

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, February 2024

Estimation of Parameters of Generalized Geometric Linnik Distribution

Mariamma Antony

Associate Professor, Department of Statistics Little Flower College, Guruvayoor, Kerala, India mariammaantony@rediffmail.com

Abstract: Consider the geometric Linnik distribution $GL(\alpha, \lambda)$ with characteristic function $\phi(t) = \frac{1}{1 + \ln(1 + \lambda |t|^{\alpha})}, \lambda > 0, 0 < \alpha \le 2.$ and type II Generalized Geometric Linnik distribution

 $GeGL_{2}(\alpha,\lambda,\nu) \quad with \ characteristic \ function \ \phi(t) = \left[\frac{1}{1+\ln(1+\lambda|t|^{\alpha})}\right]^{\nu}. \quad 0 < \alpha \le 2, \quad \lambda > 0,$

v > 0. [9] used empirical characteristic function to estimate the parameters of a stable law. [1]used characteristic function technique to estimate the parameters of geometric stable law (see also, [2]). Here we estimate the parameters of geometric Linnik distribution and Generalized Geometric Linnik distribution using empirical characteristic function.

Keywords: Geometric Linnik Distribution, Generalized Geometric Linnik Distribution

I. INTRODUCTION

As a generalization of the Linnik distribution [8] introduced semi α -Laplace distribution. A random variable X on R has semi α -Laplace distribution if its characteristic function $\phi(t)$ is of the form

$$\phi(\mathbf{t}) = \frac{1}{1+|\mathbf{t}|^{\alpha}\delta(\mathbf{t})} \tag{1.1}$$

where $\delta(t)$ satisfies the functional equation

$$\delta(t) = \delta\left(p^{\frac{1}{\alpha}t}\right), 0
(1.2)$$

[7]introduced generalized Linnik law with characteristic function

$$\phi(t) = \frac{1}{\left(1 + |t|^{\alpha}\right)^{\nu}}, \quad \nu > 0, \quad 0 < \alpha \le 2.$$
(1.3)

This distribution is known as Pakes generalized Linnik distribution. When v = 1, it reduces to α -Laplace distribution where as when $\alpha = 2$, it reduces to the generalized Laplacian distribution of [6].

DEFINITION 1.1

A random variable X on R has the generalized Linnik distribution and write $X \stackrel{d}{=} GeL(\alpha, \lambda, p)$ if it has the characteristic function

$$\phi(t) = \frac{1}{(1+\lambda|t|^{\alpha})^{p}}, \ p > 0, \ \lambda > 0, \ 0 < \alpha \le 2.$$
(1.4)

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, February 2024

Geometric Linnik distribution was studied in [3]. Type I Generalized Geometric Linnik distribution and type II Generalized Geometric Linnik distribution are introduced by [4]. Autoregressive Models of Generalized Geometric Linnik distributions are developed in [5].

II. ESTIMATION OF PARAMETERS OF GEOMETRIC LINNIK DISTRIBUTION

DEFINITION 2.1

A random variable X on R is said to have geometric Linnik distribution and write $X \stackrel{d}{=} GL(\alpha, \lambda)$ if its characteristic

function $\phi(t)$ is

$$\phi(t) = \frac{1}{1 + \ln(1 + \lambda |t|^{\alpha})}, t \in R, 0 < \alpha \le 2, \lambda > 0.$$
(2.1)

[9]used empirical characteristic function to estimate the parameters of a stable law. [1]) used characteristic function technique to estimate the parameters of geometric stable law (see also, [2]). Here we estimate the parameters of geometric Linnik distribution using empirical characteristic function.

Consider the geometric Linnik distribution with characteristic function

$$\phi(t) = \frac{1}{1 + \ln(1 + \lambda |t|^{\alpha})}, \ \lambda > 0, \ 0 < \alpha \le 2$$

The function $\hat{\phi}_n(t) = \frac{1}{n} \sum_{j=1}^n e^{itX_j}$ is called the sample (empirical) characteristic function. We have

$$E\begin{bmatrix} \hat{\phi}_n(t) \end{bmatrix} = \phi(t) \text{ and by the strong law of large numbers, } \hat{\phi}_n(t) \xrightarrow{a.s} \phi(t).$$

Take

$$\delta(t) = e^{\left(\frac{1}{\phi(t)}-1\right)} - 1 = \lambda \left|t\right|^{\alpha}.$$

Then

$$\delta(t_i) = \lambda \left| t_i \right|^{\alpha}, \ i = 1, 2.$$

Taking logarithms on both sides, we get

 $\ln \delta(t_1) = \ln \lambda + \alpha \ln |t_1|,$

$$\ln \delta(t_2) = \ln \lambda + \alpha \ln |t_2|$$

Hence,

$$\alpha \left[\ln |t_1| - \ln |t_2| \right] = \ln \delta(t_1) - \ln \delta(t_2)$$

That is,

$$\alpha = \frac{\ln \frac{\delta(t_1)}{\delta(t_2)}}{\ln \frac{|t_1|}{|t_2|}}$$

For $\alpha \neq 1$,

$$\ln \delta(t_1) \ln |t_2| = \ln |t_2| \ln \lambda + \alpha \ln |t_1| \ln |t_2|$$

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, February 2024

and

 $\ln \delta(t_2) \ln |t_1| = \ln |t_1| \ln \lambda + \alpha \ln |t_2| \ln |t_1|.$

Hence,

$$\ln \lambda \{ \ln |t_1| - \ln |t_2| \} = \ln \delta(t_2) \ln |t_1| - \ln \delta(t_1) \ln |t_2|$$

Therefore,

$$\lambda = \exp\left\{\frac{\ln \delta(t_2) \ln(t_1) - \ln \delta(t_1) \ln(t_2)}{\ln|t_1| - \ln|t_2|}\right\}.$$

$$\stackrel{\wedge}{\alpha} = \frac{\ln \frac{\delta_n(t_1)}{\delta_n(t_2)}}{\ln \frac{|t_1|}{|t_2|}}$$

and for $\alpha \neq 1$,

That is,

$$\hat{\lambda} = \exp\left\{\frac{\ln \hat{\delta_n(t_2)} \ln(t_1) - \ln \hat{\delta_n(t_1)} \ln(t_2)}{\ln |t_1| - \ln |t_2|}\right\}$$

where $\hat{\delta_n(t)} = \exp\left\{\frac{1}{\phi_n(t)} - 1\right\} - 1$ is the sample counterpart of $\delta(t)$

III. ESTIMATION OF PARAMETERS OF GENERALIZED GEOMETRIC LINNIK DISTRIBUTION DEFINITION 3.1

A random variable X on R is said to have type I generalized geometric Linnik distribution and write $X \underline{d} GeGL_1(\alpha, \lambda, p)$ if it has the characteristic function

$$\phi(t) = \frac{1}{1 + p \ln(1 + \lambda |t|^{\alpha})}, \ 0 < \alpha \le 2, \ p > 0, \ \lambda > 0.$$
(3.1)

DEFINITION 3.2

A random variable X on R has type II generalized geometric Linnik distribution and writes $X \leq Ge GL_2(\alpha, \lambda, \tau)$, if it has the characteristic function

$$\phi(t) = \left[\frac{1}{1 + \ln(1 + \lambda |t|^{\alpha})}\right]^{\tau}, t \in R, 0 < \alpha \le 2, \lambda, \tau > 0.$$
(3.2)

Note that when $\tau = 1$, type II generalized geometric Linnik distribution reduces to geometric Linnik distribution. Following the method of empirical characteristic function used in the case of GL distribution, we can estimate the $GeGL_2$ distribution parameters.

Consider the $GeGL_2(\alpha, \lambda, \nu)$ characteristic function.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, February 2024

$$\phi(t) = \left[\frac{1}{1 + \ln(1 + \lambda |t|^{\alpha})}\right]^{\nu}$$

We have, the empirical characteristic function is

$$\hat{\phi}_n(t) = \frac{1}{n} \sum_{j=1}^n e^{itX_j}.$$
$$\ln \phi(t) = -\nu \ln \left[1 + \ln(1 + \lambda |t|^{\alpha}) \right].$$

Proceeding as in Section 2, we get

$$\hat{\alpha} = \frac{\ln \frac{\delta_n(t_1)}{\delta_n}}{\ln \frac{|t_1|}{|t_2|}} \text{ and for } \alpha \neq 1,$$

where

$$\hat{\delta}_{n}(t) = \exp\left[\left[\hat{\phi}_{n}(t)\right]^{-1/\nu} - 1\right] - 1 \text{ and}$$
$$\hat{\nu} = \frac{-\ln \phi_{n}(t)}{\ln\left[1 + \ln(1 + \lambda |t|^{\alpha})\right]}.$$

REFERENCES

[1].Jacques, C., Remillard, B. and Theodorescu, R. (1999) Estmation of Linnik parameters. *Statist. Decisions* 17, 213-236.

[2].Kozubowski, T.J. (1999) Geometric stable laws: estimation and applications. *Math.Comput. Modelling* - Special Issue: *Distributional Modeling in Finance* **29**, 241-253.

[3].A...Mariamma,(2013)GeometricLinnikDistribution.J.P.J.F.A.S,3(1-2),1-9.

[4] A. Mariamma, "Generalized Geometric Linnik Distribution", Asian Journal of Statistical Sciences, vol. 2, 2022, pp.105-110.

[5] A. Mariamma, "Time Series Models With Generalized Geometric LinnikMarginals", Asian Journal of Statistical Sciences, vol. 3, 2023,

pp.57-60

[6.].Mathai, A.M. (1993)On non-central generalized Laplacianness of quadratic forms in normal variables. J. Multi. Anal. 45, 239-246.

[7.].Pakes, A.G. (1998) Mixture representations for symmetric generalized Linnik laws. Statist. Prob. Letters 37, 213-221.

[8.].Pillai, R.N. (1985). Semi α-Laplace distributions.Commun. Statist.-Theor. Meth. 14, 991-1000

[9] Press, J.S. (1972) Etimation in univariate and multivariate stable distributions. J. Amer. Statist. Assoc. 67, 842-846.

