(, IJARSCT ISSN (Online) 2581-9429

xx International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)
IJ ARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal
Impact Factor: 7.301 Volume 3, Issue 8, January 2023

Data Structures

Janhavi Padhya and Ms. Anjali Yadav
Shri G. P. M. Degree College, Vile Parle (E), Mumbai, Maharashtra, India

Abstract: A data structure is a specialized format for organizing, processing, retrieving and storing data.
There are several basic and advanced types of data structures, all designed to arrange data to suit a
specific purpose. Data structures make it easy for users to access and work with the data they need in
appropriate ways

Keywords: data structure

I. INTRODUCTION
A data structure is a specialized format for organizing, processing, retrieving and storing data. There are several basic
and advanced types of data structures, all designed to arrange data to suit a specific purpose. Data structures make it
easy for users to access and work with the data they need in appropriate ways

OVERVIEW:
A data structure is a particular way of organizing data in a computer so that it can be used effectively. The idea is to
reduce the space and time complexities of different tasks.

Classification/Types of Data Structures:
Linear Data Structure
Non-Linear Data Structure.

Linear Data Structure:
Elements are arranged in one dimension, also known as linear dimension.
Example: lists, stack, queue, etc.

Non-Linear Data Structure
Elements are arranged in one-many, many-one and many-many dimensions.
Example: tree, graph, table, etc.

DETAIL INFORMATION:

A data structure is a specialized format for organizing, processing, retrieving and storing data. There are several basic
and advanced types of data structures, all designed to arrange data to suit a specific purpose. Data structures make it
easy for users to access and work with the data they need in appropriate ways. Most importantly, data structures frame
the organization of information so that machines and humans can better understand it.

In computer science and computer programming, a data structure may be selected or designed to store data for the
purpose of using it with various algorithms. In some cases, the algorithm's basic operations are tightly coupled to the
data structure's design. Each data structure contains information about the data values, relationships between the data
and -- in some cases -- functions that can be applied to the data.

For instance, in an object-oriented programming language, the data structure and its associated methods are bound
together as part of a class definition. In non-object-oriented languages, there may be functions defined to work with the
data structure, but they are not technically part of the data structure.

Why are data structures important?

Typical base data types, such as integers or floating-point values, that are available in mostec

5=

puter programming
{ applications that

115

Copyright to IJARSCT
www.ijarsct.co.in



(, IJARSCT ISSN (Online) 2581-9429

xx International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)
IJ ARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal
Impact Factor: 7.301 Volume 3, Issue 8, January 2023

ingest, manipulate and produce information must understand how data should be organized to simplify processing. Data
structures bring together the data elements in a logical way and facilitate the effective use, persistence and sharing of
data. They provide a formal model that describes the way the data elements are organized.

Data structures are the building blocks for more sophisticated applications. They are designed by composing data
elements into a logical unit representing an abstract data type that has relevance to the algorithm or application. An
example of an abstract data type is a "customer name" that is composed of the character strings for "first name,"
"middle name" and "last name."

It is not only important to use data structures, but it is also important to choose the proper data structure for each task.
Choosing an ill-suited data structure could result in slow runtimes or unresponsive code. Five factors to consider when
picking a data structure include the following:

What kind of information will be stored?

How will that information be used?

Where should data persist, or be kept, after it is created?

What is the best way to organize the data?

What aspects of memory and storage reservation management should be considered?

How are data structures used?

In general, data structures are used to implement the physical forms of abstract data types. Data structures are a crucial
part of designing efficient software. They also play a critical role in algorithm design and how those algorithms are used
within computer programs.

Early programming languages -- such as Fortran, C and C++-- enabled programmers to define their own data
structures. Today, many programming languages include an extensive collection of built-in data structures to organize
code and information. For example, Python lists and dictionaries, and JavaScript arrays and objects are common coding
structures used for storing and retrieving information.

Software engineers use algorithms that are tightly coupled with the data structures -- such as lists, queues and mappings
from one set of values to another. This approach can be fused in a variety of applications, including managing
collections of records in a relational database and creating an index of those records using a data structure called a
binary tree.

Some examples of how data structures are used include the following:

Storing data. Data structures are used for efficient data persistence, such as specifying the collection of attributes and
corresponding structures used to store records in a database management system.

Managing resources and services. Core operating system (OS) resources and services are enabled through the use of
data structures such as linked lists for memory allocation, file directory management and file structure trees, as well as
process scheduling queues.

Data exchange. Data structures define the organization of information shared between applications, such as TCP/IP
packets.

Ordering and sorting. Data structures such as binary search trees -- also known as an ordered or sorted binary tree --
provide efficient methods of sorting objects, such as character strings used as tags. With data structures such as priority
queues, programmers can manage items organized according to a specific priority.

Indexing. Even more sophisticated data structures such as B-trees are used to index objects, such as those stored in a
database.

Searching. Indexes created using binary search trees, B-trees or hash tables speed the ability to find a specific sought-
after item.

Scalability. Big data applications use data structures for allocating and managing data storage across distributed storage
locations, ensuring scalability and performance. Certain big data programming environments -- such as Apache Spark --
provide data structures that mirror the underlying structure of database records to simplify querying.

Characteristics of data structures

Data structures are often classified by their characteristics. The following three characteristics are examples:

with an array, or in an unordered sequence, such as with a graph.

Copyright to IJARSCT
www.ijarsct.co.in




(, IJARSCT ISSN (Online) 2581-9429

xx International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)
IJ ARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal
Impact Factor: 7.301 Volume 3, Issue 8, January 2023

Homogeneous or heterogeneous. This characteristic describes whether all data items in a given repository are of the
same type. One example is a collection of elements in an array, or of various types, such as an abstract data type
defined as a structure in C or a class specification in Java.

Static or dynamic. This characteristic describes how the data structures are compiled. Static data structures have fixed
sizes, structures and memory locations at compile time. Dynamic data structures have sizes, structures and memory
locations that can shrink or expand, depending on the use.

Data types

If data structures are the building blocks of algorithms and computer programs, the primitive -- or base -- data types are
the building blocks of data structures. The typical base data types include the following:

Boolean, which stores logical values that are either true or false.

integer, which stores a range on mathematical integers -- or counting numbers. Different sized integers hold a different
range of values -- e.g., a signed 8-bit integer holds values from -128 to 127, and an unsigned long 32-bit integer holds
values from 0 to 4,294,967,295.

Floating-point numbers, which store a formulaic representation of real numbers.

Fixed-point numbers, which are used in some programming languages and hold real values but are managed as digits
to the left and the right of the decimal point.

Character, which uses symbols from a defined mapping of integer values to symbols.

Pointers, which are reference values that point to other values.

String, which is an array of characters followed by a stop code -- usually a "0" value -- or is managed using a length
field that is an integer value.

The data structure hierarchy shows how data types and data structures are related.

Types of data structures

The data structure type used in a particular situation is determined by the type of operations that will be required or the
kinds of algorithms that will be applied. The various data structure types include the following:

Array. An array stores a collection of items at adjoining memory locations. Items that are the same type are stored
together so the position of each element can be calculated or retrieved easily by an index. Arrays can be fixed or
flexible in length.

An array can hold a collection of integers, floating-point numbers, stings or even other arrays.

Stack. A stack stores a collection of items in the linear order that operations are applied. This order could be last in,
first out (LIFO) or first in, first out (FIFO).

Queue. A queue stores a collection of items like a stack; however, the operation order can only be first in, first out.
Linked list. A linked list stores a collection of items in a linear order. Each element, or node, in a linked list contains a
data item, as well as a reference, or link, to the next item in the list.

Linked list data structures are a set of nodes that contain data and the address or a pointer to the next node.

Tree. A tree stores a collection of items in an abstract, hierarchical way. Each node is associated with a key value, with
parent nodes linked to child nodes -- or sub nodes. There is one root node that is the ancestor of all the nodes in the tree.
A binary search tree is a set of nodes where each has a value and can point to two child nodes.

Heap. A heap is a tree-based structure in which each parent node's associated key value is greater than or equal to the
key values of any of its children's key values.

Graph. A graph stores a collection of items in a nonlinear fashion. Graphs are made up of a finite set of nodes, also
known as vertices, and lines that connect them, also known as edges. These are useful for representing real-world
systems such as computer networks.

Trie. A trie, also known as a keyword tree, is a data structure that stores strings as data items that can be organized in a
visual graph.

Hash table. A hash table -- also known as a hash map -- stores a collection of items in an associative array that plots
keys to values. A hash table uses a hash function to convert an index into an array of buckets that contain the desired
data item.

Copyright to IJARSCT
www.ijarsct.co.in




(, IJARSCT ISSN (Online) 2581-9429

xx International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)
IJ ARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal
Impact Factor: 7.301 Volume 3, Issue 8, January 2023

How to choose a data structure?

When choosing a data structure for a program or application, developers should consider the answers to the following
three questions:

Supported operations. What functions and operations does the program need?

Computational complexity. What level of computational performance is tolerable? For speed, a data structure whose
operations execute in time linear to the number of items managed -- using Big O Notation: O(n) -- will be faster than a
data structure whose operations execute in time proportional to the square of the number of items managed -- O(n"2).
Programming elegance. Are the organization of the data structure and its functional interface easy to use?

Some real-world examples include:

Linked lists are best if a program is managing a collection of items that don't need to be ordered, constant time is
required for adding or removing an item from the collection and increased search time is OK.

Stacks are best if the program is managing a collection that needs to support a LIFO order.

Queues should be used if the program is managing a collection that needs to support a FIFO order.

Binary trees are good for managing a collection of items with a parent-child relationship, such as a family tree.

Binary search trees are appropriate for managing a sorted collection where the goal is to optimize the time it takes to
find specific items in the collection.

Graphs work best if the application will analyze connectivity and relationships among a collection of individuals in a
social media network.

This was last updated in March 2021

Continue Reading About data structures

Redis aims for an infinite variety of data structures

The rise of multi-model databases to support data variety

An enterprise architects guide to the data modeling process

How the SHA-3 competition declared a winning has function

7 best courses to learn data structure and algorithms

Related Terms

C++

C++ is an object-oriented programming (OOP) language that is viewed by many as the best language for creating large-
scale ... See complete definition

data lakehouse

A data lakehouse is a data management architecture that combines the key features and the benefits of a data lake and a
data ... See complete definition

tuple

A tuple, pronounced TUH-pull, is an ordered and finite list of elements in various fields of interest, including
computing. See complete definition

I1. CONCLUSION
This course covered the basics of data structures. With this we have only scratched the surface. Although we have built
a good foundation to move ahead.
Data Structures is not just limited to Stack, Queues, and Linked Lists but is quite a vast area. There are many more data
structures which include Maps, Hash Tables, Graphs, Trees, etc. Each data structure has its own advantages and
disadvantages and must be used according to the needs of the application. A computer science student at least knows
the basic data structures along with the operations associated with them.
Many high level and object oriented programming languages like C#, Java, Python come built in with many of these
data structures. Therefore, it is important to know how things work under the hood.

REFERENCES
[1]. Author:Klaus Samelson and Friedrich L. Bauer Year: 1957 Uses: Algorithms
Copyright to IJARSCT 118
www.ijarsct.co.in




(f IJARSCT ISSN (Online) 2581-9429

xx International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal
Impact Factor: 7.301 Volume 3, Issue 8, January 2023

2]

https://www.techtarget.com/searchdatamanagement/definition/data-structure
[3]. https://www.geeksforgeeks.org/introduction-to-data-structures/
[4]. :https://www.techtarget.com/searchdatamanagement/definition/data-structure
[5]. https://www.codecademy.com/resources/blog/why-data-structures/

Copyright to IJARSCT 119

www.ijarsct.co.in




