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Abstract: Consider the geometric Linnik distribution GL(a, 1) with characteristic function
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=— 1>0,0<a<2. type Il Generalized Geometric Linnik distribution
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GeGLy(a,A,v) with characteristic function $(t)=| —— | . 0<a<2 ;3so,

1+In(1+A[f)

v > 0. [9] used empirical characteristic function to estimate the parameters of a stable law. [I]used
characteristic function technique to estimate the parameters of geometric stable law (see also, [2]). Here
we estimate the parameters of geometric Linnik distribution and Generalized Geometric Linnik distribution
using empirical characteristic function.
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I. INTRODUCTION
As a generalization of the Linnikdistribution [8] introduced semi @ -Laplace distribution. A random variable X on R

has semi o -Laplace distribution if its characteristic function ¢(t) is of the form

o(t) = S (1.1)
1+[(*8(t)
where O(t) satisfies the functional equation
5 = 5(p%ft),0<p<1,0<as2. (12).
[7]introduced generalized Linnik law with characteristic function
o(t) = ;V, v>0, O<a<2. (1.3)

(1)

This distribution is known as Pakes generalized Linnik distribution. When v =1, it reduces to o -Laplace distribution

where as when o = 2, it reduces to the generalized Laplacian distribution of [6] .
DEFINITION 1.1

A random variable X on R has the generalized Linnik distribution and writt X d GeL(a, A, p) if it has the
characteristic function

¢(t):;,p>0,/1>0,0<a32. (1.4)
1+ A[")?
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Geometric Linnik distribution was studied in [3].Type I Generalized Geometric Linnik distribution and type II
Generalized Geometric Linnik distribution are introduced by [4].Autoregressive Models of Generalized Geometric
Linnik distributions are developed in [5].

II. ESTIMATION OF PARAMETERS OF GEOMETRIC LINNIK DISTRIBUTION
DEFINITION 2.1

A random variable X on R is said to have geometric Linnik distribution and write X d GL(a, L) if its characteristic
function ¢(t)is

b)) = — 1 iR O0<a<2.1>0. @.1)

1+In(1+ A ()

[9]used empirical characteristic function to estimate the parameters of a stable law. [1]) used characteristic function
technique to estimate the parameters of geometric stable law (see also, [2]). Here we estimate the parameters of
geometric Linnik distribution using empirical characteristic function.

Consider the geometric Linnik distribution with characteristic function

1

=, 1>0,0<a<2.
1+In(1+ A{%)

A

1 & ix,
The function ¢, (t)z—Zel 7 is called the sample ( empirical ) characteristic function. We have
J=1
A

A
E| ¢, (t) |=@(t) and by the strong law of large numbers, @, (¢) — 25 5 0(1).

Take

1
(D .
sy =e D —1=2]".
Then
s =Al4]", i=1,2.
Taking logarithms on both sides, we get

Ins(1y) =InA+alnly),

InS(ty) =InA+alnly).

Hence,
a[In|y|-Inf,|]=In5(4)-1nS() .
That is,
In o)
__ o)
In m |
2|
For a #1,
InS(t) Injty| =Ints|In A+ Inft|In|s, |
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and

InS(ty) Iny| = Infy|In 2 +an|t,|In|s).

Hence,
In A{In[y|~In|t, s = N 6(2,) In]y |~ In 6(#) Inls,
Therefore,
A =exp In6(15) In(1y) —In (1)) In(z)
ln|t1|—1n|12| :
In é;" (1)
Thatis, &= %
In -1
2|
and for o, # 1,

A

2= In 4, (1) In(#)—In 5, (1) In(%y)

ln|t1|—ln|t2|

where 0,,(¢) = exp{ = 1} —1 is the sample counterpart of O(?).

1
()

III. ESTIMATION OF PARAMETERS OF GENERALIZED GEOMETRIC LINNIK DISTRIBUTION
DEFINITION 3.1
A random variable X on R is said to have type I generalized geometric Linnik distribution and write

X d GeGLj(a, A, p) if it has the characteristic function
1

= ,0<a<2,p>0,1>0. (3.1
1+ pIn(1+ A )

DEFINITION 3.2
A random variable X on R has type II generalized geometric Linnik distribution and writes X d Ge GL,(a, A,7), if

it has the characteristic function
T

D=|l— 1 | teR0<a<2 Air>0.

1+ In(1+ AJ]%) 2

Note that when 7 =1, type II generalized geometric Linnik distribution reduces to geometric Linnik distribution.
Following the method of empirical characteristic function used in the case of GL distribution, we can estimate the

GeGL, distribution parameters.

Consider the GeGL, (&, A,V) characteristic function.
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1
1+In(1+ )

We have, the empirical characteristic function is

9(t) =

Bu)=- 3¢
n =
Ing(t) = —v 11{1 +1In(1+ ,1|t|“)} .

Proceeding as in Section 2, we get

5n(11)

o= on(ty)
lnm

2]

In

N

and for o # 1,

where

A A -1/v
On(t)=exp [qﬁn (t)} —1|-1and

oo In, @)

A

In| 1+In(1+ A]f|“)

A
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