
IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, August 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-19324 171

www.ijarsct.co.in

Impact Factor: 7.53

A Review on Comparative Study on Two

Algorithms of Data De-duplication
Priyanka S T1, Pradeep Nayak2, Punnyashree K N3, Ranjitha M4, Ravi Kumar5

Department of Information science and Engineering1-5

Alva's Institute of Engineering and Technology, Mijar, Karnataka, India

priyankatotager@gmail.com , pradeep@aiet.org.in,

punnyashreekn@gmail.com, metiranjitha@gmail.com, grk462433@gmail.com

Abstract: The process of identifying and eliminating duplicate data copies in order to improve speed and free

up storage space is known as deduplication. In deduplication, duplicates are replaced by references to the

one instance of each unique piece of information that was originally stored. This is especially helpful for

backup systems, which frequently store numerous copies of the same data. It saves expenses, minimizes the

quantity of storage required, and enhances data management. Conversely, deduplication improves

performance by reducing footprint sizes and the amount of data processed or sent [1][2].

 

Keywords: Deduplication, Data Reduction, Storage Optimization, and Backup Systems

I. INTRODUCTION

Deduplication means the removal of replicated data, such that there remains only one single instance of each unique

piece of information. This is realized by identification of duplicate files or data blocks and replacing all copies with

references to the original. Put differently, deduplication aids in the simplification of storage systems, especially when

large volumes of files need to be transmitted or preserved [3]. This results in overall performance gains and a large

reduction in storage needs, which speeds up and lowers the cost of operations. Data is divided into smaller parts (often

chunks or segments) by deduplication, and these parts are uniquely identified by use of a cryptographic technique known

as hashing. The system compares these identifiers to those that are currently being tracked as new data is ingested.The

fresh chunk is referred instead of being kept as a duplicate if a match is discovered. This procedure can be effectively

controlled with finer granularity and implemented at many levels, such as file or block [4][5]. Reduced storage

expenses, quicker data transfers during backups and restorations, and enhanced system performance are all results of

successful deduplication [6]. Because of this, deduplication is an essential technique for contemporary cloud computing

settings, assisting businesses in managing their data growth in an inexpensive and sustainable manner [7][8].

II. NEED FOR DEDUPLICATION

1. Storage Efficiency: By eliminating redundant data, deduplication dramatically lowers the amount of storage

space required. This maximizes the use of storage resources while saving money [4].

2. Improved Performance: When handling less redundant data, systems operate more efficiently. Shorter

processing times and less data transfer are the results, which are especially advantageous for backup and

recovery operations [5].

3. Cost Reduction: Hardware, maintenance, and energy costs can be minimized by reducing storage capacity,

which is particularly important for companies that handle large amounts of data [4].

4. Faster Backups and Restorations: Deduplication accelerates these procedures and boosts the effectiveness of

data management overall by reducing the quantity of data that needs to be backed up or restored [6].

5. Network Optimization: By lowering the amount of data sent over networks, deduplication increases bandwidth

utilization and accelerates data transfers [7].

6. Data Administration and Integrity: By centralizing distinct data instances, deduplication facilitates data

management and helps preserve data integrity [8].

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, August 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-19324 172

www.ijarsct.co.in

Impact Factor: 7.53

III. ALGORITHMS EXPLANATION

Source-based deduplication algorithms:

Before data is transferred to the cloud, source-based deduplication algorithms look for duplicates in the original data

source. This finds and eliminates duplicates locally, cutting down on the quantity of data sent across the network [3]. In

situations where there is a lot of data coming from several sources, this approach works well [4].

Algorithm:

def source_deduplication(data_stream, local_index, global_index): chunk_size = 4096

unique_chunks = [] metadata = []

for chunk in chunk_data(data_stream, chunk_size): chunk_hash = hash_function(chunk)

if chunk_hash in local_index or global_index_exists(chunk_hash): metadata.append(get_chunk_reference(chunk_hash))

else:

local_index[chunk_hash] = chunk upload_chunk_to_cloud(chunk) global_index_add(chunk_hash)

metadata.append(get_chunk_reference(chunk_hash))

return metadata

def global_index_exists(chunk_hash): # Implement cloud index check pass

def upload_chunk_to_cloud(chunk): # Implement chunk upload to cloud pass

def global_index_add(chunk_hash): # Implement global index update pass

def get_chunk_reference(chunk_hash): # Implement reference retrieval Pass

Working:

1. Data Chunking: Data will be divided into chunks, usually through a fixed-size chunking algorithm.

2. Hashing: Compute for each piece a hash value using cryptographic hash functions like SHA-256.

3. Index Check: The client maintains a local index of chunk hashes

 For each chunk, the client checks if the hash exists in the local index.

 If the hash is not found locally, the client checks a global index stored in the cloud.

4. Transmission: If the chunk is unique (the hash is not found in both the local and global indexes), the chunk is

transmitted to the cloud, and both the local and global indexes are updated.

 If the chunk is a duplicate (the hash is found in either index), only a reference to the existing chunk is sent.

5. Metadata Management: Metadata is maintained to know which chunks belong to which files, so that original data can

be restored easily.

2. Target-based deduplication algorithms:

At the backend of the storage system, such cloud storage, target-based deduplication occurs. First, the data is moved to

the cloud, where storage servers handle the deduplication process. This method efficiently handles deduplication on

cloud infrastructure while reducing client- side processing [7][8].

Algorithm:

def target_deduplication(data_stream): chunk_size = 4096

hash_table = {} unique_chunks = [] metadata = []

for chunk in chunk_data(data_stream, chunk_size): chunk_hash = hash_function(chunk)

if chunk_hash not in hash_table: hash_table[chunk_hash] = len(unique_chunks) unique_chunks.append(chunk)

metadata.append(hash_table[chunk_hash]) store_unique_chunks(unique_chunks) store_metadata(metadata)

def store_unique_chunks(unique_chunks): # Implement unique chunk storage

pass

def store_metadata(metadata):

Implement metadata storage Pass

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, August 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-19324 173

www.ijarsct.co.in

Impact Factor: 7.53

Working:

1. Chunking: After reaching the storage backend, the data is further granularized into pieces.

2. Hashing: Using cryptographic hash functions, a hash value will be computed for each of these chunks.

3. Index Check: The storage backend maintains an index of chunk hashes.

 For each chunk, the storage backend checks if the hash exists in the index.

4. Storage: In case of a unique chunk, the hash is not found in the index; the same is stored and the index updated.

 In case of a duplicate chunk, the hash is found in the index; only a reference to the existing chunk is stored.

5. Metadata Updating: The metadata is maintained to keep track of which chunks make up a file so that the original data

may later be reconstituted.

IV. CONCLUSION

In today's data management, deduplication represents one of the most important techniques. In particular, it gets huge

attention in cloud storage and backup systems. Deduplication is a process efficient in storage use, cost reduction, and

system performance enhancement by finding and eliminating redundant copies of data. This procedure reduces the

amount of physical storage needed while simultaneously speeding up backup and data transfer, which results in

significant cost savings and increased productivity [1][2][4].

The exact limits and requirements of the system determine which deduplication approach to use: source-based or target-

based. While target-based deduplication concentrates on maximizing storage efficiency and administration at the cloud

storage level, source-based deduplication is beneficial for lowering network load by removing duplicates prior to data

transmission [3][7].

All things considered, effective deduplication technique application promotes sustainable data expansion and

management, which makes it a crucial part of modern IT infrastructure. Enterprises will need deduplication technology

to deliver on a truly effective and cost-efficient data storage solution while data volumes continue to grow [5][6][8].

REFERENCES

[1]. P. K. Kundu and V. K. Gupta, "Data Deduplication for Backup and Archive," IEEE Transactions on

Computers, 2010.

[2]. L. K. Shun and D. J. McKay, "A Survey of Data Deduplication Techniques," ACM Computing Surveys,

2011.

[3]. S. P. Yao, J. H. Smith, "Evaluating the Impact of Data Deduplication on Storage Systems," ACM Transactions

on Storage, 2015.

[4]. "Cost-Efficient Data Management Using Deduplication Techniques" by L. Zhang et al., IEEE Transactions on

Parallel and Distributed Systems, 2016.

[5]. "A Comprehensive Study of Deduplication Algorithms" by C. Zhang, M. Chen, and R. Hu, IEEE Transactions

on Knowledge and Data Engineering, 2018.

[6]. "Data Deduplication: A Survey and Research Directions" by H. Li and D. Xu, ACM Computing Surveys,

2014.

[7]. "Source-Based and Target-Based Deduplication: A Comparative Study" by M. D. McArthur et al., IEEE

Transactions on Cloud Computing, 2017.

[8]. "Efficient Deduplication Algorithms for Cloud Storage" by X. Wang, H. Zhao, and W. Li, IEE Transactions

on Network and Service Management, 2019

