(ℎ� = �2 + �2 + �2 + �2) would be an odd integer contradicting the given condition. 

Therefore this case is not possible. (���) Two of them say �1 and �2 are odd and the other two even. (��) Three 

are odd and one even. This case is also not possible for the same reasons as in (��) above.  (�) All are odd. Thus 

cases (�) (���) and (�) are the only possible ones. In all these three cases it is easily seen that �1±�2 

and �3 ±�42 

are integers. The theorem then follows immediately since (1) can be written 
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Theorem 

Let ‘�’ be an odd prime. If ℎ� is representable as the sum of four squares for some odd integer ℎ > 1 then there 

exists a smaller multiple of ‘�’ than ℎ� which is also representable. 

Proof: 

Let ℎ� = �2 + �2 + �2 + �2 … … … … … … (1) for some integers �1, �2, �3 and �4 

Then obviously �2 + �2 + �2 + �2 ≡ 0 (��� ℎ) (2) 

Let the minimal residues of �1, �2, �3, �4 (��� ℎ) be �1, �2, �3, �4 respectively. This implies 

|�1| < ℎ , |2 �2| < ℎ , |2 �3| < ℎ , |2 �4| < 2  

Since ‘ℎ’ is odd, and �2 + �2 + �2 + �2 ≡ 0 (��� ℎ) … … … (3) 

It should be observed here that �1, �2, �3, �4 cannot all be simultaneously zero, otherwise 

it follows that ‘ℎ’ divides �1, �2, �3, �4 so that ℎ2 divides �2 + �2 + �2 + �2 (or) that ℎ2 

divides ℎ� which is impossible. From (3) we then have �2 + �2 + �2 + �2 = 

ℎ1ℎ (4) for some integer ℎ1 

It follows that ℎ ℎ < (ℎ/ 2 + (ℎ/ 2 + (ℎ/ 2 + (ℎ/ 2 = ℎ2 

So, ℎ1 < ℎ (5) 

Moreover we obtain from (1) and (4) ℎ1ℎ2� = (�2 + �2 + �2 + �2)(�2 + �2 + �2 + �2) 

1 2 3 4 1 2 3 4 

= �2 + �2 + �2 + �2 … … … … … … (6) 

1 2 3 4 

Where by the ”Euler Result” 

�1 = �1�1 + �2�2 + �3�3 + �4�4 ≡ �2 + �2 + �2 + �2 (��� ℎ) ≡ 0 (��� ℎ) 

1 2 3 4 

�2 = �1�2 − �2�1 + �3�4 − �4�3 ≡ �1�2 − �2�1 + �3�4 − �4�3 (��� ℎ) ≡ 0 (��� ℎ) 

It can be proved in a similar manner that  3 ≡ 0 (��� ℎ) & �4 ≡ 0 (��� ℎ) 

So, we have �1 = �1ℎ, �2 = �2ℎ , �3 = �3ℎ and �4 = �4ℎ for some integers �1, �2, �3 and �4 

It follows from (6) that ℎ1ℎ2� = �2ℎ2 + �2ℎ2 + �2ℎ2 + �2ℎ2 = ℎ2(�2 + �2 + �2 + �2) 

1 2 3 4 1 2 3 4 

Hence ℎ1� = �2 + �2 + �2 + �2 (7) 

(7) and (5) prove the theorem. 

 

Theorem: 

Every prime ‘�’ is representable as the sum of four squares. 

Proof: 

(�) Let � = 2 Then 2 = 12 + 12 + 02 + 02 So, 2 is representable. 

(��) Let � ≥ 3 Then by the corollary. We know that there exists a multiple of ‘�’ which is the sum of four squares. 

It follows that there is a least such multiple. Let this be ℎ�. If ‘ℎ’ is even then by the theorem 

is representable. This contradicts our assumption that ℎ� is the least multiple of ‘�’ which is representable. 

Therefore ‘ℎ’ is odd. If, now ‘ℎ’ is an odd integer > 1, then by the well known theorem, there exists a smaller 

multiple of ‘�’ then ℎ� which is representable. This also contradicts our assumption. Hence ℎ = 1 and ‘�’ is 

representable. 

 

II. CONCLUSION 

In this dissertation, we discussed about how an integer can be (or) cannot be represented as a sums of squares. Also, an 

introduction to number theory and some definitions are discussed. Basic concepts which are used in our dissertation are 

also discussed. Also, how a number can be (or) cannot be represented as a sum of two squares, sum of three squares and 

sum of four squares are discussed. These are all the field of current research in Number Theory. So this can be 

considered as a first step towards my research. 
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