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Abstract: Lithium-ion batteries are state-of-the-art energy storage technology. Instead of having 

remarkable features, a highly accurate, reliable, and cost-effective battery monitoring technology should 

continuously monitor the battery cell parameters and ensure the parameters are within the safe operating 

area recommended by the manufacturer. Precise estimation of SOC is always needed to ensure the safety 

and longevity of each lithium-ion cell in a battery pack affected by frequent charge and discharge 

processes. Algorithms based on Kalman filter recursive state estimation are robust to initial SOC 

uncertainties and sensor noise. Since the internal electrochemical kinetics of the Li-Ion cells are highly 

complex and non-linear, the Kalman filer non-linear variants such as EKF and SPKF perform 

exceptionally well in the presence of uncertainties in the initial SOC estimates and sensor measurements. 

This paper evaluates the robustness of EKF and CDKF regarding state of charge (SOC) estimation 

accuracy against unknown initial SOC and random sensor noise. The algorithms are implemented in the 

GNU Octave environment. The experiment results show that SPKF slightly outperforms EKF in terms of 

rms values. Both EKF and SPKF demonstrate strong robustness against current noise 
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I. INTRODUCTION 

Due to the global energy crisis, such as environmental pollution issues and climate change, electric vehicles (EVs) are 

being developed as alternatives to traditional internal combustion engine-powered vehicles. Due to the remarkable 

features of lithium-ion-based battery cells, such as high energy density, high cycle life, high nominal voltage, 

insignificant self-discharge rate, and no memory effect, LIBs are extensively used to manufacture EV battery packs. 

However, as a very temperature-dependent and loose life when operating at over-voltage and under-voltage conditions, 

close monitoring of the battery behaviour to estimate states such as state-of-charge is essential to maintaining safe and 

efficient operation, emphasising the importance of the battery management system (BMS). The BMS serves several 

purposes, including determining the remaining energy, estimating available power, voltage monitoring, cell balancing 

and lifetime predictions[1], [2], [3]. 

The SOC is a dimensionless quantity usually represented as a percentage. It characterises the Li-Ion cell's available 

capacity and is mathematically represented as the ratio of available coulombs of charge to the total rated charge storing 

capacity in amp-hours[1], [2], [3], [4]. 

 

 ��� =
���������	���������	��	������

�����	��������	(���������)
× 100%(1) 

 

SOC estimation is crucial for the BMS to perform tasks such as active or passive cell-balancing, avoid over- and under-

charging conditions, and temperature detection to prevent the overheating of the Li-ion cells. Unfortunately, SOC 

cannot be measured directly by any high-end sensor technologies, so better and more robust algorithms with efficient 

sensors could estimate the SOC with high accuracy and precision. The researchers have proposed several state-of-
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charge estimation approaches, each with advantages and disadvantages.  The methods are categorised based on the 

control strategies, such as open loop and closed loop and the choice of the Li-ion cell equivalent circuit model being 

implemented, such as Ampere-hour integration or coulomb counting, data-driven based and model-based methods[2], 

[4], [5], [6]. 

The Ampere-hour interaction method is open-loop and susceptible to error accumulation due to uncertainties in the 

sensor measurements and unknown estimates of the initial value of SOC and total capacity. The current sensor 

measurement contains biased components, sensor uncertainties, self-discharge components, etc. The Li-ion cell must be 

relaxed for a significant duration to achieve equilibrium of terminal voltage as open-circuit voltage to look up the 

corresponding SOC estimate. The process is infeasible for EV applications where recalibration is required when 

batteries are in dynamic conditions with frequent charging, discharging, and charge balancing processes. In contrast, 

other methods like black-box and model-based methods rely on large data sets of the Li-ion cell charging and 

discharging profile at different temperature conditions. However, the strategies are closed-loop with a relatively high 

estimation accuracy[7], [8], [9].  

In a black-box-based approach, extensive training in the battery model, which is usually a neural network-based 

equivalent model of the cell, is required, which is a computationally burdensome and time-consuming process. In 

contrast to the black-box-based method, the model-based approach is a trade-off between performance and time. The 

method requires an approximate battery model and knowledge of the sensor's covariance matrices and initial state 

uncertainties to predict the state reasonably. However, the method is a Minimum Mean Square Error Estimator 

(MMSE), which guarantees estimates convergent towards the actual value. Linear Kalman Filter is a model-based 

MMSE state observer that works on the recursive Bayesian estimation approach and is an optimal state estimator when 

the model of any system is linear with uncertainties assumed to be Gaussian and white. However, in practice, models of 

any complex dynamical systems are non-linear, and a linear Kalman filter cannot produce an estimate with acceptable 

accuracy[2]. So, to tackle this challenge, non-linear variants of the Kalman filter can be implemented, such as Extended 

Kalman Filter and Unscented Kalman Filter[7], [9], [10], [11], [12], [13], [14]. 

The Extended Kalman Filter is suitable for slightly non-linear models but is not exempted from the assumption that the 

uncertainties must be Gaussian and white. In the case of an Unscented Kalman filter, the model could be highly non-

linear, and the method is exempted from the assumption of Gaussian uncertainties. However, implementing these 

algorithms comes with the expense of an intensive computational burden and high processing time. These methods 

produce reasonable estimates of SOC with a high convergence rate and narrower error bounds[8], [15], [16], [17], [18]. 

 

II. BATTERY MODELLING 

State-of-Charge Definition 

SOC is the ratio of the remaining coulombs of charge (amp-hours) in a Li-ion cell to its maximal charge-storing 

capacity (amp-hours). The SOC can be calculated if the initial SOC, total capacity, and charging or discharging current 

are known for the duration and can be mathematically described in Eq. (2)[2], [16], [18], [19], [20]. 

In a continuous-time domain, 

 ���� = ����� −
�

�
∫ (�(�)	�����(�))��
�

����
 (2) 

Where ƞ(t) is a coulombic efficiency 

In the discrete-time domain, Eq. (2) can be represented as, 

 ���[� + 1] = ���[�] −
�[�]	�����[�]Δt

��  (3) 

�����is a charging or discharging current, which I considered positive and negative while discharging and charging. ‘Q’ 

is a recent Li-ion capacity since the cell loses capacity due to a rise in the cell's equivalent series resistance (ESR) after 

several charge-discharge cycles, called ‘capacity fade’[2], [15], [17]. 
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Equivalent Circuit Model (ECM) of Li-Ion Cell 

Li-ion cells incorporate different complex electrochemical kinetics inside, such as mass transfer, migration of ions 

between electrodes, side reactions and current collector reactions. Thus, battery models with high reliability and 

accuracyare crucial for the model-based estimation approach[2], [5], [10]. 

The Li-ion battery cell model can be categorised as an Empirical Model (EM), Electrochemical Model (ECM), 

Electrical Equivalent Circuit Model (EECM), Electrochemical Impedance Model (ECIM), and Data-Driven Model 

(DDM). EECM is usually implemented for state-of-charge estimation because of its simplicity, lower computational 

burden, and high compatibility with embedded system applications. The Electrical ECM can be categorised into the 

simple Rint, Randles, and nth-order RC (nRC) models[1], [2], [11], [12], [17]. 

In this article, I have implemented the algorithm to estimate the SOC for the general nRC model, including 

thehysteresis component in series with the OCV source. The mathematical model for the single RC EECM model using 

Kirchoff’s law is shown in Fig. 1. 

 
��(�)

��
= �̇(�) = −

�(�)�����(�)

�����
 (4) 

Where z(t) is the SOC at time ‘t’. We have assumed that the cell current is negative while charging, and the time rate of 

change of SOC increases. Similarly, the cell current is positive while discharging, and the time rate of change of SOC 

decreases. 

 ��̇(�) =
���(�)

��
= −

�

����
��(�) +

�

��
�����(�) (5) 

 ��̇(�) =
����(�)

��
= −

�

��
���(�) +

�

��
�����(�) (6) 

 � = ���� 

Where ‘τ’ is a time constant representing the slow diffusion process towards equilibrium OCV due to the Hybrid Pulse 

Power Characterization (HPPC) pulse charging or discharging test. 

 �(�) = �����(�)� − �������(�) − ��(�) (7) 

State-space Model of the Li-Ion Cell 

In this paper, we have considered the hysteresis effect in the OCV-SOV characteristics, which is described as the 

hysteresis voltage component ��(�)in the EECM in series with OCV(z(t)). The hysteresis state equation is expressed 

mathematically in Eq. (8). 

 ℎ̇(�) = ��(�)	ℎ(�) + ��(�)	�(�(�), �̇(�)) (8) 

��(�) = �
�(�)	�����(�)	�

�����

� , ���	��(�) = −��(�) 

In the discrete-time domain, all states can be described as follows, 

 �[� + 1] = �[�] −
�[�]	�����[�]Δ�

�����
�  (9) 

 

  

 
Fig. 1. Electrical ECM Model of Li-Ion Cell 
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 ��[� + 1] = ���	��[�] + ���	�����[�] (10) 

��� = exp �
−Δ�

�	�
� , ���	��� = 1 − ���  

 ℎ[� + 1] = ��[�]	ℎ[�] + ��[�]	���(�����[�]) (11) 

��[�] = exp �− �
�[�]	�����[�]	�	Δ�

�����

�� , ���	 

��[�] = ��[�] − 1,�ℎ��� exp(. ) = 	�(.) 

The hysteresis voltage term comprises instantaneous and dynamic hysteresis. The instantaneous hysteresis changes 

when the sign of the current ���(�����[�])changes. 

Overall hysteresis voltage is given in Eq. (12) 

 �����[�] = �	ℎ[�] + ��[�] (12) 

�ℎ���, �[�] = �
���(�����[�]),			|�����[�]| > 0

�[� − 1],			��ℎ������
� 

The state equation for the Li-Ion Cell Model is given by Eq. (13) 

 �[� + 1] = �[�]	�[�] + �[�]	�[�] (13) 

�[�] = �

�[�]

��[�]

ℎ[�]
� , (��[�])

� = [���[�] ���[�]] 

�[�] = �

1 0 0
0 ��� 0

0 0 ��[�]
� 

�[�] =

⎣
⎢
⎢
⎢
⎡
−�[�]Δt

�����
� 0

��� 0

0 ��[�] − 1⎦
⎥
⎥
⎥
⎤

 

��� = �
���� 0
0 ����

� , ���� = exp	(−
Δ�

����
) 

��� = �
����
����

� , ���� = 1 − ����  

�[�] = �
�����[�]

���(�����[�])
� 

Where, X[k] is a state vector, U[k] is a input vector 

Now, the output equation is given by Eq. (14), 

 
Fig. 2 OCV Vs SOC Static Charistics at temperatures: -25 , 25 , 
and 75  
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 �[�] = ���(�[�]) + �����[�] − ��[�] − ���[�] (14) 

��[�] = ��	�����[�], ���[�] =���	���[�] 

For the 1RC ECM Model,  

�[�] = ���(�[�]) + �����[�] − �������[�] − �����[�] 

The complete state-space model of Li-Ion cell is given by Eq. (15) and Eq. (16),  

 �[� + 1] = �[�]	�[�] + �[�]	�[�] (15) 

 �[�] = �(�[�], �[�]) (16) 

 

Experiments 

The data was collected from the lithium-ion cells after carefully defined laboratory procedures and following the 

manufacturer's recommended limits. The experiments were conducted by discharging and charging the lithium-ion cell 

within the minimum and maximum voltage limits. The experiment was conducted to obtain data for the OCV vs SOC 

relationship by performing experimental procedures, and using those experimental data to perform another laboratory 

procedure was performed to get the model's unknown parameters by performing a dynamic model fit using an 

optimisation procedure[16], [19], [20], [21], [22]. 

 

Lithium-Ion Battery Test bench 

I implemented the code in the Octave Software to perform the experimental procedures to get the OCV and SOC 

relationship. Since the characteristics contain a hysteresis effect due to the mismatch between the true OCV and 

experimental OCV at different SOC. In the code, the option of hysteresis is also included, which can be used to refine 

the OCV estimate to high accuracy. 

 

Results 

In Fig. 6 and Fig. 7, the filer performance is robust and exercised in the UDDS Drive cycles scenario. The EKF filter 

starts with an assumed initial SOC of 90%. Still, the main task is to find the sensor covariance matrix value to make the 

filter capable of operating if the initial estimate of the SOC has an error. The final results show that the rms value of the 

SOC estimation error is 0.17012%, and the SOC estimation error bound of 0.22558%, whereas in the case of SPKF, the 

rms value of the SOC estimation error is 0.0978267% and SOC estimation error bounds 0.225504%. 

 

III. STATE-OF-CHARGE ESTIMATION AND ANALYSIS 

Kalman filter (KF) is a minimum mean square error estimator that works on the principle of the recursive Bayesian 

estimation approach. KF estimates the optimal solution if the model of the dynamical system is linear and all the 

uncertainties, such as sensor and state uncertainties, are Gaussian, which is not a realistic situation. However, KF works 

 
Fig. 3.OCV vs time charging and discharging characteristics 
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well if the model is merely nonlinear. KF finds wide applications such as Guidance, Navigation, and Control (GNC), 

target tracking, robot positioning, and signal processing, to name a few. Since KF is infeasible for non-linear models, 

two non-linear variants, EKF and SPKF, are extensively applied to state estimation of nonlinearsystems. However, each 

has advantages and drawbacks. The EKF algorithm is well suited for slightly non-linear models, and the assumptions 

regarding the probability distribution of the uncertainties must be white and Gaussian. The method is computationally 

very demanding because of the estimation of the Jacobian matrices for both state and output function models. In 

contrast, the SPKF algorithm applies to the highly non-linear models, and uncertaintiesdon’t need to be Gaussian. 

However, the method is conceptually complicated and starts with the collection of sigma points, which best represent 

the priori statistic, to generate the collection of sigma points for the posterior statistic[10], [15], [23], [24]. 

The principle of Kalman Filters is to estimate the state with the minimum variance possible by performing a two-step 

process. KF does this by first predicting the state or priori estimate by using past output sensor measurements data and 

the state equation of the system's state-space model and then correcting the predicted estimate by adding the additional 

correction term, which is the product of the innovation term and the Gain term called Kalman Gain to estimate the 

improved or posterior estimate. The innovation is the difference between the actual output sensor data and the predicted 

output based on the expected state estimate or priori[8], [14], [15], [17], [23], [24]. 

 

Extended Kalman Filter (EKF) 

The extended Kalman filter (EKF) algorithm is the most preferred method for the battery parameter/state estimation and 

is a nonlinear version of the LKF. EKF works on the principle of linearisation of the nonlinear function at the operating 

point for every sampling instant. The algorithm computes the partial derivatives of the non-linear function by using 

first-order Taylor series expansion. The computation of the Jacobian matrix is to be performed at every sampling 

instant, which is a computationally very expensive task. A limitation of the EKF algorithm is that only first-order 

accuracy can be achieved using first-order Taylor expansion in the linearisation process. The EKF algorithm's accuracy 

depends on the battery's ECM model and prior knowledge of covariance matrices of the sensor uncertainties[2], [15], 

[16], [17], [18], [19], [20]. 

 

State-space model of the Li-Ion Cell 

 �[� + 1] = �(�[�], �[�], �[�]) (17) 

(�[�])� = [�[�] (��[�])
� ℎ[�]] 

�[�]� = [�����[�] ���(�����[�])] 

 �[�] = ℎ(�[�], �[�], �[�]) (18) 

 
Fig. 4. SOC Estimation using the EKF Method 
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Fig. 5. SOC Estimation using the UKF(SPKF) Method 

Where, �[�]~�(0, �[�]), ���	�[�]~�(0, �[�]) 

EKF Algorithm utilises the Taylor series expansion of the non-linear function at the operating estimates, ���
�, ���	��� , 

However, the noise is white and Gaussian, but for the sake of generality, the mean of process noise we consider as ���. 

 ���[�] = �(�[�]/{�[0], �[1], … . . , �[� − 1]}) (19) 

 ���[�] = �(�[�]/{�[0], �[1], … . . , �[�]}) (20) 

 ���[� + 1] = �����[�], �[�], ��[�]� (21) 

Using the Taylor series expansion method, 

 ���[�] = �(�[�], �[�], �[�]) − ���[�] (22) 

 ���[�] = ��[�]���[�] + ��[�]��[�] (23) 

��[�] = ���
(�[�], �[�], �[�])

��[�]
�
�[�]����[�]

, ���	 

��[�] = ���(�
[�], �[�], �[�])

��[�]
�
�[�]���[�]

 

 
Fig. 6. SOC Estimation performance of EKF 
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Fig.7. SOC Estimation performance of CDKF (SPKF) 

 

 �������[�]� = �[���[�] × (���[�])�] (24) 

 �������[�]� = ��[�]�������[�]���[�]� + ��[�]���(��[�])��[�]� (25) 

Similarly, for the output equation, 

 ��[�] = �(�[�]/{�[0], �[1], … , �[� − 1]}) (26) 

 ��[�] = ℎ(���[�], �[�], �̅[�]) (27) 

Using the Taylor Series Expansion, 

 ��[�] = ℎ(�[�], �[�], �[�]) − ��[�] (28) 

 ��[�] = ��[�]���[�] + ���̃[�] (29) 

��[�] = ��ℎ(�
[�], �[�], �[�])

��[�]
�
�[�]����[�]

 

��[�] = ��ℎ(�
[�], �[�], �[�])

��[�]
�
�[�]���[�]

 

���(��[�]) = �[��[�](��[�])�] 

 ���(��[�]) = ��[�]�������[�]���[�]� + ��[�]���(�̃[�])��[�]� (30) 

Kalman Gain K[k], 

 �[�] = ���(���[�])��[�]�(��[�]�������[�]���[�]� + ��[�]���(�̃[�])��[�]�)�� (31) 

Posterior Estimates of State and Error Covariance Matrix 

 ���[�] = ���[�] + �[�]��[�] (32) 

 �������[�]� = (1 − �[�]��[�])�������[�]��1 − �[�]��[�]�
�
+ �[�]���(��[�])�[�]� (33) 

In Fig. 4, the SOC estimation error RMS value of 0.339114% is achieved. 

 

Sigma-point Kalman Filter (SPKF) 

The unscented transformation (UT) was developed to address the deficiencies of linearisation in EKF by providing a 

more direct and explicit mechanism for transforming mean and covariance information. Table 1 discusses two SPKF 

variants: unscented KF (UKF) and Central Difference KF (CDKF). 

In SPKF, a minimal set of carefully chosen sample points (sigma points). The nonlinear function is applied to each 

sigma point to yield a collection of all the transformed points. The statistics of the transformed points can then be 

calculated to estimate the nonlinearly transformed mean and covariance. These sample points capture entirely the true 
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mean and covariance of the Gaussian random variable and, when propagated through the actual non-linear system, 

accurately capture the posterior mean and covariance to the 3rd order (Taylor series expansion) for any nonlinearity. 

The EKF, in contrast, only achieves first-order accuracy. Remarkably, the computational complexity of the SPKF is in 

the same order as that of the EKF[2], [13], [18], [21], [22], [23], [24], [25], [26]. 

The Algorithm starts with a set of sample points. Researchers call them sigma points, and the number of such points 

depends on the dimension of the state vector. If the size of the state vector is L, the number of points will be � = 2� +

1. 

The concept of the Sigma Point Kalman Filter, as discussed below, 

I represented the � be a set of sigma points, 

 � = {��, 	�� + ����(��), 	�� − ����(��)} (34) 

Where, X is a state vector, and  ������� is a Covariance matrix of X, ������� = �[(� − ��)(� − ��)�] 

�� = ���
(�)

��

�

���

, ������� =���
(�)(� − ��)(� − ��)�

�

���

 

��
(�)

, ���	��
(�)���	����	�������,	 

�ℎ���,���
(�)

�

���

= 1, ���	���
(�)

�

���

= 1 

I represented the output set of sample points by a symbol � 

 �� = �(��) (35) 

 �� = ∑ ��
(�)�

��� �� (36) 

 ���(��) = ∑ ��
(�)(� − ��)(� − ��)��

���  (37) 

Where, ��, ���	���(��) are mean and covariance of output sigma points. 

Sigma Point Kalman Filter (SPKF) state estimation procedure for Li-Ion Cell is described below, 

 ����
� [�] = [���[�]� ��[�] �̅[�]] (38) 

 ��������
� [�]� = ������������[�]�, ���(��), ���(�̃)� (39) 

Where, Prior estimate of Augmented State and Error covariance matrix. 

 

Weights for Two Different Variants of the SPKF Method 

Weights are Real and Scalars: ��
(�)

, ���	��
(�)

 for k=0 to N Sigma Points 

Methods � ��
(�)

 ��
(�)

 ��
(�)

 ��
(�)

 

UKF �(� + �) �
(� + �)�  �

(� + �)� + (1 − ��

+ �) 

�
[2 × (� + �)]�  �

[2 × (� + �)]�  

CDKF h (ℎ� − �)
(ℎ�)

�  
(ℎ� − �)

(ℎ�)
�  

1
(2 × ℎ�)�  1

(2 × ℎ�)�  

� = �� × (� + �) − �,�ℎ���	10�� ≤ �� ≤ 1, ���	�	�	{0, 3 − �} 

The h may take any positive value 

For Gaussian Random Variables � = 2, ℎ = √3 

 ����
� [�] = {�����

� [�], �����
� [�] ± �����(������ [�])} (40) 

�̂���
� [�],the augmented matrix itself contains the information on state, process, and observation noises represented as 

��
�[�], ��

�[�], and ��
�[�] 

 ��
�[� + 1] = �(��

�[�], �[�], ��
�[�]) (41) 

��
�[�], is a set of prediction sample points. 
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Now, Estimating the Mean and Covariance of the prediction sample points, I represented the mean as ����
� [�], and 

Covariance as ���(����
� [�]), 

 ���[� + 1] = �[�(�[�], �[�], �[�])/{�[0], �[1], … , �[�]}] (42) 

 ���[�] = ∑ ��
(�)

���
� [�]�

���  (43) 

���
� [�] = �(���

� [� − 1], �[� − 1], ���
� [� − 1]) 

 ��������
� [�]� = ∑ ��

(�)(���
� [�] − ���[�])(���

� [�] − ���[�])��
���  (44) 

Output Estimate �[�], 

 �[�] = ℎ(��
�[�], �[�], ��

�[�]) (45) 

Now, Estimating the Mean and Covariance of the output estimate sample points, I represented the mean ����[�], and 

Covariance as ���(����[�]), 

 ����[�] = �[ℎ(�[�], �[�], �[�])/{�[0], �[0], … , �[� − 1]}] (46) 

 ����[�] = ∑ ��
(�)�

��� ��[�] (47) 

��[�] = ℎ(���
� [�], �[�], ���

� [�]) 

Now, the Estimator Gain matrix, 

 �[�] = ���[���
�[�] − ���[�]�, (�[�] − ��[�])] × ���(��[�] − ��[�])�� (48) 

�������
�[�] − ���[�]�, (�[�] − ��[�])� = ���

(�)����
� [�] − ���[�]� × (��[�] − ��[�])�

�

���

 

�����[�] − ����[�]� =���
(�)(��[�] − ��[�])(��[�] − ��[�])�

�

���

 

Posterior estimates of the state and covariance, 

 ���[�] = ���[�] + �[�](�[�] − ��[�]) (49) 

 �������[�]� = �������[�]� − �[�]���(��[�])�[�]� (50) 

In Fig. 5, the SOC estimation error RMS value of 0.415591% is achieved. 

 

IV. CONCLUSION 

As the demand for efficient and reliable energy storage technologies is significant nowadays, carefully monitoring these 

systems is crucial. In this article, the performance of both the Extended Kalman filter and the Sigma-point Kalman filter 

is analysed to estimate the state of charge of a Li-Ion battery cell in the presence of uncertainties in the initial SOC and 

sensor measurements. To best approximate the Li-Ion cell, Thevenin’s RC ECM with the hysteresis component is 

implemented for this research. The simulation results show that the CDKF (SPKF) performs slightly better than the 

EKF in SOC estimation. Both methods exhibit robustness against uncertainties in the initial SOC estimate and sensor 

measurements. There are state-of-the-art methods available, and data-driven methods are one of them. In my upcoming 

research, I will implement data-driven methods with my existing method to refine estimate accuracy further. 
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