

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, December 2024

On Trirecurrence Property for Wely's Curvature **Tensor in Finsler Space**

Abdalstar A. Saleem¹, Alaa A. Abdallah^{*2}

Department of Mathematics, Faculty of Sciences, Aden University, Aden, Yemen¹ Department of Mathematics, Education Faculty, University of Abyan, Yemen¹ ²Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India²

Abstract: This paper introduces a Finsler space which Wely's curvature tensor W_{ikh}^i satisfies the trirecurrence property in sense of Cartan. Further, we study the relations between the Wely's curvature tensor W_{jkh}^i , normal projective curvature tensor N_{jkh}^i and Berwald curvature tenser H_{jkh}^i .

Keywords: W – trirecurrent Finsler space, Wely's curvature tensor W_{ikh}^i , Affinely connected space

I. INTRODUCTION

The recurrent and birecurrent Finsler spaces have been studied by [10, 18, 19, 20, 21, 22]. The trirecurrent Finsler spaces for different curvature tensors have been studied by [6, 7, 8, 9, 11, 15, 17]. An affinely connected space for hv -curvature tensor that satisfy the birecurrence property discussed by [2, 12].

An n –dimensional Finsler space F_n equipped with the line elements (x, y) and the fundamental metric function Fthat positive homogeneous of degree one in y^i [1, 3, 13, 14]. The vectors y_i and y^i satisfy

a)
$$y_i y^i = F^2$$
, b) $\dot{\partial}_i y_j = \dot{\partial}_j y_i = g_{ij}$, c) $g_{it} y^i = y_t$ and d) $g_{ij} = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j F^2$.

Cartan's covariant derivative of the fundamental metric function F, vector y^i and unit vector l^i vanish identically, i.e.

a)
$$F_{|l} = 0$$
, b) $y_{|l}^{i} = 0$, and c) $g_{jk|l} = 0$,

Cartan's covariant derivative of an arbitrary tensor T_h^i with respect to x^l is given by [5]

a)
$$\dot{\partial}_j \left(T^i_{h|l} \right) - \left(\dot{\partial}_j T^i_h \right)_{ll} = T^r_h \left(\dot{\partial}_j \Gamma^{*i}_{lr} \right) - T^i_r \left(\dot{\partial}_j \Gamma^{*r}_{lj} \right) - \left(\dot{\partial}_r T^i_h \right) P^r_{jl} \; ,$$

where b)
$$P_{jl}^r = (\partial_j \Gamma_{hl}^{*r}) y^h$$
 and c) $P_{jl}^i = g^{ih} P_{hjl}$.

The Berwald curvature tensor H_{ikh}^i is positively homogeneous of degree zero in y^i and skew-symmetric in its last two lower indices which defined by [16]

$$H_{ikh}^i = \partial_h G_{ik}^i + G_{jk}^r G_{rh}^i + G_{rk}^i G_{jh}^r - h/k.$$

In view of Euler's theorem on homogeneous functions, we have the following relations [4]

(1.4) a)
$$\dot{\partial}_{j}H_{kh}^{i} = H_{jkh}^{i}$$
, b) $H_{jkh}^{i}y^{j} = H_{kh}^{i}$, c) $H_{ijkh} = g_{jr}H_{ikh}^{r}$,

(1.4)
$$a) \hat{\partial}_{j} H_{kh}^{i} = H_{jkh}^{i}$$
, $b) H_{jkh}^{i} y^{j} = H_{kh}^{i}$, $c) H_{ijkh} = 0$
 $d) H_{kh}^{i} y^{k} = H_{h}^{i}$, $e) H_{kh}^{i} = \hat{\partial}_{k} H_{h}^{i}$, $f) H_{jk} = H_{jkr}^{r}$, $g) H_{k} = H_{kr}^{r}$, $h) H = \frac{1}{n-1} H_{r}^{r}$ and $h) H_{rkh}^{r} = H_{kh} - H_{hk}$.

$$\text{Sin}_k = \Pi_{kr}, \qquad \text{in} \Pi = \frac{1}{n-1} \Pi_r \text{ and } \qquad \text{in} \Pi_{rkh} = \Pi_{hk}.$$
The relation between the normal majestive converting tensor M_i^l and Derivative tensor M_i^l

The relation between the normal projective curvature tensor N_{jkh}^i and Berwald curvature tensor H_{jkh}^i satisfies [6]

$$(1.5)\ N^i_{jkh} = H^i_{jkh} - \tfrac{1}{n+1} y^i \dot{\partial}_j H^r_{rkh} \; ,$$

where the normal projective curvature tensor N_{ikh}^{i} is homogeneous of degree zero in y^{i} .

Contracting the indices i and j in (1.5) and using the fact that the tensor H_{rkh}^r is positively homogeneous of degree zero in y^i , we get

(1.6)
$$N_{rkh}^r = H_{rkh}^r$$
.

Transvecting (1.5) by y^j and using (1.4b), we get

(1.7)
$$N_{jkh}^i y^j = H_{kh}^i$$
.

The Wely's curvature tensor W_{jkh}^i and normal projective curvature tensor N_{jkh}^i are connected [16]

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.53

Volume 4, Issue 1, December 2024

$$(1.8) \quad \text{a)} \ \ W^i_{jkh} = N^i_{jkh} + 2(\delta^i_k M_{hj} - M_{kh} \delta^i_j - k | h),$$

where b)
$$M_{jk} = -\frac{1}{n^2 - 1} (nN_{jk} + N_{kj})$$
 and

$$c)N_{jk}=N_{jkr}^{r}.$$

The Wely's curvature tensor W_{ikh}^i satisfies the following [16]

(1.9) a)
$$W_{jkh}^i y^j = W_{kh}^i$$
, b) $W_{kh}^i y^k = W_h^i$ and

b)
$$W_{kh}^{i} y^{k} = W_{h}^{i}$$
 a

c)
$$W_h^i y^h = 0$$
.

A Finsler space whose connection parameter G_{jk}^i is independent of y^i is called an *affinely connected space* [16]. Thus, one of the equivalent equations characterizes an affinely connected space

(1.10) a)
$$G_{jkh}^i = 0$$
 and b) C_i

The connection parameters of Cartan
$$\Gamma_{kh}^{*i}$$
 and Berwald G_{jk}^{i} coincide in affinely connected space and they are independent of the direction argument, i.e.

(1.11) a)
$$\dot{\partial}_i G_{kh}^i = 0$$
 and b) $\dot{\partial}_i \Gamma_{kh}^{*i} = 0$.

Cartan's connection parameter Γ_{kh}^{*i} coincides with Berwald's connection parameter G_{kh}^{i} for a Landsberg space, which is characterized by [16]

$$(1.12)y_rG_{jkh}^r = -2C_{jkh|r}y^r = -2P_{jkh} = 0.$$

The W -recurrent Finsler space and W -birecurrent Finsler space introduced and characterized by [21, 22]

(1.13)
$$W_{jkh|l}^{i} = \lambda_{l} W_{jkh}^{i}, \quad W_{jkh}^{i} \neq 0$$

$$(1.14)W_{jkh|l|m}^{i} = a_{lm}W_{jkh}^{i},$$

where λ_l and a_{lm} are non-zero covariant vector field and non-zero covariant tensor field of second order, respectively.

II. MAIN RESULTS

Definition 2.1. Finsler space F_n which the Wely's curvature tensor W_{jkh}^i satisfies the trirecurrence property i.e. characterized by

$$(2.1)W_{ikh|l|m|n}^{i} = a_{lmn}W_{ikh}^{i}, W_{ikh}^{i} \neq 0.$$

where a_{lmn} is non-zero covariant tensor field of third order. This space will be called aW - trirecurrent Finsler space. And denote it briefly by $WTR - F_n$.

Transvecting (2.1) by y^j , using (1.9a) and (1.2b), we get

$$(2.2) \ W_{kh|l|m|n}^{i} = a_{lmn} W_{kh}^{i}.$$

Transvecting (2.2) by y^k , using (1.9b) and (1.2b), we get

(2.3)
$$W_{h|l|m|n}^i = a_{lmn}W_h^i$$

Thus, we conclude

Theorem 2.1. In WTR – F_n , the Wely's torsion tensor W_{ik}^i and Wely's deviation W_h^i are trirecurrent.

Differentiating (1.8a) covariantly with respect to x^l , x^m and x^n in sense of Cartan, we get

$$(2.4) \ N^{i}_{jkh|l|m|n} = W^{i}_{jkh|l|m|n} + 2(\delta^{i}_{j}M_{kh|l|m|n} + \delta^{i}_{h}M_{jk|l|m|n}).$$

Using (2.1) and (1.8a) in (2.4), we get

$$N^{i}_{jkh|l|m|n} = a_{lmn}[N^{i}_{jkh} - 2(\delta^{i}_{j}M_{kh} + \delta^{i}_{h}M_{jk})] + 2(\delta^{i}_{j}M_{kh|l|m|n} + \delta^{i}_{h}M_{jk|l|m|n}).$$

Contracting i and h in above equation and using (1.8c) and the property skew –symmetric for M_{jk} , we get

$$N_{jk|l|m|n} = a_{lmn}[N_{jk} - 2(1-n)M_{jk}] + 2(1-n)M_{jk|l|m|n}.$$

Using (1.8b) in above equation, we get

$$N_{jk|l|m|n} = a_{lmn}N_{jk} - \frac{2}{n+1}a_{lmn}(nN_{jk} + N_{kj}) + \frac{2}{n+1}(nN_{jk|l|m|n} + N_{kj|l|m|n}).$$

Using the property skew – symmetric for N_{jk} in above equation, we get

$$N_{ik|l|m|n} = a_{lmn}N_{ik} - 2a_{lmn}N_{ik} + 2N_{ik|l|m|n}$$

DOI: 10.48175/568

which can be written by

$$(2.5) N_{ik|l|m|n} = a_{lmn} N_{ik}.$$

Thus, we conclude

Copyright to IJARSCT

www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.53

Volume 4, Issue 1, December 2024

Theorem 2.2. In WTR $-F_n$, if M_{jk} and N_{jk} are property skew - symmetric, then N_{jk} is trirecurrent.

Differentiating (1.8b) covariantly with respect to x^l , x^m and x^n in the sense of Cartan, using (2.5), we get

$$(2.6) \ M_{jk|l|m|n} = -\frac{1}{n^2 - 1} a_{lmn} (nN_{jk} + N_{kj}).$$

Using (1.8b) in (2.6), we get

 $(2.7) \ M_{jk|l|m|n} = a_{lmn} M_{jk}.$

Using (2.1) and (2.6) in (2.7), we get

 $(2.8) \ N_{jkh|l|m|n}^{i} = a_{lmn} N_{jkh}^{i}.$

Thus, we conclude

Theorem 2.3. In WBR – F_n , the tensor M_{jk} and normal projective curvature tensor N_{jkh}^i are trirecurrent.

Contracting the indies i and j in (2.8) and using (1.6), we get

(2.9) $H_{rkh|l|m|n}^r = a_{lmn}H_{rkh}^r$.

Transvecting (2.8) by y^j , using (1.7) and (1.2b), we get

 $(2.10) H_{kh|l|m|n}^{i} = a_{lmn} H_{kh}^{i}.$

Transvecting (2.10) by y^k , using (1.4d) and (1.2b), we get

 $(2.11) H_{h|l|m|n}^{i} = a_{lmn} H_{h}^{i}.$

Contracting the indies i and h in (2.10) and using (1.4g), we get

 $(2.12) H_{k|l|m|n} = a_{lmn} H_k.$

Contracting the indies i and h in (2.11) and using (1.4h), we get

 $(2.13) H_{|l|m|n} = a_{lmn} H.$

From above equations, we conclude

Theorem 2.4. In WTR $-F_n$, the curvature tensor H_{rkh}^r , torsion tensor H_{kh}^i , deviation tensor H_h^i , curvature vector H_k and scalar curvature H are trirecurrent.

In next results, we obtain thenecessary and sufficient condition for some tensors to be trirecurrent in $WTR - F_n$. Differentiating (2.10) partially with respect to y^j , we get

$$(2.14) \ \dot{\partial}_j \left(H^i_{kh|l|m|n} \right) = \left(\dot{\partial}_j a_{lmn} \right) H^i_{kh} + a_{lmn} \dot{\partial}_j H^i_{kh}.$$

Using commutation formula exhibited by (1.3a) for H_{kh}^i in (2.14), using (1.4a), we get

$$(2.15) H_{jkh|l|m|n}^{i} + [\{H_{kh}^{r}(\hat{\partial}_{j}\Gamma_{rl}^{*i}) - H_{rh}^{i}(\hat{\partial}_{j}\Gamma_{kl}^{*r}) - H_{kr}^{i}(\hat{\partial}_{j}\Gamma_{rl}^{*r}) - H_{krh}^{i}P_{jl}^{\gamma}]_{lm} + H_{kh|l}^{r}(\hat{\partial}_{j}\Gamma_{rm}^{*i}) - H_{rh|l}^{i}(\hat{\partial}_{j}\Gamma_{km}^{*r}) - H_{rh|l}^{i}(\hat{\partial}_{j}\Gamma_{rm}^{*r}) - H_{kr|l}^{i}(\hat{\partial}_{j}\Gamma_{rm}^{*r}) - H_{kr|l}^{i}(\hat{\partial}_{j}\Gamma_{rm}^{*r}) - H_{kr|l}^{i}(\hat{\partial}_{j}\Gamma_{rm}^{*r}) - H_{kr|l}^{i}(\hat{\partial}_{j}\Gamma_{rm}^{*r}) - H_{kr|l|m}^{i}(\hat{\partial}_{j}\Gamma_{rm}^{*r}) - H_{kr|l|m}^{i}(\hat{\partial}_{j}\Gamma_{km}^{*r}) - H_{kr|l|m}^{i}(\hat{\partial}_{j}\Gamma_{km}^{*r}) - H_{kr|l|m}^{i}(\hat{\partial}_{j}\Gamma_{km}^{*r}) - H_{kr|l|m}^{i}(\hat{\partial}_{j}\Gamma_{km}^{*r}) - H_{kh|l|m}^{i}(\hat{\partial}_{j}\Gamma_{km}^{*r}) - H_{kr|l|m}^{i}(\hat{\partial}_{j}\Gamma_{km}^{*r}) - H_{kr|l|m}^{i}(\hat{\partial}_{j}\Gamma_{km}^{*r})$$

This shows that

(2.16) $H_{jkh|l|m|n}^{i} = a_{lmn}H_{jkh}^{i}$

if and only if

$$(2.17) \quad [\{H_{kh}^{r}(\dot{\partial}_{j}\Gamma_{rl}^{*i}) - H_{rh}^{i}(\dot{\partial}_{j}\Gamma_{kl}^{*r}) - H_{kr}^{i}(\dot{\partial}_{j}\Gamma_{hl}^{*r}) - H_{rkh}^{i}P_{jl}^{r}\}_{|m} + H_{kh|l}^{r}(\dot{\partial}_{j}\Gamma_{rm}^{*i}) - H_{rh|l}^{i}(\dot{\partial}_{j}\Gamma_{km}^{*r}) - H_{rh|l}^{i}(\dot{\partial}_{j}\Gamma_{km}^{*r}) - H_{kh|l}^{i}(\dot{\partial}_{j}\Gamma_{km}^{*r}) - H_{kh|l}^{i}(\dot{\partial}_{j}\Gamma_{km}^{*r}) - H_{kh}^{i}(\dot{\partial}_{r}\Gamma_{kl}^{*i}) - H_{kh}^{i}(\dot{\partial}_{r}\Gamma_{kl}^{*s}) - H_{ks}^{i}(\dot{\partial}_{r}\Gamma_{kl}^{*s}) - H_{ks}^{i}(\dot{\partial}_{r}\Gamma_{kl}^{*s}) - H_{kr|l|m}^{i}(\dot{\partial}_{j}\Gamma_{kn}^{*r}) - H_{rh|l|m}^{i}(\dot{\partial}_{j}\Gamma_{kn}^{*r}) - H_{kr|l|m}^{i}(\dot{\partial}_{j}\Gamma_{kn}^{*r}) - H_{kh|l|m}^{i}(\dot{\partial}_{j}\Gamma_{kn}^{*r}) - H_{kr|l|m}^{i}(\dot{\partial}_{j}\Gamma_{kn}^{*r}) - H_{kh|l|m}^{i}(\dot{\partial}_{j}\Gamma_{kn}^{*r}) - H_{kh|l|m}^{i}(\dot{\partial}_{j}\Gamma_{kn}^{*r}) - H_{ks}^{i}(\dot{\partial}_{r}\Gamma_{kl}^{*s}) - H_{ks}^{i}(\dot{\partial}_{r}\Gamma_{kl}^{*s}) - H_{ks}^{i}(\dot{\partial}_{r}\Gamma_{hl}^{*s}) - H_{ks}^{i}(\dot{\partial}_{r}\Gamma_{hl}^{$$

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.53

Volume 4, Issue 1, December 2024

$$+ H_{kh|l}^{s}(\dot{\partial}_{r}\Gamma_{sm}^{*i}) - H_{sh|l}^{i}(\dot{\partial}_{r}\Gamma_{km}^{*s}) - H_{ks|l}^{i}(\dot{\partial}_{r}\Gamma_{hm}^{*s}) - H_{kh|s}^{i}(\dot{\partial}_{r}\Gamma_{lm}^{*s}) - H_{kh|s}^{i}(\dot{\partial}_{r}\Gamma_{lm}^{*s}) - \{H_{skh|l}^{i} + H_{kh}^{t}(\dot{\partial}_{s}\Gamma_{tl}^{*i}) - H_{th}^{i}(\dot{\partial}_{s}\Gamma_{kl}^{*i}) - H_{kt}^{i}(\dot{\partial}_{s}\Gamma_{hl}^{*t}) - P_{t}^{t}\}\}P_{jn}^{r} - (\dot{\partial}_{j}a_{lmn})H_{kh}^{i} = 0.$$

Thus, we conclude

Theorem 2.5. In WTR $-F_n$, the Berwald curvature tensor H_{jkh}^i is trirecurrent if and only if (2.17) holds.

Transvecting (2.15) by g_{ti} , using (1.4c) and (1.2c), we get

This shows that

 $(2.19) H_{jtkh|l|m|n} = a_{lmn}H_{jtkh}$

if and only if

$$(2.20)g_{ti}[\{H_{kh}^{r}(\dot{\partial}_{j}\Gamma_{rl}^{*i}) - H_{rh}^{i}(\dot{\partial}_{j}\Gamma_{kl}^{*r}) - H_{kr}^{i}(\dot{\partial}_{j}\Gamma_{hl}^{*r}) - H_{rkh}^{i}P_{jl}^{r}\}_{|m} + H_{kh|l}^{r}(\dot{\partial}_{j}\Gamma_{rm}^{*i}) \\ - H_{rh|l}^{i}(\dot{\partial}_{j}\Gamma_{km}^{*r}) - H_{kr|l}^{i}(\dot{\partial}_{j}\Gamma_{hm}^{*r}) - H_{kh|r}^{i}(\dot{\partial}_{j}\Gamma_{lm}^{*r}) - \{H_{rkh|l}^{r} + H_{kh}^{s}(\dot{\partial}_{r}\Gamma_{sl}^{*i}) \\ - H_{sh}^{i}(\dot{\partial}_{r}\Gamma_{kl}^{*s}) - H_{ks}^{i}(\dot{\partial}_{r}\Gamma_{hl}^{*s}) - H_{skh}^{i}P_{rl}^{s}\}P_{jm}^{r}]_{|n} + g_{ti}[H_{kh|l|m}^{r}(\dot{\partial}_{j}\Gamma_{rn}^{*i}) - H_{rh|l|m}^{i}(\dot{\partial}_{j}\Gamma_{kn}^{*r}) \\ - H_{kr|l|m}^{i}(\dot{\partial}_{j}\Gamma_{hn}^{*r}) - H_{kh|r|m}^{i}(\dot{\partial}_{j}\Gamma_{ln}^{*r}) - H_{kh|l|r}^{i}(\dot{\partial}_{j}\Gamma_{mn}^{*r}) - \{H_{rkh|l}^{r} + H_{kh}^{s}(\dot{\partial}_{r}\Gamma_{rl}^{*i}) \\ - H_{sh}^{i}(\dot{\partial}_{r}\Gamma_{kl}^{*s}) - H_{ks}^{i}(\dot{\partial}_{r}\Gamma_{hl}^{*s}) - H_{ks}^{i}(\dot{\partial}_{r}\Gamma_{hl}^{*s}) - H_{skh}^{i}P_{rl}\}_{|m} + H_{kh|l}^{s}(\dot{\partial}_{r}\Gamma_{sm}^{*i}) - H_{sh|l}^{i}(\dot{\partial}_{r}\Gamma_{km}^{*s}) \\ - H_{ks|l}^{i}(\dot{\partial}_{r}\Gamma_{lm}^{*s}) - H_{kh|s}^{i}(\dot{\partial}_{r}\Gamma_{lm}^{*s}) - \{H_{skh|l}^{i} + H_{kh}^{t}(\dot{\partial}_{s}\Gamma_{ll}^{*i}) - H_{th}^{i}(\dot{\partial}_{s}\Gamma_{kl}^{*t}) - H_{kt}^{i}(\dot{\partial}_{s}\Gamma_{hl}^{*t}) \\ = 0. \qquad - H_{tkh}^{i}P_{rl}^{r}\}P_{rl}^{r}\}P_{rl}^{r}\}P_{rl}^{r} - g_{ti}(\dot{\partial}_{j}a_{lmn})H_{kh}^{i}$$

Thus, we conclude

Theorem 2.6. In WTR $-F_n$, the associate tensor H_{jtkh} of the curvature tensor H_{jkh}^i is trirecurrent if and only if (2.20) holds.

Contracting the indices i and h in (2.15), using (1.4f) and (1.4g), we get

$$(2.21) \quad H_{jk|l|m|n} + [\{H_{kb}^{r}(\hat{\partial}_{j}\Gamma_{rl}^{*b}) - H_{r}(\hat{\partial}_{j}\Gamma_{kl}^{*r}) - H_{kr}^{b}(\hat{\partial}_{j}\Gamma_{bl}^{*r}) - H_{rk}P_{jl}^{r}\}_{|m} + (\hat{\partial}_{j}\Gamma_{rm}^{*b}) - H_{r|l}(\hat{\partial}_{j}\Gamma_{km}^{*r}) - H_{r|l}(\hat{\partial}_{j}\Gamma_{km}^{*r}) - H_{k|r}(\hat{\partial}_{j}\Gamma_{km}^{*r}) - H_{k|r}(\hat{\partial}_{j}\Gamma_{kl}^{*r}) - H_{s}(\hat{\partial}_{r}\Gamma_{sl}^{*s}) - H_{s}(\hat{\partial}_{r}\Gamma_{kl}^{*s}) - H_{ks}(\hat{\partial}_{r}\Gamma_{bl}^{*s}) - H_{sk}P_{sl}^{s}\}P_{jm}^{r}]_{|n} + H_{kb|l|m}^{r}(\hat{\partial}_{j}\Gamma_{rn}^{*b}) - H_{r|l|m}(\hat{\partial}_{j}\Gamma_{bn}^{*r}) - H_{k|r|m}(\hat{\partial}_{j}\Gamma_{ln}^{*r}) - H_{k|l|r}(\hat{\partial}_{j}\Gamma_{mn}^{*r}) - H_{k|l|r}(\hat{\partial}_{j}\Gamma_{mn}^{*r}) - H_{k|l|r}(\hat{\partial}_{j}\Gamma_{mn}^{*r}) - H_{k|l|r}(\hat{\partial}_{j}\Gamma_{mn}^{*s}) - H_{ks}(\hat{\partial}_{r}\Gamma_{bl}^{*s}) - H_{sk}P_{sl}^{s}\}_{|m} + H_{kb|l}^{s}(\hat{\partial}_{r}\Gamma_{sm}^{*b}) - H_{s|l}(\hat{\partial}_{r}\Gamma_{km}^{*s}) - H_{ks}^{s}(\hat{\partial}_{r}\Gamma_{bm}^{*s}) - H_{k|s}(\hat{\partial}_{r}\Gamma_{lm}^{*s}) - H_{k|s}(\hat{\partial}_{r}\Gamma_{lm}^$$

 $-\{H_{sk|l} + H_{kb}^t(\dot{\partial}_s \Gamma_{tl}^{*b}) - H_t(\dot{\partial}_s \Gamma_{kl}^{*t}) - H_{kt}^b(\dot{\partial}_s \Gamma_{bl}^{*t}) - H_{tk}P_{rl}^t\}]P_{jn}^r = (\dot{\partial}_j a_{lmn})H_k + a_{lmn}H_{jk}.$ This shows that

$$H_{jk|l|m|n} = a_{lmn}H_{jk}$$

if and only if

$$(2.22) \quad [\{H^{r}_{kb}(\hat{\partial}_{j}\Gamma^{*b}_{rl}) - H_{r}(\hat{\partial}_{j}\Gamma^{*r}_{kl}) - H^{b}_{kr}(\hat{\partial}_{j}\Gamma^{*r}_{bl}) - H_{rk}P^{r}_{jl}\}_{|m} + (\hat{\partial}_{j}\Gamma^{*m}_{rm}) - H_{r|l}(\hat{\partial}_{j}\Gamma^{*r}_{km}) \\ - H^{b}_{kr|l}(\hat{\partial}_{j}\Gamma^{*r}_{bm}) - H_{k|r}(\hat{\partial}_{j}\Gamma^{*r}_{lm}) - \{H_{rk|l} + H^{s}_{kb}(\hat{\partial}_{r}\Gamma^{*b}_{sl}) - H_{s}(\hat{\partial}_{r}\Gamma^{*s}_{kl}) - H^{b}_{ks}(\hat{\partial}_{r}\Gamma^{*s}_{bl}) - H_{sk}P^{s}_{sl}\}P^{r}_{jm}]_{|n} + H^{r}_{kb|l|m}(\hat{\partial}_{j}\Gamma^{*b}_{rn}) \\ - H_{r|l|m}(\hat{\partial}_{j}\Gamma^{*r}_{kn}) - H^{b}_{kr|l|m}(\hat{\partial}_{j}\Gamma^{*r}_{bn}) - H_{k|r|m}(\hat{\partial}_{j}\Gamma^{*r}_{ln}) - H_{k|l|r}(\hat{\partial}_{j}\Gamma^{*r}_{ln}) \\ - [\{H_{rk|l} + H^{s}_{kb}(\hat{\partial}_{r}\Gamma^{*b}_{sl}) - H_{s}(\hat{\partial}_{r}\Gamma^{*s}_{kl}) - H^{b}_{ks}(\hat{\partial}_{r}\Gamma^{*s}_{bl}) - H_{sk}P^{s}_{sl}\}_{|m} \\ + H^{s}_{kb|l}(\hat{\partial}_{r}\Gamma^{*s}_{sm}) - H_{s|l}(\hat{\partial}_{r}\Gamma^{*s}_{kn}) - H^{b}_{ks|l}(\hat{\partial}_{r}\Gamma^{*s}_{bm}) - H_{k|s}(\hat{\partial}_{r}\Gamma^{*s}_{lm})$$

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/568

2581-9429 IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.53

Volume 4, Issue 1, December 2024

$$- \left\{ H_{sk|l} + H_{kb}^{t} (\dot{\partial}_{s} \Gamma_{tl}^{*b}) - H_{t} (\dot{\partial}_{s} \Gamma_{kl}^{*t}) - H_{kt}^{b} (\dot{\partial}_{s} \Gamma_{bl}^{*t}) - H_{tk} P_{rl}^{t} \right\} P_{in}^{r} - (\dot{\partial}_{i} a_{lmn}) H_{k} = 0.$$

Thus, we conclude

Theorem 2.7. In WTR $-F_n$, H $-Ricci tensor H_{jk}$ is trirecurrent if and only if (2.22) holds.

Remark 2.1. If the $WTR - F_n$ is affinely connected space, then the new space will be called WTR - affinely connected

Let us consider WTR – affinely connected space. In view of (1.3c), (1.11b), (1.12) and if $\dot{\partial}_i a_{lmn} = 0$, Eq. (2.15) becomes

 $(2.23) H_{jkh|l|m|n}^{i} = a_{lmn}H_{jkh}^{i}.$

In view of (1.3c), (1.11b), (1.12) and if $\dot{\partial}_i a_{lmn} = 0$, Eq. (2.18) becomes

 $(2.24) H_{jtkh|l|m|n} = a_{lmn}H_{jtkh}.$

In view of (1.3c), (1.11b), (1.12) and if $\dot{\partial}_i a_{lmn} = 0$, Eq. (2.21) becomes

 $(2,25) H_{jk|l|m|n} = a_{lmn}H_{jk} .$

Thus, we conclude

Theorem 2.8. In WTR – affinely connected space, if the directional derivative of covariant tensor field vanish, then the curvature tensor H_{jkh}^{l} , associate tensor H_{jtkh} and H -Ricci tensor H_{jk} are trirecurrent.

III. CONCLUSION

The necessary and sufficient condition for some tensors that be trirecurrent has been discussed in W-trirecurrent Finsler space. Also, the relations between the curvature tensors W_{ikh}^i , N_{ikh}^i and H_{ikh}^i have been discussed.

REFERENCES

- [1]. A. Abdallah, Study on the relationship between two curvature tensors in Finsler spaces, Journal of Mathematical Analysis and Modeling, 4(2), 112-120, (2023).
- [2]. A. Abdallah, A. A. Navlekar and K. P. Ghadle, Special types of generalized BP -recurrent spaces, Journal of Computer and Mathematical Sciences, 10(5), 972-979, (2019).
- [3]. A. Abdallah, A. A. Navlekar, K. P. Ghadle and B. Hardan, Fundamentals and recent studies of Finsler geometry, International Journal of Advances in Applied Mathematics and Mechanics, 10(2), 27-38, (2022).
- [4]. F. A. Ahmed and A. A. Abdallah, The conditions for various tensors to be generalized \mathcal{B} -trirecurrent tensor, International Journal of Advanced Research in Science, Communication and Technology, 4(2), 511-517, (2024).
- [5]. É. Cartan, Les espaces de Finsler, Actualités, Paris, 79 (1934). 2nd edit. (1971).
- [6]. W. H. Hadi, A. M. Hanbala and A. A. Saleem, On projective motion in an N trirecurrent Finsler space, 7(1), 30 - 44, (2024).
- [7]. W. H. Hadi and A. A. Saleem, On pseudo T -trirecurrent Finsler space in Berwald sense, J. E. F., 17(2), 537 -543, (2023).
- [8]. Misra, B. S. Misra, K. Srivastava and R. B. Srivastava, Higher order recurent Finsler spaces with Berwalds curvature tensor field, J. Chem. Bio. Sci. Sei. 4(1), 624 – 631, (2014).
- [9]. H. D. Pande and K. K. Gupta, Recurrent Finsler space of third order, Acta Ciencia Indica, 9 (3), 177 183, (1980).
- [10]. P. N. Pandeyand R. Verma, C^h -birecurrent Finsler space, second conference of the International Academy of Physical Sciences, 13-14, (1997).
- [11]. F. Y. Qasem, On normal projection trirecurrent Finsler spaces, Univ. of Aden, J. Nat. and Appl. Sc. 13(2), 339 -355, (2009).
- [12]. F. Y. Qasem and A. A. Abdallah, On generalized BR -recurrent affinely connected space, Imperial journal of interdisciplinary research, 2(10), 2108-2112, (2016).

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.53

Volume 4, Issue 1, December 2024

- [13]. F. Y. Qasem and A. A. Abdallah, On certain generalized *BR* –recurrent Finsler space, International Journal of Applied Science and Mathematics, 3(3), 111-114, (2016).
- [14]. F. Y. Qasem and A. A. Abdallah, On study generalized *BR* –recurrent Finsler space, International Journal of Mathematics And its Application, 4(2-B), 113–121, (2016).
- [15]. F. Y. Qasem and A. A. Muhib, On \mathbb{R}^h trirecurrent Finsler space, Journal of the faculty of education, Thamar, University, 6(3), 59-75, (2008).
- [16]. H. Rund, *The differential geometry of Finsler spaces*, Springer-verlag, Berlin Göttingen-Heidelberg, (1959); 2nd (in Russian), Nauka, Moscow, (1981).
- [17]. A A. Saleem, On U^h -trirecurrent Finsler space, Univ. Aden j. Nat. and Appl. Sc. 28(1), 1 8, (2024).
- [18]. A. Saleem and A. A. Abdallah, Study on U^h -birecurrent Finsler space, International Journal of Advanced Research in Science, Communication and Technology, 2(3), 28 39, (2022).
- [19]. A. Saleem and A. A. Abdallah, Certain identities of C^h in Finsler spaces, International Journal of Advanced Research in Science, Communication and Technology, 3(2), 620-622, (2023).
- [20]. A. Saleem and A. A. Abdallah, On pseudo *T* –birecurrent Finsler space, International Journal of Advanced Multidisciplinary Research and Studies, 2(3), 517 522, (2023).
- [21]. A. Saleem and A. A. Abdallah, The recurrence property for the projective curvature tensor in Finsler space, International Advanced Research Journal in Science, Engineering and Technology, 11(5), 291 297, (2024).
- [22]. A. Saleem and A. A. Abdallah, On birecurrent Finsler space for the projective curvature tensor, International Journal of Advanced and Applied Research, 11(6), 95 99, (2024).

