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Abstract: The area of artificial intelligence (AI) and its subfields are explored in this study, with a 

particular emphasis on machine learning (ML), deep learning, and natural language processing (NLP). By 

contrasting the effectiveness of Logistic Regression, K-Nearest Neighbors (KNN), Support Vector Classifier 

(SVC), Random Forest Classifier, Naive Bayes Classifier, and Decision Tree Classifier, the goal is to 

determine which classification algorithm is most accurate at predicting heart stroke. In order to identify 

possible overfitting problems, the algorithms are assessed based on training and testing accuracy. The 

results show that although Random Forest, Decision Tree, and Logistic Regression classifiers all had 

perfect training accuracy, there were differences in their test accuracy, which may have been caused by 

overfitting. Strong generalization skills with excellent testing accuracy were shown by KNN and SVC.  

The Recommendations for improving predictive performance and robustness in real-world healthcare 

applications and selecting models are provided in the study's conclusion. 

 

Keywords: Artificial Intelligence, Machine Learning, Classification Algorithms, Stroke Prediction 

 

I. INTRODUCTION 

The creation of computer systems that are capable of carrying out tasks that normally require human intelligence is 

referred to as artificial intelligence. Learning, reasoning, problem-solving, perception, language comprehension, and 

even creativity are some of these tasks. Artificial Intelligence facilitates machine learning, adaptability to novel inputs, 

and human-like task performance. Natural language processing(NLP), machine learning, deep learning, and other 

technologies are all included under the broad term artificial intelligence (AI). 

 

Machine Learning (ML): 

In order to teach a computer to learn and make predictions, identify patterns, or categorize data, a sizable amount of 

data must be presented to it. Supervised, unsupervised, and reinforcement learning are the three categories of machine 

learning. 

 Supervised Learning: In supervised learning, the input data and the matching output, or target variable, are 

coupled, and the algorithm is trained on a labeled dataset. A different test dataset is used to assess the model's 

performance as it learns the mapping from inputs to outputs. 

 Unsupervised Learning: In this type of learning, the algorithm searches through unlabeled data for patterns or 

associations without the need for human intervention. Two popular methods are dimensionality reduction and 

clustering, which group comparable data points together. 

 Reinforcement Learning: Using interactions with its surroundings, an agent gains decision-making skills 

through reinforcement learning. Based on its behaviors, the agent gets feedback in the form of incentives or 

punishments. The agent's learning of a strategy that maximizes cumulative reward over time is the aim. 

 

Deep Learning: 

Deep neural networks, or multilayer neural networks, are used in deep learning. The network's layers each process the 

incoming data and extract hierarchical features. When it comes to activities like audio and picture recognition, natural 

language processing, and gaming, deep learning has demonstrated amazing results. 
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Neural Networks Interconnected nodes arranged in layers make up neural networks. An input layer, several hidden 

layers, and an output layer make up deep neural networks. Weights are assigned to the connections between nodes and 

are modified throughout training in order to maximize network performance. 

 CNNs: CNNs are a particular kind of neural network intended for image processing applications. 

Convolutional layers are used to automatically extract feature spatial hierarchies from input photos. 

 Recurrent neural networks (RNNs): RNNs are made to function with data that is presented sequentially. They 

are able to detect dependencies over time because of the cycles formed by their connections. Time-series 

prediction and natural language processing are two common applications for RNNs. 

 

Natural Language Processing (NLP): 

Computers can now comprehend, interpret, and produce human language thanks to NLP. This covers jobs like 

sentiment analysis, chatbot interactions, language translation, and language understanding. 

 Language Understanding: NLP makes it possible for computers to decipher and comprehend spoken language. 

This includes syntactic analysis, named entity recognition, and part-of-speech tagging. 

 Language Generation: NLP enables computers to produce writing that appears human. This covers jobs like 

text summarization, chatbot answers, and machine translation. 

 Sentiment analysis: Sentiment analysis identifies the sentiment—whether positive, negative, or neutral—

expressed in a text. It is3frequently employed in customer feedback analysis and social media monitoring. 

Speech Recognition: A vital component of NLP, speech recognition is frequently linked to deep learning. It is utilized 

in applications such as voice-activated gadgets and virtual assistants, where it entails translating spoken words into 

printed text. 

 
Human interpretation skills are frequently needed for data analytics. As machine learning advances, human interaction 

is reduced to a minimum. By producing original content, generative AI goes one step further and frequently eliminates 

the requirement for human creativity in particular activities. 

 

Types of Classification Algorithms 

In machine learning, classification algorithms are essential, particularly when predicting categorical outcomes. Five 

well-known classification techniques will be examined and contrasted in this comparative analysis: Decision Tree 

Classifier, Random Forest Classifier, K-Nearest Neighbors (KNN), Support Vector Classifier (SVC), and Logistic 

Regression. 

1. Logistic Regression 

A popular statistical technique for binary classification tasks—tasks where the objective is to estimate the likelihood 

that an instance will belong to a specific class—is logistic regression. Due to its capacity to forecast a continuous 

probability score between 0 and 1, it is dubbed "regression". Logistic regression is a classification algorithm, despite its 

name. 
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 Strengths: Easy to understand, effective for problems involving binary categorization. ideal for data that can be 

separated linearly. 

 Drawbacks: Presupposes a linear correlation between the response's log-odds and its attributes. 

 

2. K-Nearest Neighbors (KNN) 

A flexible and straightforward machine learning technique, K-Nearest Neighbors (KNN) is utilized for both regression 

and classification applications. It doesn't make any strong assumptions about the underlying data distribution because it 

is a member of the non-parametric algorithm family. 

 Strengths: Basic and simple to comprehend. It doesn't require training and works well with small to medium-

sized datasets. 

 Drawbacks: Expensive computational costs during prediction, particularly when dealing with big datasets. 

sensitive to qualities that are not relevant. 

 

3. Support Vector Classifier (SVC): 

A strong and adaptable classification approach for both linear and non-linear data is Support Vector Classifier (SVC), 

or more generally Support Vector Machine (SVM). It is especially efficient in high-dimensional environments and is a 

member of the family of supervised learning algorithms. 

 Advantages: Performs well in high-dimensional environments. adaptable, utilizing several kernels for non-

linear decision bounds. 

 Weaknesses: May be noisy and outlier sensitive. With huge datasets, training times might be lengthy. 

 

4. Random Forest Classifier: 

One type of ensemble learning technique that fits under the bagging (Bootstrap Aggregating) category is Random 

Forest. In order to get a more reliable and accurate outcome, it constructs several decision trees during training and 

merges their predictions. For applications involving regression and classification, Random Forest is a popular and 

adaptable tool. 

 Strengths: Offers feature importance rankings, is resilient to overfitting, and manages non-linear interactions 

well. 

 Drawbacks: Harder to understand than individual decision trees. potentially costly computationally when 

being trained. 

 

5. Naive Bayes Classifier: 

Naive Bayes is a probabilistic classifier based on Bayes' theorem with the assumption that features are conditionally 

independent given the class. It is commonly used in text classification and spam filtering. 

 Strengths: Easy to use, quick, and effective with high-dimensional datasets. useful for data that is categorized. 

 Weaknesses: Predicts highlight independence, which might not always hold true. 

 

6. Decision Tree Classifier: 

A tree-like model called a decision tree is employed for both regression and classification applications. It shows a 

structure akin to a flowchart, with each leaf node representing the conclusion (class label or value), each branch 

representing a decision based on that feature, and each internal node representing a feature (or attribute). Decision trees 

are widely used in machine learning because of their ease of use, readability, and capacity to identify non-linear 

patterns in data. 

 Strengths: Visualizable, intuitive, and simple to comprehend. manages interactions and relationships that are 

not linear. 

 Drawbacks: prone to overfitting, particularly in cases of deep trees. sensitive to even minute changes in the 

information. 
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II. OBJECTIVES 

 To identify the most accurate classification algorithm for predicting heart stroke 

 To investigate the strengths and weaknesses of each classification algorithm 

 To analyze overfitting problem in classification algorithms 

 

III. DATA ANALYSIS AND FINDINGS 

The purpose of this analysis is to determine the most accurate classification algorithm for the given dataset. By 

assessing the performance of each algorithm, healthcare professionals can identify the model that exhibits the highest 

accuracy in predicting stroke likelihood based on the provided patient information. 

Steps for Conducting a Comparative Analysis of Classification Algorithms 

 

Data Pre-processing: 

 
These two code sections collectively perform data preprocessing tasks on the 'data' DataFrame. They involve imputing 

missing values in each column using the most frequent value as the imputation strategy. The resulting Data Frame 

maintains the original structure, with the option to either include or exclude the 'id' column as part of the index during 

the preprocessing steps. 

 

One-Hot Encoding: 

 
The code first performs one-hot encoding on specific categorical columns ('work_type', 'smoking_status', 'gender') to 

represent them as binary columns. Then, it removes the 'id' column from the DataFrame. The result is a modified 

DataFrame with one-hot-encoded categorical variables and without the 'id' column. 
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Splitting data into x (Values) and y (labels): 

 
The code prepares the data for machine learning by separating the target variable, handling numerical and categorical 

features separately, performing one-hot encoding on the categorical features, and finally, combining them into a single 

feature matrix 'xData'. The target variable 'yData' is converted to the appropriate data type for modeling purposes. 

 
The code splits the original dataset into training and testing sets. Approximately 70% of the data is used for training, 

and the remaining 30% is used for testing. The split is performed along both the feature matrix 'xData' and the target 

variable 'yData'. This division allows for training a machine learning model on one subset of the data and evaluating its 

performance on another, which is a common practice to assess model generalization. 

 

Building and fitting the models: 

Logistic Regression: 

 
Initially, it employs the train_test_split function from scikit-learn to partition the dataset into training and testing 

subsets. The test_size parameter designates that 20% of the dataset will serve as the testing set, and the inclusion of 

random_state ensures consistent and reproducible splits. 

 
Uses SimpleImputer to fill missing values in both the training and testing sets with the mean of each column. 
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Applies StandardScaler to standardize the numerical features. It subtracts the mean and scales to unit variance. 

 
 It initializes and trains a Logistic Regression model using the training set. 

 
The code computes and prints the accuracy of the Logistic Regression model on both the training and testing sets. 

Accuracy Results: 

Training Accuracy: 1.000000 (100%) 

Test Accuracy: 0.926614 (92.66%) 

The Logistic Regression model performed exceptionally well on the training set, achieving a perfect accuracy. 

However, the test accuracy is slightly lower at 92.66%, indicating that the model, while highly accurate, might have a 

small degree of overfitting or may not generalize as well to new, unseen data. Overall, the Logistic Regression model 

demonstrated strong predictive capabilities on the given dataset. 

 

The K-nearest Neighbours: 

 
The code uses train_test_split from scikit-learn to split the dataset into training and testing sets. The test set size is set to 

20%, and random_state ensures reproducibility. 

 
The code utilizes SimpleImputer to replace missing values in the training set (xTrain) with the mean of each column 

and Performs validation to ensure that xTrain_imputed and yTrain are appropriately formatted for the K-Nearest 

Neighbors (KNN) classifier. 

 
It initializes and trains a K-Nearest Neighbors classifier with 10 neighbors using the imputed training set. 

 

 
It computes and prints the accuracy of the KNN classifier on both the training and testing sets. The test set is imputed 

using the same imputer used for the training set. 
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Accuracy Results: 

Training Accuracy: 0.954501 (95.45%) 

Test Accuracy: 0.940313 (94.03%) 

The K-Nearest Neighbors classifier performed well on both the training and test sets. It demonstrated a high level of 

accuracy on the training set (95.45%), and this performance translated well to the test set with a slightly lower but still 

strong accuracy of 94.03%. These accuracy results suggest that the KNN model has learned the underlying patterns in 

the training data and can generalize effectively to make accurate predictions on new, heart stroke data. 

 

Support Vector Classifier: 

 

 
The code uses train_test_split from scikit-learn to split the dataset into training and testing sets. The test set size is set to 

20%, and random_state ensures reproducibility. 

 

 
It utilizes SimpleImputer to replace missing values in the training set (xTrain) with the mean of each column. 

Also it Performs validation to ensure that xTrain_imputed and yTrain are appropriately formatted for the Support 

Vector Machine (SVM) classifier. 

 

 
It uses StandardScaler from scikit-learn to standardize the numerical features. Both training and testing sets are scaled 

using the same scaler to maintain consistency. 

 
This code initializes and trains a Support Vector Machine classifier. 

 
It computes and prints the accuracy of the SVM classifier on both the training and testing sets. 

Accuracy Results: 

Training Accuracy: 0.958170 (95.82%) 

Test Accuracy: 0.939335 (93.93%) 

The Support Vector Classifier performed well on both the training and test sets. It demonstrated a high level of 

accuracy on the training set (95.82%), and this performance translated well to the test set with a slightly lower but still 
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strong accuracy of 93.93%. These accuracy results suggest that the SVC has learned the underlying patterns in the 

training data and can generalize effectively to make accurate predictions on new, heart stroke data. 

 

Random forest classifier: 

 
The code uses train_test_split from scikit-learn to split the dataset into training and testing sets. The test set size is set to 

20%, and random_state ensures reproducibility. 

 
It utilizes SimpleImputer to replace missing values in the training set (xTrain) with the mean of each column. 

 
It performs validation to ensure that xTrain_imputed and yTrain are appropriately formatted for the Random Forest 

classifier. 

 
It uses StandardScaler from scikit-learn to standardize the numerical features. Both training and testing sets are scaled 

using the same scaler to maintain consistency. 

 
The code initializes and trains a Random Forest classifier using the scaled training set. 

 
It computes and prints the accuracy of the Random Forest classifier on both the training and testing sets. 

Accuracy Results: 

Training Accuracy: 1.000000 (100%) 

Test Accuracy: 0.939335 (93.93%) 

The Random Forest classifier performed exceptionally well on the training set, achieving a perfect accuracy, and 

demonstrated strong generalization performance on heart stoke data with a high test accuracy of 93.93%. These 

accuracy results suggest that the Random Forest model has learned the patterns in the training data effectively and can 

make accurate predictions on new, heart stroke data. 

 

Naive Bayes classifier: 
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The code uses train_test_split from scikit-learn to split the dataset into training and testing sets. The test set size is set to 

20%, and random_state ensures reproducibility. 

 

 
It utilizes SimpleImputer to replace missing values in the training set (xTrain) with the mean of each column. 

 
It performs validation to ensure that xTrain_imputed and yTrain are appropriately formatted for the Gaussian Naive 

Bayes (NB) classifier. 

 
It uses StandardScaler from scikit-learn to standardize the numerical features. Both training and testing sets are scaled 

using the same scaler to maintain consistency. 

 
The code initializes and trains a Gaussian Naive Bayes classifier using the scaled training set. 

 
It computes and prints the accuracy of the Gaussian Naive Bayes classifier on both the training and testing sets. 

Accuracy Results: 

Training Accuracy: 0.996820 (99.68%) 

Test Accuracy: 0.777886 (77.79%) 

the Gaussian Naive Bayes classifier achieved high accuracy on the training set (99.68%), indicating a good fit to the 

training data. However, the test accuracy is relatively lower (77.79%), suggesting that the model might not generalize 

as well to heart stroke data. This discrepancy between training and test accuracy could be an indication of overfitting. 

 

Decision Tree classifier: 

 
The code uses train_test_split from scikit-learn to split the dataset into training and testing sets. The test set size is set to 

20%, and random_state ensures reproducibility. 
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It utilizes SimpleImputer to replace missing values in the training set (xTrain) with the mean of each column. 

 
It performs validation to ensure that xTrain_imputed and yTrain are appropriately formatted for the Decision Tree 

classifier. 

 
It uses StandardScaler from scikit-learn to standardize the numerical features. Both training and testing sets are scaled 

using the same scaler to maintain consistency. 

 
The code initializes and trains a Decision Tree classifier using the scaled training set. 

 
It computes and prints the accuracy of the Decision Tree classifier on both the training and testing sets. 

Accuracy Results: 

Training Accuracy: 1.000000 (100%) 

Test Accuracy: 0.936399 (93.64%) 

The Decision Tree classifier achieved a perfect accuracy on the training set (100%), indicating an over fit to the training 

data. The test accuracy is also relatively high (93.64%), suggesting good generalization performance on heart stroke 

data. 

 

IV. ACCURACY RESULTS 

Sr.no Model Training Accuracy Testing Accuracy 

1 KNN 95.45% 94.03% 

2 SVC 95.82% 93.93% 

3 Random Forest 100% 93.93% 

4 Decision Tree 100% 93.64% 

5 Logistic Regression 100% 92.66% 

6 Naïve Bayes 99.68% 77.79% 

The Logistic Regression, K-Nearest Neighbours, Support Vector Classifier, Random Forest Classifier, and Decision 

Tree Classifier performed exceptionally well, achieving high accuracy on both the training and test sets. The Naive 
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Bayes Classifier, while highly accurate on the training set, showed a notable drop in accuracy on the test set, indicating 

potential challenges in generalization. The choice of the most suitable algorithm depends on the specific goals and 

characteristics of the dataset. 

From the above accuracy results, it's challenging to definitively conclude which algorithms are overfitting without 

additional information. However, some indications of potential overfitting can be inferred based on the comparison 

between training and test accuracies. Here are the algorithms where overfitting might be a concern: 

Logistic Regression 

 Indication: Perfect training accuracy (100%) with a slightly lower test accuracy (92.66%). 

 Potential Issue: The model might be too closely tailored to the training data, capturing noise or specificities 

that don't generalize well to new, unseen data. 

Random Forest Classifier: 

 Indication: Perfect training accuracy (100%) with a test accuracy of 93.93%. 

 Potential Issue: The ensemble nature of Random Forests, combining multiple decision trees, can sometimes 

lead to overfitting, especially if the individual trees are too complex. 

Decision Tree Classifier: 

 Indication: Perfect training accuracy (100%) with a test accuracy of 93.64%. 

 Potential Issue: Decision Trees are prone to overfitting, especially if they are deep and capture noise or 

specific patterns that don't generalize well. 

 

Drawbacks of Overfitting 

 High Training Accuracy: The model fits the training data extremely well, potentially capturing noise or 

outliers. 

 Lower Test Accuracy: When applied to new, unseen data, an overfitted model may not generalize effectively, 

leading to lower accuracy on the test set. 

 Lack of Generalization: Overfitting can result in a model that performs poorly on data it hasn't seen before, 

making it less reliable for making predictions in real-world scenarios. 

 

Mitigation Strategies 

 Regularization: Introduce regularization terms in algorithms like Logistic Regression or models with 

regularization parameters (e.g., Random Forest). 

 Simplification: Reduce the complexity of models, such as limiting the depth of decision trees or reducing the 

number of neighbors in K-Nearest Neighbours. 

 Cross-Validation: Use techniques like cross-validation to assess the model's performance on multiple splits of 

the data, helping identify overfitting. 

 It's important to note that the assessment of overfitting also depends on the specific context and goals of the 

modeling task. It might be beneficial to further investigate the model complexity, consider regularization, and 

explore other evaluation metrics to gain a comprehensive understanding of each model's performance. 

 

V. CONCLUSION 

The comparative analysis of classification algorithms for heart stroke prediction has valuable insights into the 

performance of various models. Notably, Logistic Regression and Random Forest Classifier exhibited perfect training 

accuracy, indicating a potential risk of overfitting. While these models performed well on the training set, there was a 

slight drop in accuracy on the test set, suggesting a need for further refinement to enhance generalization. 

Additionally, K-nearest provided Neighbours and Support Vector Classifier demonstrated strong performance with high 

testing accuracy, indicating their effectiveness in accurately predicting heart stroke outcomes. The Naive Bayes 

classifier showed respectable accuracy but with a notable drop on the test set, suggesting a potential need for model 

improvement. Overall, this comparative analysis lays the foundation for selecting an appropriate classification 
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algorithm for heart stroke prediction, highlighting areas for refinement and optimization to ensure reliable and robust 

predictions in real-world healthcare applications. 
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