

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

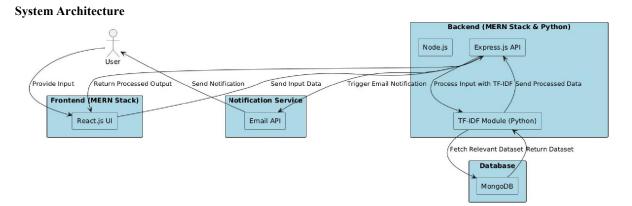
International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 4, November 2024

# **Online Abusive Attack Prevention**

Prof. C. S. Jaybhaye, Manish More ,Shreyash Mandalik ,Yogita Tarade, Prachi Thakare Smt. Kashibai Navale College of Engineering, Pune, Maharashtra, India

**Abstract:** Our website, "Online Abusive Attack Prevention," is designed to create a safer and more respectful online environment. By leveraging advanced word processing, tokenization techniques, and realtime data analysis, our platform effectively detects and prevents abusive language in online interactions. Built using the MERN stack for the frontend and Python for modular design, the system is both robust and scalable.


Keywords: Attack Prevention

## I. INTRODUCTION

### **Problem Statement**

• Designing an effective and efficient system to detect and prevent online abusive attacks, with a focus on accuracy, real-time processing, and user notifications.

• Our website, "Online Abusive Attack Prevention," is designed to create a safer and more respectful online environment. By leveraging advanced word processing, tokenization techniques, and real-time data analysis, our platform effectively detects and prevents abusive language in online interactions. Built using the MERN stack for the frontend and Python for modular design, the system is both robust and scalable. With a target accuracy of over 90%, our solution not only identifies harmful content but also integrates Email API notifications to alert users and administrators, ensuring proactive management of online safety.



## **II. LITERATURE SURVEY**

| Sr.                                       | Title               | Author(s)           | Journal &        | Algorithm   | Summary                            |
|-------------------------------------------|---------------------|---------------------|------------------|-------------|------------------------------------|
|                                           |                     |                     | Published Year   | Used        |                                    |
| 1                                         | Emotionally         | Patricia Chiril,    |                  |             | This study tackles hate speech     |
|                                           | Informed Hate       | Endang Wahyu        | 2021             |             | detection from a multi-target      |
|                                           | Speech Detection: A | Pamungkas, Farah    |                  |             | perspective, exploring models that |
|                                           | Multi-target        | Benamara,           |                  | Neural      | detect both topics and hate speech |
|                                           | Perspective         | Véronique Moriceau, |                  | Models,     | targets. It emphasizes the         |
|                                           |                     | Viviana Patti       |                  | Multi- task | importance of affective            |
|                                           |                     |                     |                  | Learning    | knowledge in finer-grained         |
|                                           |                     | STILL MANAGER       |                  |             | detection.                         |
| Copyright to IJARSCT<br>www.ijarsct.co.in |                     | 9001:2015 DC        | DI: 10.48175/568 | <u>.</u>    | 155N<br>2581-9429<br>IJARSCT 343   |



International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

#### Volume 4, Issue 4, November 2024

| 2 | Hate Speech<br>Classification Using<br>SVM and Naive<br>Bayes                                                           |                                                                                                                                    | IOSRJournalofMobileComputing&Application,2022 | SVM,<br>Naive<br>Bayes                                               | The paper proposes SVM and<br>Naive Bayes for automatic hate<br>speech detection, achieving high<br>accuracy for SVM (99%) and<br>moderate accuracy for Naive<br>Bayes (50%).                                                                                                                                                         |
|---|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | A survey on hate<br>speech detection and<br>sentiment analysis<br>using machine<br>learning and deep<br>learning models | Malliga<br>Subramanian,<br>Veerappampalayam<br>Easwaramoorthy<br>Sathiskumar, G.<br>Deepalakshmi,<br>Jaehyuk Cho, G.<br>Manikandan | Alexandria<br>Engineering<br>Journal, 2023    | Machine<br>learning,<br>Deep<br>learning<br>models                   | The article offers a brief<br>overview of recent advancements<br>in hate speech detection and<br>sentiment analysis, focusing on<br>methodologies, challenges, and<br>future research opportunities in<br>machine learning and deep<br>learning.                                                                                      |
| 4 | Explainable Hate<br>Speech Detection<br>with Step-by-Step<br>Reasoning                                                  | Yongjin Yang,<br>Joonkee Kim, Yujin<br>Kim, Namgyu Ho,<br>James Thorne, Se-<br>young Yun                                           | KAIST, 2023                                   | HARE<br>Framework                                                    | The paper introduces the HARE<br>framework, which improves hate<br>speech detection by using large<br>language models to enhance<br>explanation quality and model<br>generalization.                                                                                                                                                  |
| 5 | Hate Speech<br>Detection with<br>Generalizable<br>Target-aware<br>Fairness                                              | Tong Chen, Danny<br>Wang, Xurong<br>Liang, Marten<br>Risius, Gianluca<br>Demartini, Hongzhi<br>Yin                                 | The University<br>of Queensland,<br>2023      | GetFair                                                              | This study proposes GetFair, a<br>method for fair hate speech<br>detection across diverse and<br>unseen targets, using a series of<br>adversarially trained filter<br>functions and hypernetworks.                                                                                                                                    |
| 6 | An Interpretable<br>Approach to Hateful<br>Meme Detection                                                               | Tanvi Deshpande,<br>Nitya Mani                                                                                                     | ACM, 2021                                     | Gradient-<br>Boosted<br>Decision<br>Tree,<br>LSTM-<br>based<br>model | This study focuses on detecting<br>hateful memes by using<br>interpretable machine learning<br>models, such as a gradient-<br>boosted decision tree and an<br>LSTM- based model. The models<br>achieve comparable performance<br>to state-of- the-art transformer<br>models and human classification<br>in identifying hateful memes. |
| 7 | Combining FastText<br>and Glove Word<br>Embedding for<br>Offensive and Hate<br>Speech Text<br>Detection                 | Nabil Badria,<br>Ferihane Kboubia,<br>Anja Habacha<br>Chaibia                                                                      | Elsevier,<br>2022                             | BiGRU,<br>Glove,<br>FastText                                         | This paper introduces a method<br>that combines Glove and<br>FastText word embeddings with a<br>BiGRU model for detecting<br>offensive and hate speech in<br>social media texts. The model<br>achieved high performance<br>metrics on the OLID dataset, with<br>accuracy, precision, recall, and<br>F1-score all exceeding 84%.       |
|   | A Systematic                                                                                                            | Md Saroar Jahan,                                                                                                                   | Elsevier,                                     | Various                                                              | The paper provides a systematic                                                                                                                                                                                                                                                                                                       |
|   | Review of Hate                                                                                                          | Maurad Qussalah                                                                                                                    | 2023                                          | NLP and                                                              | review of hate speech detection                                                                                                                                                                                                                                                                                                       |

Copyright to IJARSCT www.ijarsct.co.in







International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 4, November 2024

| 8  | Speech Automatic    |                     |               | Deep       | using NLP and deep learning          |
|----|---------------------|---------------------|---------------|------------|--------------------------------------|
|    | Detection Using     |                     |               | Learning   | technologies. It highlights the      |
|    | Natural Language    |                     |               | Models     | processing pipelines, core           |
|    | Processing          |                     |               |            | methods, and deep learning           |
|    | 0                   |                     |               |            | architectures, and discusses the     |
|    |                     |                     |               |            | limitations and future research      |
|    |                     |                     |               |            | directions in this field.            |
| 9  |                     |                     |               |            | This study examines the              |
|    |                     |                     |               |            | challenges of hate speech            |
|    |                     | Sean MacAvaney,     | Information   |            | detection, including language        |
|    | Hate Speech         | Hao-Ren Yao,        | Retrieval     |            | subtleties, definitional issues, and |
|    | Detection:          | Eugene Yang, Katina | Laboratory,   | Multi-view | data limitations. It proposes a      |
|    | Challenges and      | Russell, Nazli      | Georgetown    | SVM        | multi-view SVM approach that         |
|    | Solutions           | Goharian, Ophir     | University,   |            | offers high performance while        |
|    |                     | Frieder             | 2019          |            | being interpretable, unlike many     |
|    |                     |                     |               |            | neural methods.                      |
| 10 |                     |                     |               |            | This literature review surveys       |
|    |                     |                     |               |            | textual hate speech detection        |
|    | A Literature Review |                     |               |            | methods and datasets. It             |
|    | of Textual Hate     |                     |               | Various    | highlights the primary datasets,     |
|    | Speech Detection    | Fatimah Alkomah,    | University of | Machine    | textual features, and machine        |
|    | Methods and         | Xiaogang Ma         | Idaho, 2022   | Learning   | learning models used in the field.   |
|    | Datasets            |                     |               | Models     | The study emphasizes the             |
|    |                     |                     |               |            | challenges with small and            |
|    |                     |                     |               |            | inconsistent datasets and calls for  |
|    |                     |                     |               |            | more robust research in this area.   |







International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

## Volume 4, Issue 4, November 2024

| Gap | Ana | lvsis |
|-----|-----|-------|
| Gup |     | , 515 |

| Feature/Aspect          | Existing Systems                                                                 | Proposed System                                                                     |
|-------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Technology Stack        | Various stacks, typically not unified across frontend and backend.               | MERN stack for a unified frontend (React) and backend (Node.js) development.        |
| Modeling<br>Language    | Predominantly Python or R, focusing on NLP models.                               | Python for model development, specifically for word processing and tokenization.    |
| Data Sources            | Typically rely on pre-existing datasets, some not updated regularly.             | Combines Kaggle datasets with real-time data collection for more up-to-date models. |
| Accuracy                | Varies, often between 70%-85% for hate speech detection.                         | Aims to achieve an accuracy of more than 90% through advanced tokenization and NLP. |
| User Interface<br>(UI)  | May not focus heavily on user<br>experience, varies widely in design<br>quality. | Intuitive and responsive UI developed with MERN stack for better user engagement.   |
| Real-time<br>Processing | Limited or non-existent in many existing systems.                                | Integrates real-time processing for up-to-date abusive attack prevention.           |
| Notification<br>System  | Some systems have basic alerts or none at all.                                   | Integrated Email API for real-time notifications,<br>enhancing user awareness.      |
| Input & Output          | Often text-based with limited feedback.                                          | Takes text input and provides detailed output, including notifications.             |

## **Requirement Analysis**

| Requirement                 | Details                                                                                                              |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------|
| Functional Requirements     | <ul> <li>Accurate content recommendation</li> <li>Real-time data integration</li> <li>Email notifications</li> </ul> |
| Non-Functional Requirements | <ul> <li>High accuracy (over 90%)</li> <li>User-friendly interface</li> <li>Scalability and reliability</li> </ul>   |
| Technological Requirements  | <ul> <li>MERN stack for UI</li> <li>Python for model development</li> <li>Kaggle datasets and APIs</li> </ul>        |







International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

### Volume 4, Issue 4, November 2024

## III. METHODOLOGY

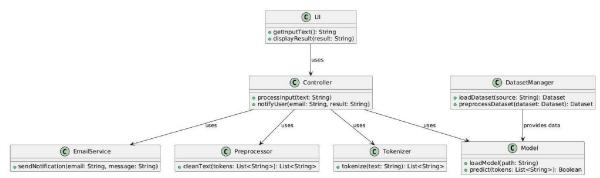
- Research Phase: Study of existing algorithms and identification of optimal NLP, TF & IDF techniques.
- Design Phase: Designing system architecture, selecting datasets, and planning the UI/UX using MERN stack.
- Development Phase: Implementation of the algorithm using Python, data processing, integration of real-time data, and UI development.
- Testing Phase: Validation of system accuracy, user testing, and integration of Email API.
- Deployment Phase: Final system deployment and user feedback loop for continuous improvement.

## Algorithms and Project Features

- Algorithms: Content-Based Filtering: Based on NLP, word processing, and tokenization. Email API Integration: For sending personalized content notifications.
- Project Features: High Accuracy: Targeting above 90%.Real-time Data Processing: Integration with real-time data sources. User-Friendly Interface: Developed using MERN stack. Scalability: System designed to handle large volumes of data.

## **Basic details of Implementation**

## **Development Tools:**


- UI: MERN stack (MongoDB, Express.js, React.js, Node.js). Modeling: Python (with NLP libraries like NLTK or SpaCy). Datasets: Kaggle datasets and real-time data sources.
- Notification System: Email API integration.

## **Implementation Steps:**

- Step 1: Data collection and preprocessing. Step 2: Developing and testing the NLP model.
- Step 3: UI design and integration with the backend.
- Step 4: Real-time data integration and testing.
- Step 5: Final deployment and monitoring.

## **Project Design**

Class

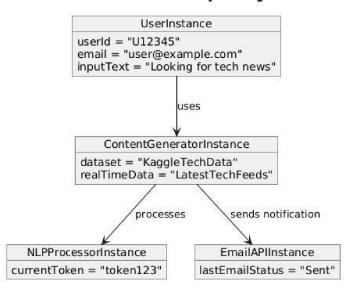






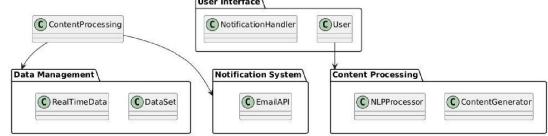


International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

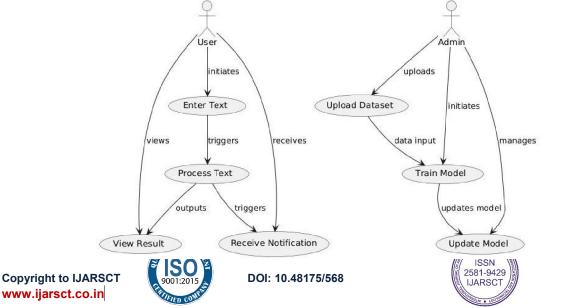

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

#### Volume 4, Issue 4, November 2024

IJARSCT


**Object Diagram** 

#### online abusive detect - Object Diagram




Package Diagram

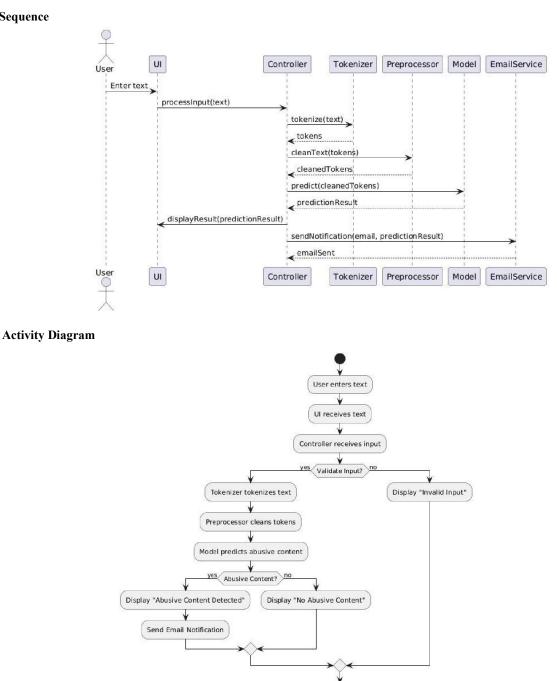
Online Abusive detection - Package Diagram







348




International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

### Volume 4, Issue 4, November 2024





### **IV. SOFTWARE AND HARDWARE REQUIREMENTS**

## Software:

- 1. MERN stack for UI development
- 2. Python for backend processing
- 3. Email API for notifications

**Copyright to IJARSCT** www.ijarsct.co.in

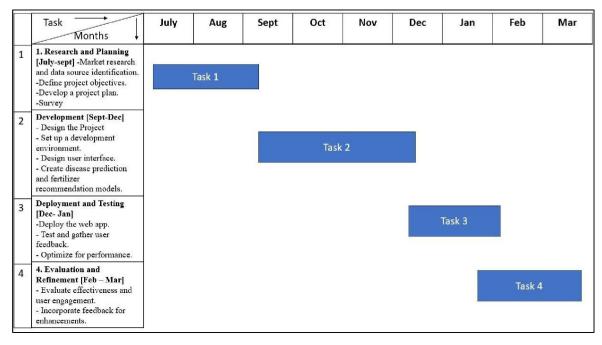


DOI: 10.48175/568





International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)


International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

### Volume 4, Issue 4, November 2024

## Hardware:

1. Standard development machine with internet connectivity.

## **Project Timeline**



## Motivation

1. Growing Online Threats : With the rise of digital abuse, our system provides a crucial solution to detect and prevent harmful language.

2. Advanced Technology : Utilizing cutting-edge word processing and tokenization, we empower users to combat online abuse effectively.

3. Immediate Response : Real-time analysis and notifications ensure prompt action against abusive behavior, protecting users.

4. Scalable Solution : Built with the MERN stack and Python, our system is robust and adaptable to various online environments.

5. Dedication to Safety : We are committed to fostering a safer online space, continuously enhancing our system for maximum impact.

## V. CONCLUSION

• "Online Abusive Attack Prevention" stands as a powerful tool in the fight against online abuse. By integrating advanced word processing and real-time data analysis, our system effectively detects and mitigates harmful language, ensuring a safer and more respectful digital environment. Built on a scalable and robust architecture using the MERN stack and Python, our platform is designed to adapt and evolve with the ever-changing landscape of online interactions. With a commitment to accuracy and proactive protection, we empower users and administrators to take control of online safety, fostering positive and constructive communities.

## REFERENCES

Emotionally Informed Hate Speech Detection: A Multi- target Perspective by Patricia Chiril et al. at Springer.
 Hate Speech Classification Using SVM and Naive Bayes by IOSR Journal of Mobile Computing & Application.

Copyright to IJARSCT www.ijarsct.co.in



DOI: 10.48175/568





International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

### Volume 4, Issue 4, November 2024

[3] A survey on hate speech detection and sentiment analysis using machine learning and deep learning models by Malliga Subramanian et al. at Alexandria Engineering Journal.

[4] HARE: Explainable Hate Speech Detection with Step-by- Step Reasoning by Yongjin Yang et al. at KAIST.

[5] Hate Speech Detection with Generalizable Target-aware Fairness by Tong Chen et al. at The University of Queensland.



DOI: 10.48175/568

