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Abstract: This paper provides an in-depth analysis of the present state of Deep Reinforcement Learning 

(DRL) applications in Unmanned Underwater Vehicles (UUVs). Addressing the persistent challenges 

related to data inefficiency and performance degradation in physical platforms, particularly when faced 

with unforeseen variations, the paper introduces the innovative Biologically-Inspired Experience Replay 

(BIER) method. This approach incorporates two distinct memory buffers to enhance learning efficiency. 

The paper assesses the generalization capabilities of BIER through training neural network controllers on 

diverse tasks, spanning from inverted pendulum stabilization to simulating half-cheetah running. 

Furthermore, BIER is integrated with the Soft Actor-Critic (SAC) method for UUV stabilization under 

unknown environmental dynamics. Evaluation in a ROS-based UUV simulator, incorporating increasingly 

complex scenarios, showcases BIER's superior performance over traditional Experience Replay (ER) 

methods, achieving optimal UUV control in half the time. This review contributes valuable insights into the 

challenges and advancements in applying DRL methods to UUVs, highlighting the BIER method's 

promising potential to improve adaptability and efficiency in UUV manoeuvring tasks, leading to more 

robust and agile underwater vehicle control systems for more robust and agile underwater vehicle control 

systems. .   
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I. INTRODUCTION 

This study addresses the conventional limitation of Unmanned Underwater Vehicle (UUV) autopilots, which 

predominantly rely on velocity and orientation sensors to compensate for disturbances induced by waves and currents. 

Current UUV autopilots effectively handle low-frequency components of sea-induced disturbances, but their 

performance can be enhanced by considering the nature of these disturbances in the autopilot design. The proposed 

approach leverages adaptive control within the framework of learning-based methods, where machine learning algorithms 

address the unknown or unmodeled aspects of a process, complementing traditional control methods that manage the 

known part. Disturbances in the UUV environment, such as marine currents, are treated as the unknown component, 

while the known component corresponds to the vehicle's maneuverability in the absence of disturbances. The paper 

presents the innovative Bio-Inspired Replay (BIER) method, which integrates principles from the biological replay 

mechanism into Deep Reinforcement Learning (DRL) algorithms. BIER extends the traditional Experience Replay (ER) 

strategy by introducing two new buffers: the sequential partial memory, utilizing incomplete state-action pair sequences 

to train the algorithm with an emphasis on recent policies, and the optimistic memory, highlighting positive reinforcement 

by increasing the probability of transitions associated with high-reward regions during ER training. 

 

II. LEARNING-BASED ADAPTIVE CONTROL 

In the realm of learning-based adaptive controllers for non-linear systems with uncertainties, model-free algorithms 

address the lack of a complete process model. These algorithms, including Deep Reinforcement Learning (DRL) 

methods, approximate unknown parts of the model, while classical model-based control efficiently handles known 

components. DRL, defined as a Markov Decision Process, involves an agent interacting with an environment to maximize 
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rewards through deep neural networks approximating states and actions. Deep Policy Gradient (DPG) algorithms, 

particularly the Soft Actor-Critic (SAC) method, have proven effective in adapting control parameters for robotic tasks. 

The learning process involves action selection, reward receipt, and value updates based on the learned policy. Experience 

Replay (ER) mechanisms, proposed in this work, aim to mitigate distribution shift issues, enhancing the performance of 

DPG methods sensitive to such challenges. 

 

III. EXPERIENCE REPLAY (ER) 

The general Experience Replay (ER) method involves storing an agent's experiences in a replay buffer, from which 

mini-batches are randomly sampled to train Artificial Neural Networks (ANNs) approximating the optimal policy. Key 

parameters impacting ER performance include buffer size, age of a transition, and replay ratio. To address issues with 

buffer size, the Combined Experience Replay (CER) method adds the latest transition to the mini-batch, but it may lead 

to performance drops. This paper introduces a novel ER mechanism aiming to decouple agent performance from 

process complexity, resolving CER related issues. Insights from recent analysis suggest that increasing replay capacity 

and buffer size with fixed replay ratio enhance learning by reducing overfitting. The proposed mechanism incorporates 

biological experience replay principles, considering temporally structured replay, reward modulation, and selective 

replay weighted by novelty. This novel ER mechanism integrates biological insights while addressing constraints related 

to the regression problem.   

  

IV. UUV MANOEUVRING CONTROL 

Discussion and Future Direction: 

This study focuses on the control of Unmanned Underwater Vehicle (UUV) maneuvering tasks, specifically stabilizing 

the vehicle at a fixed velocity and orientation. The state vector, denoted as x, comprises position (xyz) and orientation 

angles (ϕ, θ, ψ). The fully actuated UUV is exposed to external disturbances, including first-order current- induced 

forces (zeromean oscillatory motions) and second-order wave-induced forces (nonzero varying components), assumed 

non-observable. The dynamics involve both known (f1) and unknown (f2) components. 

The control objective aims to steer the UUV to maintain the error signals (difference between present and desired 

states) within a specific threshold (χ) over a defined period, ensuring vehicle stabilization. This is expressed as the 

condition ∀ t' ∈ [t - ς, t], ∄ i ∈ Ru (control inputs), such that |ei(t')| > χ. Here, t is the current time step, and ς is the time 

period during which all errors ei remain below a small threshold χ. 

The experimental platform used is the RexROV2, a cubic-shaped UUV detailed in [13], serving as the physical model 

for the model-based part of the controller. 
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A Bio-Inspired Experience Replay (BIER):   

In the presented Biologically-Inspired Experience Replay (BIER) method, two separate memory units are considered: 

the sequential-partial memory (B1), responsible for storing incomplete temporal sequences, and the optimistic memory 

(B2), which prioritizes high reward transitions based on the current policy. As depicted in Figure 2, BIER capitalizes on 

the robustness of on-policy sampling while retaining the effectiveness of data obtained through the off-policy 

formulation. 

 

The Biologically-Inspired Experience Replay (BIER) method introduces two memory units: the sequential- partial 

memory (B1) for storing temporally correlated transitions and the optimistic memory (B2) emphasizing high- reward 

transitions. B1's maximum size is set to 1,000,000 items, sampled with a 1:2 transition ratio for regularization. B2 stores 

outliers of the reward distribution, considering a transition as an outlier if its reward surpasses the expected future 

rewards. B2's maximum size is 10,000, focusing on current best transitions. A mini-batch is constructed from both 

memory units. The objective is to use Soft Actor-Critic (SAC) for UUV control, and results are referred to as 

PID+BIER. Contrasting with Combined Experience Replay (CER) referred to as PID+CER, and the baseline results, 

PID, involve off-the-shelf PID controllers in UUV simulations. 

 

V. CONCLUSION 

This study addresses challenges in controlling autonomous underwater vehicles (UUVs) under extreme conditions by 

integrating classical control with advanced machine learning. The approach combines classical control for the known 

part of the UUV's process with the SAC algorithm, a deep reinforcement learning method, for learning the unknown 

part representing environmental disturbances. The novel Biologically Inspired Experience Replay (BIER) method 

enhances SAC, demonstrating faster adaptability and improved stability in simulated complex environments. The 

computational efficiency of DRL suggests potential real-world application on standard onboard processors. This 

adaptive control method, blending classical control robustness with learning-based adaptability, holds promise for 

advancing UUV applications. Future work will explore its generalization to diverse vehicles and environmental 

conditions. 
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