
IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, June 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-18834 267

www.ijarsct.co.in

Impact Factor: 7.53

Integrity Testing Performance Analysis in

Embedded Systems using IDI
Mr. S. Manikanda1 and Dr. S. Venkatakiran2

PG Student, Department of ECE1

Associate Professor, Department of ECE2

Sri Venkatesa Perumal College of Engineering & Technology, Puttur, Andhra Pradesh, India

Abstract: Multiple modules that interact with one another to exchange data make up embedded systems.

Incorrect resource data exchanged between modules might cause anomalies or mistakes in operation.

Resources that interact create dependencies between two modules, such that modifications made to one

module's resources will impact modifications made to another module's functionality. Interaction errors

between modules are one of the main causes of severe software failures, according to several embedded

system investigations, such as those conducted on aerospace or automotive systems. Interaction testing is

therefore a crucial step in minimizing risk and reducing interaction errors. When modules interact both

directly and indirectly, interaction failures arise. Indirect interactions occur beneath the interface, where a

data reliance relationship with resources may lead to an unexpected result.

Keywords: embedded systems.

I. INTRODUCTION

Embedded systems have permeated in every aspect of our everyday life. From complex safety- critical systems like

automobile, medical system to home appliances, cellular phones even toothbrushes is controlled by embedded software.

So embedded system testing became a serious concern in the product development lifecycle. A study dispatched by the

National Institute of Standards and Technology (NIST) found that every year software errors cost the US economy

$59.5 billion. It is estimated that around $22.2 billion, could be eradicated by improving test techniques [1]. Unlike the

systems of other domains, an embedded system is a combination of sensors, actuators, processors with massive

deployment and exhaustive interaction with the environment and resources. Also, the procedure is complex and changes

to software interfaces and hardware are common, which makes testing challenging. A number of investigations of

aerospace problems show functional interactions among components and inadequate specifications causes serious

software failures in aerospace missions. Lutz examined 387 software errors uncovered during integration and system

testing of the Voyager and Galileo spacecraft [2]. In 1997, an error was introduced during the evolution of the

Minimum Safe Altitude Warning software system (MSAW) where an aircraft crashed at the Guam International Airport

[3]

In hazardous sectors, embedded systems need an exhaustive testing process. First of all, each software module is tested

distinctly as a unit and then combined to proceed with integration testing. The integration testing has the goal of

demonstrating whether developed features work together well enough for the software to submit for system testing.

When joining all modules together, errors can emerge from their interactions. There can be direct and indirect

interaction between modules and depend on these interaction types, execution paths are generated which ultimately

covered by test cases. Therefore, all execution paths are needed to be tested to detect interaction faults. It is not possible

to test all paths and till now there is a lack of standard pattern and model for representing indirect interaction and

generating test cases. So, a new approach is proposed here for generating an interaction model for representing direct

and indirect interaction and test paths are generated for covering indirect interaction of resources.

Embedded system comprises several modules and these separated modules exchange resource data by interacting

among themselves. These resource data can flow across software layers between modules within layers. As a result, any

changes in resources by one module affects the functionality of another module. Therefore, interaction testing is a vital

phase to decrease the interaction faults and to minimize the risk. Interaction faults are generated by the direct and

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, June 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-18834 268

www.ijarsct.co.in

Impact Factor: 7.53

indirect interaction between modules where the direct interaction is made through interfaces and the indirect interaction

is made underneath of interface in which data dependence relationship with resources may cause a different outcome.

For example, A module calls B and C modules in its body then test cases must cover all relation between A-B and A-

C. But there can be other interactions between module B and C. It is very difficult to test all interactions among them.

So the proposed approach is designed to cover only those interaction which is done by resources. This type of

interaction is called indirect interaction. There are several cases for the indirect direction that can be done by resources

like a shared variable, file, database, device etc. which are described in details in the later part of this paper.

For generating test cases, many existing approaches use black/white box testing technique to find the interaction

between two modules by the interface or prototype of the module. This technique can only be applicable for the unit

level, not in integration level. Indirect interaction is indistinct for embedded system and still, there is no standard

model for addressing this issue. As a result, existing approaches do not consider this interaction while generating test

cases. It can produce errors by exchanging wrong resource data and may lead to critical errors or anomalies. It is very

difficult to test every interaction among modules of the embedded system so a compact test suite is customized that

assurances to resolve a subset of interaction. In this paper, a noble approach is proposed to generate an interaction

model using indirect interaction pattern and then design test criteria based on different interaction errors for generating

test cases. A brand new aspect of white box testing is proposed which takes account of indirect interaction while

generating test cases. Several kinds of indirect interaction are investigated that causes errors through shared resources,

file, device, database etc. denoted as interacting variable throughout this paper. For data flow based technique,

D-U (Definition-Use)/W-R (Write-Read)/R-T (Receive-Transmit)/I-D (Insert-Delete) as represented as “interaction

chain” of the interacting variable, are produced by analyzing the source code and generate test paths according to the

sequence of the interacting modules. Interacting variables propagate between modules without parameter or return

value and produce an indirect dependency not having any information in the declaration. The key contributions of this

paper are:

 Present a new type of model to represent the indirect interaction between the modules which are called

interaction model. It represents how the modules of the system interact among themselves.

 Specifies the abnormal indirect resource interaction pattern and categorize different fault types.

 Test cases are generated by symbolic execution to cover the indirect interaction between resources.

 Case studies show that the proposed approach is very effective for detecting indirect interaction related

faults.

II. RELATED WORK

Related work is divided into two segments. At first, related work on path-based integration testing based on the indirect

interaction of modules is discussed and then present several fault injection techniques for finding indirect interaction

errors. There are few works on integration testing of the embedded system, which consider the internal behavior of the

system but lacks a standard model. Most of the existing integration testing methods such as Genetic algorithm method,

coupling based method, decision table method, variable strength array, verification pattern etc. define test cases from

software specifications and do not consider internal execution paths of integrated modules for detecting function

interaction faults.

A Coupling-based testing technique is proposed here [4] that requires the program execute from definitions of actual

parameters through calls to uses of the formal parameters. Coupling based test paths are generated to cover last-def-

before-calls, first-use-in-callee, last-def-before-return etc. They described three kinds of coupling paths as parameter

coupling path, shared data coupling path, and external device coupling path. Mostly the test focus is on parameter

coupling and uses Mistix program, a UNIX file system, as a case study which does not have any call, stamp

data/control, or external coupling also it is unknown how the technique will behave in more complex systems. 21 faults

are inserted into Mistix, which does not reflect the integration/interaction relationship of modules. This survey paper in

[5] identifies one of the major challenges in integration testing in component-based software engineering is identifying

the dependencies. The author investigates how to observe the system’s dynamic behavior in component integration

testing. Here components are treated as a black box and observe their interrelationship by statements, execution

sequence, glued parameter etc. Here, only basic interaction is observed and their method cannot find the indirect

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, June 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-18834 269

www.ijarsct.co.in

Impact Factor: 7.53

interaction among components. The contribution of this paper [6] is one of the foundations of integration testing using

white box approach. Later many researchers use this concept to develop their own techniques. Here errors are classified

into domain error and computational error. A domain error occurs when a specific input follows the wrong path due to

an error in the control flow of the program and a computation error exists when a specific input follows the correct path,

but an error in some assignment statement causes the wrong function to be computed for one or more of the output

variables. Their experience has shown that for most modules it is not possible to detect all the integration errors, even

when all paths in the module are examined. Furthermore, they showed that these errors could be detected by examining

the normal outputs of the subsystem, without requiring intermediate values or extraneous quantities to be examined.

However, for indirect interaction, it is necessary to examine the intermediate value of the variable. Also, the number of

paths is quite high and they suggest that a reduction in the number of the path should be examined. A study is done to

solve the problem of building test suites for software interaction testing [7]. They have developed a model for the

variable strength covering array and have provided some initial bounds and methods for constructing these. It is also

shown that this type of model to gain a stronger interaction test suite without increasing the number of test

configurations. They use greedy algorithms to make a decision on how to select components for interaction while the

goal of testing is to cover as many component interactions as possible. They did not take into account the internal

structure of the components and how resources can create interaction between two components. A verification pattern-

based approach is developed to generate test scripts quickly for an embedded system [8]. The VP approach classifies

system scenarios into patterns. For each scenario pattern (SP), the test engineer can develop a script template to test all

the scenarios that belong to the same pattern. But the verification framework is a functional testing framework because

it is requirements-driven. So it does not consider the internal behavior of the system. Also, the operational scenarios are

generated from the requirements and firmly depends on the engineer’s experience.

Fault injection/Mutation-based technique is used to evaluate a test approach. Many researchers discussed several faults

that can be generated during integration testing but none of them are related to indirect interaction faults. An integration

error occurs when an incorrect value is passed through a unit connection in [9]. They illustrated how incorrect values

entering and exiting a unit call and causes erroneous output. Here, only the actual parameter, global variable, and return

value are considered. One of its weakness is that it is a mutation operator based technique and imposes a higher cost at

every location in the program where the global variable used/defined is a potential location for mutation. This paper

introduces an improved, simple and easy technique of interface faults insertion using AspectJ for Java component-

based applications [10]. The technique can ignore the entire execution of an interface service, corrupting its input

values and returning a bogus return value. The faults are focused on the interface that can be invoked in different ways

and would lead to different event executions. Also, there is no control over when the fault should be triggered because

faults are triggered by the program itself, whenever the program calls the interface services. This work is to propose a

fault injection strategy to test the interaction among components [11]. For that reason, interface faults are introduced

by corrupting input data as well as interface output data. However, almost every case researcher focuses on interface

information and generate faults according to the input and output of the module. However, erroneous or incomplete

interface specifications may lead to futile faults. We need special faults that occur during interaction among modules,

which could not be found by analyzing the interface information.

III. INDIRECT INTERACTION

Embedded systems encompass a broad range of hardware and software systems where the software system is divided

into several modules, which are developed by several vendors or different developer teams. An interaction takes place

when two or more modules have a calling relationship among them and accessing the same resources from several

modules. Although some researchers use the same term to classify feature interaction, human-computer interaction,

interaction testing etc. which is quite distinct from our work. For example, the interaction testing focused on how

components interact with each other by changing the combination of components. Suppose there are four

components, each with three different values, resulting in 81 possible system configurations. Each of the system tests

must be run in each of these 81 configurations in order to detect any unexpected interaction faults that will occur

between components. A feature interaction is a situation in which two or more features exhibit unexpected behavior

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, June 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-18834 270

www.ijarsct.co.in

Impact Factor: 7.53

that does not occur when the features are used in isolation. Several approaches can be used to implement features

cohesively in order to be able to compose them in different combinations [12].

According to the interaction relation, we divide them into direct and indirect interaction. Direct interaction is the

explicit call relation between modules where callee module provides all input, output, and other reference information

to the caller module. On the other hand, in indirect interaction, reference or resource sharing information is not present

in the module interface but accessed inside the body of the module where possible errors can occur. For example, in the

embedded system shared variable, file, external device etc. are used extensively inside a module where caller module

has no information about those. As a result, there creates an indirect interaction between two modules which access

that particular resource or reference separately. Any change or error in that resource affects all the accessing modules

and may open a path for unauthorized access to the resource. The main difference between integration testing and

interaction testing is that in integration testing, data transactions are visible such as parameter (variable, file, memory)

return value etc. but in interaction testing, data transactions are not visible from the abstract view of the system.

3.1 Abnormal scenarios by indirect interaction

Four basic types of interactions are identified, which are designated as test adequacy criteria, causes indirect interaction

(IDI) error. Each of the types is described in detail here.

IDI by shared variable: In an embedded system, especially in the interrupt service routine (ISR), memory

management unit (MMU), task management unit (TMU) etc. use shared variables to communicate among them and

related modules. Shared variables make data available from one module to another or among multiple processes,

but have no call relation. It is very difficult to identify this interaction because shared data information is not present

in the module declaration. It can easily be defined and used in several modules. Any error or change of shared

variables in one module affects another module. Therefore, it is essential to trace shared variables and confirm their

correctness. The value of a shared variable while exiting the first module and after entering the second module needs to

be compared to avoid value or type mismatch. It is done to make sure that there is no intermediate modification of the

value. We use data flow based testing techniques to find all definition and use information of a shared variable and

generated test paths. Any faults in data flow will be resolved by it. For example, Figure 1 shows the shared variable in

elevator system where service_cntr is a shared variable defined and used in check_and_set_dnu and

dispatch_pending_elv modules.

IDI by File: Many embedded systems have a block of non-volatile RAM of which the kernel can maintain no

memory page descriptor to mount a read/write filesystem. In addition, some embedded OSs provide memory

management support for a temporary or permanent file system storage scheme. Usually, files are used to get input

into a program or to display/store data from a program. MMU processes a file for temporal/permanent storage of data,

which can be read, write or append by several modules. A module can open a file anywhere in its body and perform

required actions without passing file information through the parameter of a module interface. Therefore, the tester

does not test how files are used inside modules. However, it is very important to test how the files are being

used or whether the files are performing according to specification. While interacting, it is needed to test whether

two modules follow that same file structure or not. For example, a file may contain an integer value instead of a

floating number.

Figure 1. Indirect interaction by Shared variable

So, while reading an integer value from a file, although the file contains a float value, produces an error. There can be

cases where the file system is empty or a file is not present in a directory. For this reason, these abnormal cases during

interaction should be tested. For example, Figure 2 represents indirect interaction using the file in a project called

“simulating a preprocessor using file”. Here dataStr.c file is read in output module and write in comment module.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, June 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-18834 271

www.ijarsct.co.in

Impact Factor: 7.53

purchase

OrderProduct

dataStr.c

Figure 2. Indirect interaction by file

IDI by I/O device: Embedded systems contain extensive applications running on different devices and these are used to

receive data into a program or to transmit output data from a program. For example, in microwave oven system, the

door sensor and heating elements interact with its software system and execute according to their operations. This

device corresponds to a real-world physical object that interacts with the system via sensors and actuator. A module can

enable any sensors and actuator anywhere in its body and perform required actions. It is not needed to pass device

information through parameters. Therefore, the tester does not test how devices are handled inside modules. However, it

is very important to test how the devices are being used or whether the devices are performing according to

specification. A device may have wrong state, timing failure, fault handling etc., which may lead to critical errors

during interaction.

For example, Figure 3 represents indirect interaction using the level sensor in a water level monitoring system. Here,

level sensor continuously reads the water level to start/stop the motor and in particular level, it triggers an alarm.

 Level sensor

Figure 3. Indirect interaction by device

IDI by database: Embedded systems often need to use the database for storing configuration data, init data, trace data,

error log data etc. Whenever a certain action is performed in on the module of an application, a corresponding CRUD

(Create, Retrieve, Update and delete) action gets invoked. Another module may perform another action. So we need to

test the data integrity. This means that following any of the CRUD operations, the updated and most recent

values/Status should appear in another module. When a certain event takes places on a certain table in a module, a

trigger can be auto instructed to be executed on another table. Some other event may take place at the later table in

another module. As a result, an event in one module can indirectly affect another module. For example, in Figure 4 a

module inserts purchase orders, and the product is removed or updated by another module, future events will have to

fail.

 << tbl_product>>

Figure 4. Indirect interaction by database

3.2 Formal model for indirect interaction

Modular interaction is done by the clearly well-defined interface through parameter or return value and most of the

existing works focused on faulty message/data passing through modules. The functional interface contains the required

information to interact with another module. Most of the time interfaces are poorly documented and only contain

information related to direct interaction, not an indirect one. Finding indirect interaction is complicated for deficiency

of standard pattern and model. An indirect interaction is pictured as the exchange of resources among modules, and

Output

main

Comment

motor

Controller

Alarm

removeProduct

<
<

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, June 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-18834 272

www.ijarsct.co.in

Impact Factor: 7.53

resources usually shared between modules indirectly through Files, shared variables, I/O devices, where any changes to

a resource by one module may affect another module. An indirect interaction is represented by the interaction model

generated by extending call graph in Figure 5.

Figure 5. Sample interaction model

An indirect interaction is described as a hidden dependency between two modules through several kinds of resources

where any change in one resource by a module affects the behavior of another module. At first, a call graph is generated

automatically using the static analyzing tool and then find the indirect interaction between modules. Figure 5 represents

module C and module B have an indirect interaction by the shared variable, module B, and module A has a call

relation, module F and module E have indirect interaction through a file etc. The directed edges represent the calling

sequences of the modules. Indirect interaction can be formally defined as follows,

The proposed IDI approach comprises two phases. First phase interacting variables are found between two modules by

generating an interaction model and define some new criteria where error may lie. In the second phase, test cases are

generated efficiently for solving or preventing those errors. A tester should take account those new test criteria while

generating test cases.

IV. PROPOSED INDIRECT INTERACTION (IDI) BASED APPROACH

The proposed IDI approach comprises two phases. In the first phase, we find interacting variables between two modules

by generating an interaction model and define some new criteria where the error may lie. In the second phase, test cases

are generated efficiently for solving or preventing those errors. A tester should take account those new test criteria

while generating test cases.

4.1 Interaction Model Generation

To generate an interaction model, as shown in Figure 6, Understand tools is used to parse the source code and then

maintained in a database to store information dynamically for generating a call graph. Understand is used to analyzing

the source code which understands and maintain large amounts of newly created source code. The IDE provides multi-

language, maintenance-oriented, cross-platform features [13]. It has architectural features that support to produce

hierarchical accumulations for units of source code. These units can be named and handle in various ways for further

analysis such as control flow graph generation, call graph generation, locating declaration files, finding cluster calls etc

Figure 6. Overview of generating Interaction model

Gather information from source code

“Understand” static analyzer

Interaction model generation

Extended
call graph

Interacting
variable

Source code

Module B
Module

Call relation

Indirect interaction
Module E

<<resource>>
I/O device, database

Shared variable, File

Module A Module C Module G

Module F

Module D

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, June 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-18834 273

www.ijarsct.co.in

Impact Factor: 7.53

File, device, DB Shared variable

Interacting Shared

resource

A list of the caller-callee relationship between two modules is acquired by generating a call graph as modules and arcs.

Extraction of the interacting variable is a semi-automatic process, which can be done by the developer or tester by

analyzing source code. Many techniques use interface information to find the interaction, which can be erroneous or

incomplete, and several works have already done testing this kind of interaction. Here the focus is on the resources

accessed by two modules inside their body, which are not present in interface information. As discussed in section 3

that there are several kinds of indirect interaction that causes fault. It needs to find the following relation between the

two modules:

 Same global variable defined or used.

 Same file open for read/write operation.

 Same device connected for receiving/transmitting signal.

 Same database access and perform query.

As a result, shared variable, file, device or database are found which are denoted as an interacting variable and their

corresponding modules. The interaction model is generated by combining all the information. A flowchart of finding an

interacting shared resource for generating interaction model is shown in Figure 7.

Figure 7. Flowchart to find Interacting shared resources

4.2 Generation of test case

In the second phase, based on the designed test template along with test adequacy criteria, test paths are generated for

each indirect interaction. The white box testing approach provides a variety of test adequacy criteria such as a

statement, branch or definition-use coverage. Our test adequacy criterion for three types of indirect interactions which

are is already defined in section 3.

A test template is a basic overview of how test case generation procedure will proceed. A basic test template for

interaction test path generation is given below where we use an elevator system as running example depicted in Figure

8. In elevator system, decision_algo decides which lifts to service which all requests, check_and_set_dnu checks which

all lifts are servicing full requests and update their DNU status and add_service_request sets service level as requested.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, June 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-18834 274

www.ijarsct.co.in

Impact Factor: 7.53

���i���_����

add_service_request

Decision_alg

check_and_set_dn

Figure 8. Running example of teaching the assistant system

Here, decision_algo have direct call relation with check_and_set_dnu and add_service_request. On the other hand,

check_and_set_dnu and add_service_request module have shared variable service_cntr.

Step 1: Interaction model represents entire call information between modules of the system. From this model, two

modules (leaf node) are identified which have indirect interaction and what type of interaction is present there. In the

example, service_cntr is an interacting defined and used in check_and_set_dnu and add_service_request modules.

Step 2: After finding the modules which are interacting with them, it is needed to travel back to their parent node

until there is a common ancestor. Here, the same interaction model is used where modules represented as nodes and

interactions are represented as edges. At the end of this step, all traversal information is collected and create sub-tree

where leaf nodes are interacting modules and there present a common root for them. Here, both check_and_set_dnu and

add_service_request have a common root node decision_algo.

Step 3: In this step, the proper sequence of calling modules are generated from an ancestor node to a leaf node as

represented in the sub-tree with control flow information. Usually, control flow uses to find the order in which module

calls for an imperative program are executed. From program source code, control flow information is collected and find

all sequences until each node visits from an ancestor. The sequence for the example is:���i�i��_���� →

�ℎ���_���_���_��� → ���_����i��_�������

Step 4: In the final step, first, interaction paths are generated using function call sequence. A test path is a sequence

from the starting node to a terminal node of the control flow graph of a program and contains several paths for covering

each module sequence. Secondly, from interaction type, which is found in step 1, test criteria is implemented and

produce interaction chain. The chain represented as a series of nodes where the interacting variable is defined/used,

read/write, transmit/receive or insert/delete. Only those paths are selected that are feasible by the chain and set injection

point here. Proposed test path generation tool does test path selection procedure automatically. After that, test cases are

generated by symbolic execution technique for executing those test paths. In the example, service_cntr is the interacting

variable and its DU chain is as follows.

�� �ℎ�i�: 87 184

All the paths are generated according to module sequence and only those paths are feasible which are covered by DU

chain. Some partial feasible paths (sequence of node number) are given below:

1. 203 204 205 84 85 86 87 95 96 97 98 206 207 208 209 210 211 212 213 214 176 177 178 179

180 181 182 183 184 185 187 188 190 191 192 193 215 216 217 218 223 224 225 230 231 232

2. 203 204 205 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 206 207 208 209 210 211 212 213

214 176 177 178 179 180 181 182 183 184 185 186 187 188 190 191 192 193 215 216 217 218 223 224 225

230 231 232

3. 203 204 205 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 206 207 208 209 210 211 212 213

214 176 177 178 179 180 181 182 183 184 185 187 188 190 191 192 193 215 216 217 218 219 220 221 222

223 224 225 226 227 228 229 230 231 232

For each of these test paths, test cases are generated by symbolic execution technique. For example, we solve the first

test path with symbolic execution and get the following path condition as shown in Table 1.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, June 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-18834 275

www.ijarsct.co.in

Impact Factor: 7.53

Table 1. Evaluating predicate condition for generating test cases

 Serial I MAX_LIFT

S

SERVICE_CNT

R

DIR_UP I2 MAX_REQUEST

S

DIR_IDLE DIR_DOWN Result

 1 7 2 92 2 7 15 0 2 fail

 2 1 2 1 1 3 15 2 0 pass

 3 2 2 84 1 3 15 1 0 fail

 4 0 2 61 1 3 15 2 2 fail

(I<MAX_LIFTS) && (SERVICE_CNTR>=3) && (CUR_PROC_INP == DIR_UP) && (I2<MAX_REQUESTs) &&

(ELV_SERVICE_DIR !=DIR_IDLE) && (ELV_SERVICE_DIR== DIR_DOWN)

An algorithm is designed which randomly select input condition and execute with the path condition. Path condition

contains the interacting variable along with other internal variables. If the path condition is satisfied then it is treated as

a test input. As represented in Table 1, number 2 input condition fulfill the path condition, so it is a test case for that

particular test path. Similarly, for all test paths, we generate the path condition and by evaluating it we get the test case.

However, generation of test cases using symbolic execution is not covered here. Symbolic execution technique is well-

understood, straightforward technique and many works already have published in many research journal [14, 15].

4.3 Fault injection technique

Fault injection technique is described as a deliberate injection of a fault into a running system during a test activity, to

determine whether the system reacts well to off-nominal or exceptional conditions [16, 17]. Faults that injected into the

system represent the actual faults that occur within the system. A tester creates a list of faults and injects those faults

into the system. The final report sent to the developer to correct the code so that faults can be handled correctly. To

inject fault in the source code, it needs to modify the code, add new code or delete part of the code. Figure 9 show the

fault injection process is divided in,

 Pre-injection analysis

 Inject actual fault

Figure 9. Overview of fault injection technique

The pre-injection analysis involves creating the fault according to test criteria. Test criteria are based on the behavior of

interacting variables, software design, and experience of a tester. A tester should have proper knowledge of the source

code and a clear idea of where and how the fault can take place. After that, we inject the fault into the system and

execute it. A tester observes the behavior of the system and compares with previous output. Faults have so many

varieties that we cannot study every kind of their impact on software [18]. We select most relevant faults which may

produce by indirect interaction and the list of faults is given in Table 2.

Fault injection technique is used to evaluate the proposed approach by finding the fault detection rate. The overview of

the technique is given in Figure 9 and the steps are given below:

Step 1: Like data flow based criteria, we generate interaction type and interacting modules from the interaction model.

Step 2: According to the type of interaction, we select possible faults from the fault list. As we have already discussed

that faults generated by indirect interaction, which is not studied yet. There are some existing works, discussed in

related works, but does not contain the standard model or representation. We have analyzed indirect interaction and

make a list of errors, which can produce during run-time in the previous section.

Step 3: One of the important parts is finding the injection point. We analyze the interacting module and find execution

paths in where injected fault will be executed. It is of no use if the fault is not triggered during execution.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, June 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-18834 276

www.ijarsct.co.in

Impact Factor: 7.53

Step 4: Then we inject the fault into the system and run the program and observe the output/behavior of the system for

activation of the fault. This fault activation process is done by our proposed approach and random fault activation

technique and compares the fault activation rate for evaluation.

Table 2. Different faults by the interaction of resources

Type Criteria

Shared

Variable

Shared Variable exceed boundary value in one module

Last value of first module is not equal to first value of second module Use definition use criteria

for testing (DU testing)

File File Removed in between two modules File data mi smatch between modules Required value is

not present in file

Garbage value handling

Device Interacting device not found Wrong device connected

Wrong data receive/transmit from device from another module Device is in wrong state while

interacting

Timeout between modular interaction

Database Read data from empty table where data deleted by other module Write data to table which is

altered by other module

Top most data required but deleted by another module

V. CASE STUDY AND EVALUATION

Several case studies are performed on how to generate test cases for shared resource and timing constraints for indirect

interaction. For shared resource based indirect interaction, number of test cases for covering all DU and indirectly

interacting DU is compared. Also, for evaluating the fault detection rate, between the proposed approach and call based

approach, fault injection technique can be used.

5.1 Comparison of number of test cases for DU coverage

In the first evaluation criteria, the required number of test cases are computed for covering all DU and interaction

variable DU. All DU coverage means all definition-clear path for all the variables in that interaction. The number of

paths is too high for the mid-level program and for the large system there will occur state explosion problem. It is not

efficient to compute a large number of test cases which increase testing cost and time at a high rate. So focusing on

indirectly interacting variable DU only to reduce the overhead for generating test case.

It represents the comparison between number of test cases required for all DU coverage and all interacting variable

DU coverage. As shown in the first case, the number of test cases required for covering all DU is 3192 where the

number of test case required for covering interacting variable DU coverage is 324 which is comparatively lower and

realistic than all DU coverage. Also, it covers 10.15% of all DU coverage

5.2 Evaluating through fault detection rate

To evaluate the proposed approach, the fault detection rate is computed for several systems. At first, the list of faults is

specified which occur in the direct and indirect interacting. For direct interaction related fault, most general kind of

faults are listed according to IEEE standard Classification for software anomalies

- IEEE std 1044-2009 and IEEE Standard for Software and System Test Documentation-IEEE Std 829-2008 [19, 20].

Indirect interaction faults are designed by analyzing the behavior of the resources. All the inserted faults are shown in

Table 3.

For each resource, both direct and indirect interaction faults are inserted and analyze how faults are detected by the call

based approach and proposed approach. In call-based approach, test cases are generated covering all parameter and

return value as stated in the interface. The interface does not contain any indirect interaction information so it is

expected that faults generated by indirect interaction wouldn’t detect here. On the other hand, the proposed approach

has both interface and indirect interaction information so it should detect all possible indirect interaction errors. A

comparison between numbers of direct and indirect faults detected by the call based approach and proposed approach is

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, June 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-18834 277

www.ijarsct.co.in

Impact Factor: 7.53

shown in Figure 10. Considering only student information system, total 44 faults (direct interaction faults 35, indirect

interaction faults 9) are injected. Call-based approach only detects 33 direct interaction faults and none of the indirect

interaction fault. The proposed approach detects 27 faults which contain 18 direct interaction fault and 9 indirect

interaction faults.

Table3. List of inserted faults for direct and indirect interaction

Resaurces Fault type Fault description

Shared

variable

Direct interaction A parameter in a function call was missing

 In complete expression was used as parameter

 Wrong information was passed to a function call (Value, expression result.

Etc)

 Indirect interaction Shared variable exceed boundary value in one module

 Last value of first module is not equal to first value of second module

File Direct interaction No input file in present in directory

 Wrong file name

 Invalid parameter while opening the file

 Indirect Interaction File removed in between two modules

 Required valueis not present in file

 Garbage value handling

Database Direct interaction Modify SQL statement

 Modify database connection information

 Lost database connection

 Modify column information in query

 Indirect Interaction Read data from empty table where data deleted by other module

 Write data to table which is altered by other module

 Top most data required but deleted by another module

Figure 10. Comparison of the number of direct and indirect interaction fault detection

As shown in Table 4, total 80 faults are injected in the source code in several systems where 59 of them are direct

interaction faults and 21 indirect interaction faults. As expected, call based approach did not detect any faults generated

by indirect interaction. It only detects 49 faults which are direct interaction faults. The proposed approach detects 21

indirect interaction faults along with 29 direct interaction faults

The proposed approach detects 100% indirect interaction fault in every case and in addition it also detects direct

interaction fault. For example, for the stdInfo system, call based approach detect 94.29% direct interaction fault and

none of indirect interaction fault. The proposed approach detects 100% indirect interaction faults along with 51.43%

direct interaction fault. The result clearly shows how efficiently the proposed approach detects indirect interaction

faults.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, June 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-18834 278

www.ijarsct.co.in

Impact Factor: 7.53

Table 4. Fault detection by call based and proposed approach

System Inserted faults Faults detected by call based

approach

Faults detected by call based

approach

 DI

faults

IDI faults Total DI faults IDI faults Total DI faults IDI faults Total

StdInfo 35 9 44 33

(94.29%)

0 33

(75%)

18

(51.43%)

9

(100%)

27

(61.36%)

TellBill 16 9 25 10

(62.29%)

0 10

(40%)

9

(56.25%)

9

(100%)

18

(72%)

shopCart 8 3 11 6

(72.00%)

0 6

(54.55%)

2

(25%)

3

(100%)

5

(45.45%)

Total 59 21 80 49

(83.05%)

0 49

(61.25%)

29

(49.15%)

21

(100%)

50

(62.50%)

VI. CONCLUSION AND FUTURE WORK

In order to quickly produce test cases, the study gives a generic specification of an interaction model that includes the

indirect interaction between modules of the embedded system. It also suggests test adequacy criteria that can be

integrated with the data flow driven integration testing approach. In addition, the fault tolerance system is tested using a

fault injection technique based on indirect interaction error.

Several indirect connections that are thought to specify an interaction model were identified in our research, and test

criteria were subsequently created for each kind of contact. The source code is parsed using a specialized tool to capture

the necessary data, which is then utilized to generate an interaction model. This process involves data flow analysis.

The interaction model is broken down into sub-trees using a variety of ways, and each interacting module's common

ancestor is found. Module sequence from ancestor to leaf node is constructed using the source code's sub-tree and

control flow information. The number of interaction pathways that are generated from the module sequence is

compared to the tests that are made using the test criteria. The DWRI-URTD chain of the interacting variable is used to

choose those pathways that pass the designated test. After that, test cases are created for each test path using the

symbolic execution technique. Conversely, certain errors are categorized based on distinct indirect interactions, and

those errors are incorporated into the source code to run the application. The output of the original program is compared

to the output generated after fault injection. If the outputs are the same, either then the test case is not adequate, or the

program is unable to identify the fault. To show the feasibility and effectiveness of the proposed approach, some case

studies are done and conducted qualitative experiments on several systems. The result indicates that there is a huge

necessity to test indirect interaction while performing integration testing.

In future work, We intend to apply our test methodology as a tool suite in subsequent work to automatically create test

data for interaction variables between modules. Furthermore, in order to produce a more effective interaction model, we

want to conduct a thorough investigation to identify other interaction patterns that may be incorporated into the larger

embedded system

REFERENCES

[1] N. US Department of Commerce, “Updated NIST Software Uses Combination Testing to Catch Bugs Fast

and Easy,” 2010.

[2] National Transportation Safety Board, “Controlled Flight into Terrain, Korean Air Flight 801, Boeing 747-300,

HL7468", Nimitz Hill, Guam, August 6, pp.212, 2000.

[3] National Transportation Safety Board, “Controlled Flight into Terrain, Korean Air Flight 801, Boeing 747-300,

HL7468, Nimitz Hill, Guam, August 6, 1997,” p. 212, 2000.

[4] Z. Jin and A. Offutt, “Coupling-based criteria for integration testing,” Softw. Test. Verify. Reliab., vol. 154, no.

July, pp. 133–154, 1998.

[5] H. Zhu and X. He, “A Methodology for Component Integration Testing,” Springer, pp. 239–269, 2005.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, June 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-18834 279

www.ijarsct.co.in

Impact Factor: 7.53

[6] A. Haley and S. Zweben, “Development and Application of a White Box Approach to Integration Testing,” J. Syst.

Softw., vol. 15, pp. 309–315, 1984.

[7] M. B. Cohen, “Designing test suits for software interaction testing,” The University of Auckland, 2004.

[8] W. Tsai and L. Yu, “Rapid Embedded System Testing Using Verification Patterns,” IEEE Software, vol. 22, no. 4,

pp. 68–75, 2005.

[9] Â. E. Delamaro, J. C. Maldonado, and Aditya p. Mathur, “Interface Mutation: An Approach for Integration

Testing,” IEEE Trans. Softw. Eng., vol. 27, no. 3, pp. 228–247, 2001.

 [10] N. L. Hashim, H. W. Schmidt, and S. Ramakrishnan, “Interface faults injection for component-based integration

testing,” Comput. Informatics, 2006. ICOCI ’06. Int. Conf., pp. 1–6, 2006.

[11] R. Lúcia and D. O. Moraes, “Architecture-based Strategy for Interface Fault Injection,” Work. Archit. Dependable

Syst. Int. Conf. Dependable Syst. Networks, 2004.

[12] S. Apel and K. Christian, “An Overview of Feature-Oriented Software Development,” J. object Technol., vol. 8,

no. 4, pp. 1–36, 2009.

[13] “Scitools-Understand (visualize your code).” [Online]. Available: www.scitools.com.

[14] J. C. King, “Symbolic Execution and Program Testing,” Communication, vol. 19, pp. 385–394, 1976.

[15] J. Zhang, C. Xu, and X. Wang, “Path-Oriented Test Data Generation Using Symbolic Execution and Constraint

Solving Techniques,” Int. Conf. Software Eng. Form. Methods, no. 60125207, 2004.

[16] A. A. Samuel, N. Jayalal, B. Valsa, C. A. Ignatius, and J. P. Zachariah, “Software fault injection testing of the

embedded software of a satellite launch vehicle,” IEEE POTENTIALS, vol. 32, no. September, pp. 38–44, 2013.

[17] H. Ziade, R. Ayoubi, and R. Velazco, “A Survey on Fault Injection Techniques,” Int. Arab J. Inf. Technol., vol. 1,

no. 2, pp. 171–186, 2004.

[18] J. F. and H. Q. N. C. Kaner, “Common software errors,” in Testing Computer Software Second Edition,

Dreamtech Press, pp. 1–89, 2000.

[19] IEEE Computer Society, IEEE Standard Classification for software anomalies (IEEE std 1044-2009). 2010.

[20] IEEE Computer Society, IEEE Std 829-2008, IEEE Standard for Software and System Test Documentation, vol.

2008, no. July. 2008.

