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Abstract: This paper introduces a class of Finsler structures, termed hyper-generalized recurrent Finsler 

structures. These structures are defined by particular curvature tensors in conjunction with Berwald's 

covariant differentiation. This paper extends the theory of recurrent Finsler structures by introducing a new 

class of structures defined by specific curvature tensors and Berwald's covariant differentiation. The findings 

of this research contribute to a deeper understanding of the intricate interplay between curvature and 

recurrent properties in Finsler geometry 
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I. INTRODUCTION 

Finsler geometry, a generalization of Riemannian geometry, offers a powerful framework for studying spaces with 

anisotropic metric properties. In recent years, there has been a growing interest in recurrent Finsler structures, 

characterized by the parallel propagation of certain curvature tensors along geodesics. The Berwald's covariant 

differentiation, a fundamental tool in Finsler geometry, plays a crucial role in our investigation.  

The Weyl’s projective curvature tensor is a geometric object employed to characterize the curvature of a spacetime or 

more generally, a pseudo-Riemannian manifold. The Weyl’s projective curvature tensor also vanishes precisely when 

the spacetime is locally isometric to flat spacetime. The study of curvature tensors within Finsler spaces assumes 

paramount importance due to their pivotal role in characterizing the intrinsic curvature of these spaces. These tensors 

encapsulate information regarding the deviation of geodesics and the parallel transport of vectors. By scrutinizing the 

expansion identities for curvature tensors, we seek to uncover deeper connections between the various curvature 

invariants and to acquire a more comprehensive understanding of the curvature properties of Finsler spaces.  

The curvature tensors are fundamental objects in differential geometry. some examples include the Riemannian 

curvature tensor����
� , Weyl’s projective curvature tensor����

� , � −projective curvature tensor �����
� , conformal 

curvature tensor ����
� , conharmonic curvature tensor ����

� , concircular curvature tensor ����
� , and �� −curvature tensor. 

The Riemannian curvature tensor was introduced by Riemann in 1854. The conformal curvature tensor ����
�  with 

another significant curvature tensor, finds extensive applications in differential geometry. 

The concept of the three-dimensional of Weyl’s space with recurrent curvature was studied and explored by [4, 11]. 

The analysis of generalized curvature tensors relies on the Berwald curvature tensor has been discussed by [9, 10]. 

Zafar and Musavvir [6, 26] studied on some properties of � −curvature tensor, Chagpar et al. [12] and Pokhariyal [21] 

introduced �� −Curvature tensor and some tensors with their relativistic significance, Ali and Salman [7] studied some 

properties of � −projective curvature tensor. The relationship between ����
�  and ����

�  in Berwald sense studied by [2].  

Berwald derivative (ℬ�) of any tensor  ��
�, w. r. t. �� is defined as [3, 13, 14, 17, 23] 
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(1.1)       ℬ���
� = ����

� − ���̇��
����

� + ��
����

� − ��
� ���

�  .                                                         

The vector �� and metric function � are vanished identically for Berwald’s covariant derivative 

(1.2)       a)   ℬ�� = 0        and                b) ℬ� �
� = 0. 

The metric tensor ��� is not equal to zero for Berwald’s covariant derivative [23] 

(1.3)       ℬ���� = � �׀���� 2−
� = −2 ��ℬ�����  .                                                                           

The quantities  ��� and  ���  are related by [1] 

(1.4)       a)  ��� �
�� = ��

� =  �
1   ,      ��      �= �       ,
0   ,      ��      �≠ �       .

�   and          b)   ��� �
� = ��.                       

The tensors  ����
�  and���

�  give the following identities [5] 

(1.5)       a)  ����
�  �� = ���

�  ,     b) ���
�  �� = ��

� , c) ���
� = ��  and      d) ��

� = (� − 1)� . 

The covariant derivative of some tensors are given by [8, 15] 

(1.6)       a)  ℬ���� = �����      and     b) ℬ���
� = 0 . 

Also 

(1.7)       a)ℬ���
���� = ����

� ���     ,                    b)  ℬ���� ��
� = ����� ��

�  , 

               c)  ℬ����
���� = �����

����  and          d)  ℬ����� = ������ . 

A large number of researchers have presented the following identities in their works [16, 19, 24, 25]              

(1.8)       a) ���� �
� = 0   ,  b)  ���� =

�

�
���̇��̇��̇�

��,   c)  ��̇ �
� = 1 ,   d)  ���

� = ��  ,              

               e) ��
��� = ��            and                            f)  ��̇ �� = ���  . 

The derivative for Berwald’s (ℬ�) of the tensors  ����
� , ���

�   and ��
�, w. r. t.  �� are defined as 

(1.9)       a)  ℬ�����
� = ������

�   ,      b)ℬ����
� = �����

�    and        c)  ℬ���
� = ����

� . 

      In this paper we investigate some identities between Weyl’s projective curvature tensor ����
�  and some others 

curvature tensors by using Berwald covariant derivative. We introduce the basic concepts of the curvature tensors and 

study the relationships between them. Finally, we apply this expansion and identities to get relationships between 

different curvature tensors and Weyl’s projective curvature tensor ����
� . 

 

II. PRELIMINARIES 

In this section, we discuss the relationship between Weyl’s projective curvature tensor and the following curvature 

tensors: 

 

Riemanniiancurvature tensor ����
�  

In the mathematical field of differential geometry, the Riemann curvature tensor is the most common way used to 

express the curvature of Riemannian manifold. It assigns a tensor to each point of a Riemannian manifold (i.e., it is a 

tensor field). It is a local invariant of Riemannian metrics which measures the failure of the second covariant 

derivatives to commute. A  Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the 

Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any 

manifold equipped with an affine connection. 

The Riemann curvature tensor is a tool used to describe the curvature of � −dimensional spaces such as Riemannian 

manifold in the field of differential geometry. The Riemann curvature tensor plays an important role in the theories of 

general relativity and gravity as well as the curvature of a spacetime. It is closely related to the Weyl’s projective 

curvature tensor.Weyl’s projective curvature tensor in terms of Riemannian curvature tensor ����
�  is defined as [26] 

(2.1)       ����
� = ����

� +
�

(���)
���

� ��� − ��
� ����. 

In (��,�), we have 

(2.2)       ����
� = ����

� −
�

�
���

� ��� − ��
� ����. 

The tensors  ����
�  and���

�  give the following identities  
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(2.3)       a)  ����
�  �� = ���

�  ,   b)  ���
�  �� = ��

�  ,    c)  ��
� �� = 0   and     d)��

�  = 0 .     

 

Projective curvature tensor  �������
�  

The �� −projective curvature tensor is a geometric object introduced in differential geometry. It generalizes the 

projective curvature tensor and the conharmonic curvature tensor. It has been studied in a variety of conte xts, 

including Riemannian geometry, Kähler geometry, and cosmology. The properties of an � −projective curvature 

tensor were proposed by Pokhariyal and Mishra [20] in 1970. This tensor is described as follows 

(2.4)       ��(�,�,�,�)= ��(�,�,�,�)−
�

�(���)
[�(�,�)�(�,�)− �(�,�)�(�,�)� 

+ �(�,�)�(�,�)− �(�,�)�(�,�)] , 

where  ��(�,�,�,�)= �(�(�,�)�,�)     and     ��(�,�,�,�)= �(�(�,�)�,�) . 

� is the Riemann curvature tensor, � is the Ricci tensor,  � is the metric tensor, � is the dimension of the manifold. The 

�� −projective curvature tensor has a number of interesting properties. For example, it is invariant under conformal 

transformations. This means that it is the same for two metrics that are conformally equivalent. The �� −projective 

curvature tensor also vanishes if and only if the manifold is Ricci-flat. 

The �� −projective curvature tensor has been used to study a variety of geometric problems. For example, it has been 

used to classify Riemannian manifolds to study the geometry of Kähler manifolds, and to develop new models of 

gravity. 

The local coordinates expression of equation (2.4) as follows 

(2.5)  ������ = ����� −
�

�(���)
������� − ������ + ������ − ������� .    

Assuming � = 4 and using (2.2) in equation (2.5), then contracting with ���, the � −projective curvature tensor is 

given by 

(2.6)  �����
� = ����

� −
�

�
���

� ��� + ��
� ��� − �����

� − �����
� � .       

 

Conformal curvature tensor  ����
�  

The conformal curvature tensor, also known as the Weyl’s conformal curvature tensor, is a geometric object introduced 

in differential geometry. It is a measure of the curvature of spacetime or, more generally, a pseudo-Riemannian 

manifold. Like the Riemann curvature tensor, the Weyl’s tensor expresses the tidal force that a body feels when moving 

along a geodesic. The Weyl’s tensor differs from the Riemann curvature tensor in that it does not convey information 

on how the volume of the body changes, but rather only how the shape of the body is distorted by the tidal force. 

 The conformal curvature tensor����
�  expressed as follows [22, 26] 

(2.7)       ����
� = ����

� −
�

�
���

� ��� − ��
���� + ��

� ��� − ��
� ����−

�

�
����

� ��� − ��
� ���� .   

Using (2.2) in equation (2.7), we get 

(2.8)����
� = ����

� −
�

�
���

���� − ��
� ����−

�

�
����

� ��� − ��
� ����+

�

�
(��

� ��� − ��
� ���) .   

 

Conharmonic curvature tensor  ����
�  

The conharmonic curvature tensor is a geometric object introduced in differential geometry. It generalizes the 

projective curvature tensor and conformal curvature tensor. It has been studied in a variety of contexts, including 

Riemannian geometry, Kähler geometry, and cosmology. 

 For  �� , the conharmonic curvature tensor����
� defined as [18] 

(2.9)    ����
� = ����

� −
�

�
������

� + ��
� ��� − ��

���� − �����
� �. 

Using (2.2) in equation (2.9), we get 

(2.10)����
� = ����

� +
�

�
���

� ��� − ��
� ����− 

�

�
���

� ��� − ��
� ����. 

 

 



IJARSCT  ISSN (Online) 2581-9429 

    

 

       International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

                               International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 4, Issue 1, December 2024 

Copyright to IJARSCT DOI: 10.48175/IJARSCT-22612   71 

www.ijarsct.co.in  

Impact Factor: 7.53 

Concircular curvature tensor����
�  

The concircular curvature tensor is a geometric object introduced in differential geometry. It is a measure of the 

curvature of spacetime or, more generally, a pseudo-Riemannian manifold. It is closely related to the conformal 

curvature tensor (also known as the Weyl’s curvature tensor) and the projective curvature tensor. The concircular 

curvature tensor vanishes if and only if the manifold is concircularly flat. 

For  �� , the concircular curvature tensor  ����
� , is defined as [11] 

(2.11)     ����
� = ����

� −
�

��
�������

� − �����
� � . 

Using (2.2) in equation (2.11),we get 

(2.12)     ����
� = ����

� −
�

��
�������

� − �����
� �−

�

�
���

� ��� − ��
� ����  . 

 

�� − Curvature tensor 

The �1 −curvature tensor is a geometric object introduced in differential geometry. It is a measure of the curvature of 

spacetime or, more generally, a pseudo-Riemannian manifold. It is closely related to the Ricci curvature tensor and the 

scalar curvature. The �1−curvature tensor vanishes if and only if the manifold is Ricci-flat and has constant scalar 

curvature. The tensor ��(�,�,�,�) has been defined as [12] 

(2.13)     ��(�,�,�,�)= �(�,�,�,�)+
�

�(���)
[ �(�,�)���(�,�)− �(�,�)���(�,�) 

−�(�,�)���(�,�)+ �(�,�)���(�,�)] .     

The �� −curvature tensor in the index notation as [12] 

(2.14)     ������ = ����� +
�

�(���)
������� − ������− ������ + ������� . 

This can be written as 

(2.15)     �����
� = ����

� +
�

�(���)
������

� − �����
� − ��

� ��� + ��
� ���� . 

In (��,�), using (2.2) in equation (2.15), we get 

(2.16)     �����
� = ����

� +
�

�
���

� ��� − �����
� � −

�

�
���

� ��� − �����
� �.     

 

III. EXTENSION GENERALIZED RECURRENT FINSLER SPACES FOR VARIOUS CURVATURES 

TENSORS 

The expansion derivative for Berwald of any curvature tensor is closely related to the Riemann curvature tensor and the 

Berwald curvature tensor. It vanishes if and only if the Finsler manifold is flat. We introduced the generalized by 

Berwald covariant derivative ℬ� for any tensor ����
�  that was given by [11] 

(3.1)       ℬ�����
� = ������

� + �����
� ��� − ��

� ���� .     

We can write (3.1) by the follows form 

ℬ�����
� = ������

� + �����
� ��� − ��

� ����+ ���
�(0)−��

�(0)�.      

From (1.8a), the above equation can be written as 

(3.2)       ℬ�����
� = ������

� + �����
� ��� − ��

� ����+ ���
������

� − ��
������

�� .       

Using (1.8b) in (3.2), we get  

(3.3)       ℬ�����
� = ������

� + �����
� ��� − ��

� ����+
�

�
���

���̇��̇��̇ �
��� −��

���̇��̇��̇�
����. 

Applying (1.8c) in (3.3), we get 

ℬ�����
� = ������

� + �����
� ��� − ��

� ����+
1

4
���

���̇��̇�
� −��

���̇��̇�
�� .     

From (1.8d) the above equation can be written as 

(3.4)        ℬ�����
� = ������

� + �����
� ��� − ��

� ����+
�

�
���

���̇��̇�
��� −��

���̇��̇�
��� � .   

Applying (1.8c) again in (3.4), we get 

ℬ�����
� = ������

� + �����
� ��� − ��

� ����+
1

4
���

���̇�� − ��
���̇��� .  
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From (1.8f), we have 

(3.5)       ℬ�����
� = ������

� + �����
� ��� − ��

� ����+
�

�
���

���� −��
����� .     

From the previous steps, we can conclude the following theorem 

 

Theorem 3.1. The expansion of (1.9a) is given by (3.5). 

The dimensionality of Berwald derivative for many curvatures tensors operators will be extended in accordance with 

theorem 3.1. Mathematical identities are equations that are always true, regardless of the values of the variables 

involved. They can be used to simplify expressions, solve equations, and prove theorems. we investigated the expansion 

of Berwald covariant derivative for any curvature tensor that was given in (3.5), i.e. 

(3.6)       ℬ�����
� = ������

� + �����
� ��� − ��

� ����+
�

�
���

���� −��
����� .  

Suppose that (3.6) holds to investigate the following identities.  By taking Berwald covariant derivative for (2.2), we 

have  

(3.7)        ℬ�����
� = ℬ�����

� −
�

�
ℬ����

���� − ��
� ����  .      

From (1.7a), (1.7b), (3.6) and (3.7), we get 

(3.8)        ℬ�����
� = �� �����

� −
�

�
���

� ��� − ��
� ����� + �����

� ��� − ��
� ����+

�

�
���

���� −��
�����. 

By using (2.2) in (3.8), we have 

(3.9)       ℬ�����
� = ������

� + �����
� ��� − ��

� ����+
�

�
���

���� −��
�����. 

From the previous steps, we can conclude the following  

 

Theorem 3.2. The expansion derivative for Berwald of Riemannian curvature tensor ����
�  in (2.2) satisfies the equation 

(3.9). 

Take Berwald covariant derivative for (2.6), we have 

(3.10)    ℬ������
� = ℬ�����

� −
�

�
ℬ����

���� + ��
� ��� − �����

� − �����
� � .     

From (1.7a), (1.7b), (3.6) and (3.10), we get 

ℬ������
� = ������

� + �����
� ��� − ��

� ����+
1

4
���

���� −��
����� 

 −
�

�
�����

���� + ��
� ��� − �����

� − �����
� �. 

Above equation can be written as 

(3.11)     ℬ������
� = �� �����

� −
�

�
���

� ��� + ��
� ��� − �����

� − �����
� �� 

+  �����
� ��� − ��

� ����+
1

4
���

���� −��
�����.  

From (2.6) and (3.11), we have 

(3.12)     ℬ������
� = �������

� + �����
� ��� − ��

� ����+
�

�
���

���� −��
�����.  

So,we can say 

Theorem 3.3. The expansion derivative for Berwald of projective curvature tensor  �����
�  in (2.6) satisfies the equation 

(3.12). 

Take Berwald covariant derivative for (2.8), we have 

(3.13)     ℬ�����
� = ℬ�����

� −
�

�
ℬ����

���� − ��
� ����−

�

�
ℬ�����

� ��� − ��
� ���� 

+
1

2
ℬ�(��

� ��� − ��
� ���) .   

From (1.7a), (1.7b), (1.7d), (3.6) and (3.13), we get 

ℬ�����
� = ������

� + �����
� ��� − ��

� ����+
1

4
���

���� − ��
����� +

1

2
�����

���� − ��
� ���� 

−
�

�
�����

���� − ��
� ����−

�

�
������

� ��� − ��
� ���� . 
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Or 

(3.14)     ℬ�����
� = ��[����

� −
�

�
���

� ��� − ��
� ����−

�

�
����

� ��� − ��
� ����+

�

�
���

� ��� − ��
� ����] 

 + �����
���� − ��

�����+
1

4
���

���� −��
�����  . 

By using (2.8) in (3.14), we have 

(3.15)     ℬ�����
� = ������

� + �����
���� − ��

�����+
�

�
���

���� −��
�����  . 

In conclusion, we can determine 

 

Theorem 3.4. The expansion derivative for Berwald of conformal curvature tensor����
�  in (2.8) satisfies the equation 

(3.15). 

Take Berwald covariant derivative for (2.10), we have 

(3.16)     ℬ�����
� = ℬ�����

� +
�

�
ℬ����

���� − ��
� ����−

�

�
ℬ�(��

� ��� − ��
� ���) . 

From (1.7a), (1.7b), (3.6) and (3.16), we get 

ℬ�����
� = ������

� + �����
� ��� − ��

� ����+
1

4
���

���� −��
����� 

+
�

�
�����

���� − ��
� ����− 

�

�
��(��

���� − ��
� ���).  

Or  

(3.17)    ℬ�����
� = �� �����

� +
�

�
���

� ��� − ��
� ����−

�

�
(��

� ��� − ��
� ���)� 

+  �����
� ��� − ��

� ����+
1

4
���

���� −��
�����.  

From (2.10) and (3.17), we get 

(3.18)     ℬ�����
� = ������

� + �����
� ��� − ��

� ����+
�

�
���

���� −��
���� � . 

Thus, we get 

 

Theorem 3.5. The expansion derivative for Berwald of Conharmonic curvature tensor����
� in (2.10) satisfies the 

equation (3.18). 

Take Berwald covariant derivative for (2.12), we have  

(3.19)     ℬ�����
� = ℬ�����

� −
�

��
ℬ��������

� − �����
� �−

�

�
ℬ����

���� − ��
� ���� . 

From (1.7a), (1.7b), (1.7d), (3.6) and (3.19), we get 

ℬ�����
� = ������

� + �����
� ��� − ��

� ����+
1

4
���

���� −��
����� 

−
�

��
���������

� − �����
� �−

�

�
�����

���� − ��
� ����.  

Or 

(3.20)    ℬ�����
� = �� �����

� −
�

��
�������

� − �����
� �−

�

�
���

� ��� − ��
� ����� 

+�����
� ��� − ��

� ����+
1

4
���

���� − ��
����� . 

From (2.12) and (3.20), we have 

(3.21)     ℬ�����
� = ������

� + �����
� ��� − ��

� ����+
�

�
���

���� −��
�����.   

In conclusion, we can determine 

 

Theorem 3.6. The expansion derivative for Berwald of concircular curvature tensor����
�  in (2.12) satisfies the equation 

(3.21). 

Take Berwald covariant derivative for (2.16), we have 

(3.22)     ℬ������
� = ℬ�����

� +
�

�
ℬ����

� ��� − �����
� � −

�

�
ℬ����

� ��� − �����
� � .  
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From (1.7a), (1.7b), (3.6) and (3.22), we get 

ℬ������
� = ������

� + �����
� ��� − ��

� ����+
1

4
� ��

���� − ��
����� 

+
�

�
�����

� ��� − �����
� � −

�

�
�����

� ��� − �����
� � . 

Or  

(3.23)     ℬ������
� = �� �����

� +
�

�
���

� ��� − �����
� � −

�

�
���

� ��� − �����
� �� 

+  �����
� ��� − ��

� ����+
1

4
���

���� −��
����� . 

By using (2.16) in (3.23), we have 

(3.24)     ℬ������
� = �������

� + �����
� ��� − ��

� ����+
�

�
���

���� −��
����� .    

The proof of theorem is completed, we conclude 

 

Theorem 3.7. The expansion derivative for Berwald of �1 −curvature tensor �����
�  in (2.16) satisfies the equation 

(3.24). 

      Transvecting (3.9) by ��, using (1.2b), (1.5a) and (1.4b), we get 

(3.25)     ℬ����
� = �����

� + �����
� �� − ��

� ���+
�

�
���

��� −��
����. 

Again, transvecting (3.25) by  �� , using (1.2b), (1.5b), (2.3b), (2.3c), (1.8d) and (1.8e), we get 

(3.26)     ℬ���
� = ����

� + �����
� ��− �� ���+

�

�
��

���. 

      Transvecting (3.6) by ��, using (1.2b), (2.3a) and (1.4b), we get 

(3.27)     ℬ����
� = �����

� + �����
� �� − ��

� ���+
�

�
���

��� −��
����. 

Again, transvecting (3.27) by  �� , using (1.2b), (2.3b), (2.3c), (1,8d) and (1.8e), we get 

(3.28)     ℬ���
� = ����

� + ����
� �� − ��

� ���+
�

�
�� 

� ��. 

Contracting the indices � and ℎ in the equations (3.25) and (3.26), respectively and using (1.4a), (1.4b), (1.8d), (1.8e), 

(1.5c), (1.5d) and (2.3d), we get 

(3.29)     ℬ��� = ��H� + ��(� − 1)�� −
�

�
��

��� 

and 

(3.30)     ℬ�� = ��� + ��(� − 1)��. 

Therefore, we can say 

Corollary 3.1. In covariant derivative for Berwald of first order for���
�  , ��

� , ���
�  , ��

� ,  ��and � are given by 

(3.25), (3.26), (3.27), (3.28), (3.29) and (3.30), respectively. 

 

IV. CONCLUSION 

The study of hyper-generalized recurrent Finsler structures has opened up new avenues of research in Finsler geometry. 

We obtained the relationships between the expansion identities for curvature tensors and other geometric invariants. We 

give the relationships between Weyl’s projective curvature tensor and some others curvature tensors.Further, our 

findings have the potential to inspire further investigations into the geometric properties of these structures and their 

connections to other areas of mathematics and physics. By providing a solid foundation for future research, this work 

aims to stimulate further advancements in the field.  The decomposition we have introduced offers a new perspective on 

the geometric significance of curvature tensors and opens up new avenues for further research.  
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