

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, February 2024

Load Balancing using Weight Based scheme in AWS

Bhavana MK, Meghana HM, Poornima RM

Department of Information Science and Engineering Global Academy of Technology Bangalore, India bhavana1ga20is025@gmail.com, meghana1ga20is168@gmail.com, poornimarm.gat@gmail.com

Abstract: This paper presents research on load balancing methods for cloud computing platforms. Load balancing is an important element of cloud systems since it allows for optimal resource utilization and consistent performance levels. The study investigates several load balancing technologies and evaluates their effectiveness in coping with the dynamic and heterogeneous nature of cloud workloads. The study conducts experiments and analyses to discover significant parameters influencing load balancing performance, such as workload allocation, server capacity, and network latency. With the weight-based technique, different servers are dynamically given requests based on their weights, which are determined by the processing capacities of the servers. By distributing the work proportionately, this approach aims to decrease user request response times and avoid server overload. This paper presents an optimized load distribution approach that raises the efficiency and stability of cloud computing systems. The findings enable to improve load balancing methods matched to the particular requirements and issues of cloud computing, eventually enhancing system scalability and reliability

Keywords: AWS, Load balancing, Weight schemes

I. INTRODUCTION

Load balancing is a crucial cloud computing technique that ensures efficient distribution of workloads across multiple resources. Amazon Web Services (AWS) offers several load balancing schemes, including weight-based schemes. These models use weights to distribute traffic evenly among available load balancer instances. Load balancing is the technique of distributing network load among system resources. This leads to faster job response times and more efficient resource utilization. This method prevents overloading and under loading of a small number of hubs. Redundancy allows for improved dependability and data availability by distributing load among multiple components. The system calculates load based on memory, CPU, and network loads.

Load balancing seeks to meet two primary objectives:

- 1. High availability: Load balancing distributes traffic over numerous servers, ensuring that the failure of one server does not affect the application's overall availability. If one server fails, the load balancer routes traffic to other available servers, reducing downtime and enhancing overall performance.
- 2. Resource Optimization: Load balancing enables managers to balance network traffic between servers, ensuring that each server receives an equal proportion of requests and burden. Load balancing helps to minimize congestion and maximize resource utilization, resulting in more efficient server usage and improved application performance.

Weight-based load balancing guarantees that traffic is evenly distributed among available instances. This prevents overloading a single instance and maximizes resource utilization. By giving weights to distinct instances, weight-based load balancing allows for traffic control. For example, if an instance has performance concerns or is not operational, the weight allocated to it might be lowered, reducing traffic to that instance. AWS gives weights to instances depending on a variety of factors, including instance type and availability zone. This eliminates the need to manually adjust weights, minimizing complexity and mistake. Weight-based load balancing offers information on the performance of individual instances. Administrators can increase performance by monitoring instance weights.

The rest of the section is structured as follows:

Copyright to IJARSCT www.ijarsct.co.in DOI: 10.48175/IJARSCT-15374

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, February 2024

In section 2, it consists of the brief literature review. In section 3, it consists of table of comparison results. section 4 provides conclusion and references

II. LITERATURE REVIEW

The aim of this literature review is to examine the numerous aspects and perspectives associated with load balancing in AWS.

The study [1] specializes in resource scheduling and load balancing methods for cloud computing. It examines and evaluates various algorithms developed for optimal resource allocation and task distribution in cloud systems. The authors explore the characteristics, advantages, and limitations of different scheduling and load balancing strategies, with the goal of providing insights into their application and performance in various cloud computing scenarios. Overall, the research adds to our understanding of successful resource management tactics in cloud environments, which may aid in the design and implementation of optimal cloud systems.

This research [2] explores a novel way to load balancing in cloud computing using the Inspired Lion Optimization Algorithm. It will most likely explore the Lion Optimization Algorithm's core ideas and how they are applied to the issues of load balancing in cloud systems. The recommended method is likely to focus on optimizing resource utilization, reducing reaction times, and increasing overall system efficiency. The authors are likely to share insights into the design and implementation specifics of their methodology, demonstrating its potential advantages over traditional load balancing methods. The paper's empirical evaluations or simulations are anticipated to demonstrate the Inspired Lion Optimization Algorithm's performance and effectiveness in improving load balancing capabilities within cloud computing infrastructures. Overall, the study helps to further load balancing approaches in cloud computing leading to more resilient and scalable cloud-based systems

This paper [3] A weight-based technique is developed to address load balancing issues in the cloud computing environment. It is likely to implement a system for assigning weights to resources based on factors such as processing power and current workload. The weights are then applied to a load balancing algorithm, which optimises the distribution of inbound requests or tasks among available resources. The article is likely to include empirical assessments or simulations to demonstrate the usefulness of a weight-based system in increasing resource utilisation and improving system performance when compared to standard load balancing methods. As a whole, the goal of this work is to give a viable approach for tackling load balancing difficulties in cloud environments, which can increase the scalability and performance of cloud-based

The study [4] paper seeks to improve disc load distribution, optimize resource utilization, and reduce response times in cloud-based storage infrastructures. The study most likely provides empirical evaluations or simulations to demonstrate the effectiveness of the proposed strategy in improving disc load balancing compared to existing ways, contributing to developments in cloud computing resource management. They introduce an updated Lion optimization technique in conjunction with the min-max strategy to achieve more effective resource allocation and workload distribution across disc storage systems.

This paper [5] provides a systematic framework for classifying load balancing options for cloud services. These technologies will most likely be classified in a hierarchical order depending on features like functionality, architecture, and implementation. The article will most likely investigate the taxonomy's various divisions and subcategories, as well as provide a comprehensive overview of the load balancing landscape in cloud systems. The authors anticipate that this classification will help researchers, practitioners, and stakeholders better understand the various load balancing solutions. A hierarchical taxonomy is intended to shed light on the similarities, differences, and relationships between various load balancing systems, enabling for the selection and implementation of appropriate solutions for certain cloud computing scenarios.

The study[6] studies how to optimise server placement and task allocation in edge computing networks to achieve effective load balancing. It will most likely investigate methods for evaluating the optimal location of servers near edge devices and users in order to reduce latency and improve response times. The article will most likely discuss approaches and methodologies for assigning workloads to edge servers based on workload characteristics and network constraints. The project will use empirical assessments or simulations to examine the performance of various server placement and work distribution strategies in edge computing environments. Over **W**, then study contributes to

Copyright to IJARSCT www.ijarsct.co.in DOI: 10.48175/IJARSCT-15374

562

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, February 2024

improving the efficiency and scalability of edge computing networks by addressing load balancing difficulties through optimal server location and task distribution strategies.

This paper [7] provides a load balancing technique for data centers that optimizes cloud computing applications. It is likely to propose a novel way for efficiently spreading workload across servers within data centers, with the goal of improving the performance and scalability of cloud-based applications. The method may take into account server capacity, current demand, and network conditions in order to dynamically assign resources and balance the load efficiently. The authors are likely to undertake empirical evaluations or simulations to evaluate the suggested algorithm's usefulness and efficiency when compared to existing methods. The paper advances load balancing strategies designed for cloud computing settings by providing practical solutions to improve the overall performance and stability of cloud-based applications.

The primary objective of the paper [8] is to show that it provides a thorough investigation and comparison of several types of load balancers. It investigates various load balancing approaches, including round-robin, least connections, IP hash, and weighted round-robin, among others. The authors analyze various approaches using factors such as performance metrics, scalability, fault tolerance, and ease of deployment. The study also offers empirical evaluations or simulations to determine the efficacy and efficiency of each load balancer type in various cloud computing environments. Overall, the study intends to provide insights into the merits and disadvantages of various load balancing systems, assisting cloud practitioners in determining the most effective strategy for their individual deployment goals.

The research [9] conducts a meta-analysis of load balancing and server consolidation in cloud computing environments. It synthesizes insights from previous research projects by examining various load balancing and server consolidation approaches used in cloud systems. The authors explore the effectiveness, efficiency, and issues associated with various methodologies, with the goal of providing a thorough review of current load balancing and server consolidation practices. The meta-study is likely to provide insights into developing trends, identify gaps in present research, and make recommendations for future studies, all of which will assist in advance load balancing and server consolidation methods in cloud computing.

The context presented in this research [10] is a survey of cloud computing and load balancing that is believed to provide a comprehensive overview of existing literature, research, and practices in the field. It explores various aspects of cloud computing such as its architecture, service models and deployment strategies. In addition, the study will likely explore the challenges and opportunities associated with load balancing in cloud environments, including issues related to scaling, resource allocation, and performance optimization. The authors can discuss various load balancing techniques and algorithms used in cloud services, analyzing their effectiveness and suitability for different use cases. Additionally, the survey may highlight emerging trends, advances and future trends in cloud computing and load balancing research. Overall, the article aims to provide a comprehensive overview and analysis of the state of the art in cloud computing and load balancing, a valuable resource for researchers, practitioners and stakeholders in the field.

This paper [11] is to show that L3B is likely designed to efficiently distribute incoming requests or tasks among available resources in the cloud architecture at a low level, possibly closer to the network layer. The authors are likely to provide L3B's design and implementation details, emphasizing its usefulness in optimizing resource utilization and boosting overall system performance. L3B may use algorithms or heuristics designed specifically for low-level load balancing jobs, providing benefits in terms of scalability, fault tolerance, and responsiveness. The article will most likely include empirical assessments or case studies that demonstrate L3B's effectiveness and efficiency in real-world cloud computing scenarios. The study advances load balancing techniques by presenting a specialized solution designed for low-level activities in cloud systems.

This paper [12] focuses on highlights research into a load balancing solution designed exclusively for cloud computing environments. It analyses different load balancing approaches and algorithms in order to determine the most effective method for optimizing resource allocation and workload distribution in cloud systems. The authors explore the characteristics, benefits, and drawbacks of several load balancing strategies, evaluating their applicability for various cloud computing scenarios. The research will include empirical assessments or simulations to evaluate the performance of the proposed load balancing method to existing approaches. The study adds to the body of knowledge in cloud computing by providing insights into effective load balancing solutions, which may improve the efficiency and scalability of cloud-based services.

Copyright to IJARSCT www.ijarsct.co.in DOI: 10.48175/IJARSCT-15374

563

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, February 2024

This paper [13] Performs a comparison of static and dynamic load balancing approaches in cloud computing. Its purpose is to explore the characteristics, advantages, and disadvantages of both static and dynamic load balancing systems. The authors investigate how these algorithms perform in terms of resource utilisation, system responsiveness, and scalability across various workload scenarios. The paper compares and tests the performance of static and dynamic load balancing approaches in various cloud computing environments. Overall, the study aims to provide insights into the efficacy and usability of static and dynamic load balancing solutions, thereby supporting cloud practitioners in identifying the optimal option for their specific deployment requirements.

This paper [14] Examines the weighted round Robin (WRR) load balancing algorithm used in cloud-based web services. It will probably look at how WRR distributes incoming requests between servers according to defined weight values, with the aim of optimizing resource usage and improving system performance. Studies most likely use empirical estimates or simulations to determine the impact of WRR on characteristics such as response time, throughput, and server utilization in cloud environments. The purpose of the paper is likely to highlight the advantages and disadvantages of WRR in cloud-based web services, comparing it with other load balancing algorithms. The study improves specialized load balancing strategies for cloud-based applications and provides insights into optimization of web service delivery

	Table of Comparison Result										
Sr	Author	Research	Objective	Methodology	Technique	Achieved					
No	/Year	work/Paper									
1.	Vijay et	Resource	The goal of this	The authors offer a	Balancing and	The research describes					
	al, 2023	Scheduling and	study is to introduce	new hybrid resource	scheduling	a hybrid approach that					
		Load	a novel resource	planning approach for	techniques in cloud	combines genetic and					
		-		cloud computing that	· •						
		Algorithms in	that combines	optimises virtual	preemptive	optimisation					
						techniques for work					
		Computing		allocation using a		-					
			<u>^</u>	/		services. A CloudSim					
			· /	<u>^</u>		assessment compares					
				optimisation (PSO) for	-	*					
				**	*	existing approaches,					
			· · ·	algorithm is divided	-	-					
			<u>^</u>	into two phases: GA							
			-	and PSO. Its goal is to		completion time, total					
			-		,	cost, and duration to					
			· ·	time, total cost, and		demonstrate its					
			order to maximise			usefulness in					
				maximising resource		-					
			-	utilisation and load	-	utilisation.					
			*		allocation and						
				outperforming existing	resource utilization.						
				algorithms.							

III. TABLE OF COMPARISON RESULT

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, February 2024

IJARSCT

2. Kaviara	as Effective load		The authors create a		The research offers an
	al, balancing		bio-inspired algorithm	1	algorithm, ILOA
2023	-	00	based on lions' hunting		e .
2023	11				
	cloud		and mating behaviour		Optimisation
	computing	of time complexity		*	Algorithm), that
		-	-		mimics lion behaviour
	Lion	security policy due			in work assignment in
	Optimization	to a lack of energy	11	behaviour to solve	
	Algorithm	1		complicated	outperforms existing
		dynamic adaptation		1	metaheuristic
			· ·	*	algorithms. The review
		scarcity of bio-		1	focuses on enhanced
		influenced	handover betweer	Algorithm (ILOA),	ILOA and detection,
		metaheuristic	underutilised and		convergence, and task
		algorithms that	toverutilized nodes	load balancing,	migration success, as
		employ lion	using the suggested	lexamines node	well as improvements
		behaviour for	Leon optimisatior	performance,	in cloud system
		effective cloud load	algorithm, which is	separates nodes	performance, response
		balancing.	explained using	into groups, and	time, migration, and
		-			failover.
			parameter	operators to	
			explanations.	maximise resource	
			1	utilisation.	
3. Uparos	iy Overcome	The paper proposes	The article describes a		The article proposes a
<u>^</u>	al,load balancing			-	weight-based method
2023			balancing solution for	Ũ	-
_0_0			cloud services that		service performance by
	-	nbalancing. The goal			optimising task
	cloud		scheduling, execution		
	cioud				balancing while
		r -	consumption, cost, and	-	-
			migration reduction. I	-	-
		_	compares this method		
			to other load balancing		
			talgorithms such as	-	this method to other
			tround robin, weighted		-
		*		lagainst other load	-
		r · ·	queue, min-min, bee	-	round robin, weighted
		with existing load	foraging, and genetic	algorithms such as	round robin.
		-		-	
		balancing algorithms	algorithms algorithm.	round robin,	centralised queue, min-
		balancing algorithms such as round robin	algorithms algorithm.	round robin, weighted round	centralised queue, min- min, bee foraging, and
		balancing algorithms such as round robin weighted round	algorithms algorithm.	round robin, weighted round robin, centralised	centralised queue, min- min, bee foraging, and genetic algorithm.
		balancing algorithms such as round robin weighted round robin, centralized	algorithms algorithm.	round robin, weighted round robin, centralised queue, min-min,	centralised queue, min- min, bee foraging, and genetic algorithm.
		balancing algorithms such as round robin, weighted round robin, centralized queue, min-min, bee	algorithms algorithm.	round robin, weighted round robin, centralised queue, min-min, bee foraging, and	centralised queue, min- min, bee foraging, and genetic algorithm.
		balancing algorithms such as round robin weighted round robin, centralized	algorithms algorithm.	round robin, weighted round robin, centralised queue, min-min,	centralised queue, min- min, bee foraging, and genetic algorithm.

ISSN (Online) 2581-9429

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, February 2024

IJARSCT

4.	Adaikalaraj e	etTo improve the	The purpose of	The virtual	The study uses	The article
	al,2023	performance or	this paper is to	network, the	Support Vector	describes an
		disk load balancing	offer an	methodology use	Regression (SVR) to	effective virtual
		in a cloud	intelligent virtual	the ILO algorithm	model input-output	machine allocation
		environment	machine	in conjunction	interactions using a	strategy with
		using improved	scheduling	with a min-max	Gaussian kernel	advanced disc load
		Lion optimizatior	model that uses	load balancing	function to	balancing in cloud
		with min-max	machine learning	approach. The	determine data point	environments that
		algorithm	techniques to	study assesses	similarity. In	employs machine
			·		addition, it presents	-
			load balancing	virtual machine	the Min-Max	describes a
			•	migration, energy	*	sophisticated
				÷ .	approach and the	optimisation
				load balancing vs		-
					which were inspired	· ·
				like random	• •	approach to reduce
			11		• •	network load,
				machine learning.	<u>^</u>	switching costs,
			balancing			latency, and power
			method and an			consumption.
			advanced lion			
			optimisation			
			(ILO) strategy.			
			According to the			
			article, the			
			proposed			
			strategy			
			outperforms			
			current methods			
			for data centre			
			utilisation,			
			virtual machine			
			migration,			
			energy			
			consumption,			
			and load			
			balancing.			

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

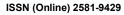
Volume 4, Issue 1, February 2024

IJARSCT

5. Afzal et al,2021	Load balancing in	The article	The author	The authors use a
<i>J</i> . <i>Hizar et al</i> ,2021	cloud computing –			systematic literature The goal is the
	A		÷	review (SLR) to investigate th
	hierarchical	taxonomy of load		collect and analyse factors that
	taxonomical	•		data, followed by acontribute to loa
	classification	-		constructive imbalance in cloud
	classification	-		
		cloud computing,		common frameworkcomputing,
		e		(CGF) to addresshighlight th
			-	load imbalance iss importance of load
				ues. They present abalancing solutions
			-	taxonomy-based systematically ran
				classification system current approache
				for load balancingbased on variou
		C		algorithms and criteria, and analys
		creation. It also	1 /	conduct athe challenge
				comparative analysisassociated with
			-	of their advantages, developing
		that will help to		disadvantages, effective load
		find acceptable	load balancing	challenges, and balancing
		solutions to the	approaches,	unanswered algorithms fo
		load imbalance	including	problems. cloud
		problem in cloud	advantages and	environments.
		computing.	disadvantages.	
			There are	
			challenges and	
			lingering	
			difficulties with	
			cloud load	
			balancing.	
5. HUANG et al	Server Placement	The article	-	The paper uses This articl
2021	-	proposes a novel		mixed integer linearprovides a loa
			placement and job	
	Load	server placement	r r	(MILP) for serverthat consider
	Balancing in Edge-	-		placement and workserver load an
		•	-	allocation, transmission
	Networks	edge computing		Lagrangian dualitydistance, as well a
	I VOL WOLKS			theory to simplifyan integrate
				constrained system that assign
		U		optimisation, and the and organises wor
		e		· · · · ·
		most demanding	-	-
		workload among	-	for convex functionsusing annealing
		distance-	2	that are notsimulation and
		weighted servers.	integrated strategy	
				Simulated annealingtheory. owner
				is also used inEvaluation using K
			annealing process	
				optimisation toand the greed
			0 0	determine thetechnique show
				optimal location of improved load
Copyright to IJARS	СТ	DOI: 10.48175/IJ	ARSCT-15374	JJARSCT 56

ISSN (Online) 2581-9429

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)


International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

IJARSCT

Volume 4, Issue 1, February 2024

				the sub-	edge servers.	balancing an
				hierarchical	cuge servers.	
				method,		decreased serve effort across
				· · · · · · · · · · · · · · · · · · ·		
				comparing it to K-		range of topolog
				medoids and		sizes.
				greedy clustering		
				on structures with		
				changing network	-	
				links, and		
				investigating the		
				impact of the		
				distance.		
7.	SHAFIQ	etA Load Balancing	The study	The authors	Virtualization	To balance VM
	al,2019	Algorithm for the	addresses	employ CloudSim	optimises resource	loads, the techniqu
		Data Centres	difficulties such	to test their load	usage by operating	considers critic
		to Optimize Cloud	as incorrect task-	balancing method	several virtua	QoS paramete
		Computing	resource	in a cloud	computers on a	such as tas
		Applications	mapping,	computing	single physical	scheduling, resourd
			unbalanced server	environment, and	machine, whereas	deadlines ar
			workloads, and	they provide a	task scheduling	completion time
			fluctuating task	two-layer structure	allocates jobs to	workload migration
			demands. It	that prioritises job		and CP
			outlines a system	scheduling and	performance. Load	reallocations. Th
				resource	balancing distributes	improvement
			scheduling and	allocation. QoS		reduces latency an
			load balancing	criteria drive task	virtual machines to	execution tim
			that prioritises	assignment to	improve system	while increasing
			-	appropriate virtual	· ·	resource utilisation
			· ·	· · ·	Dragonfly's	outperforming
				migration	optimisation method	· ·
			duration,	strategies improve	·	balancing method
				workload	thresholds.	in performance
				distribution. When		tests.
				compared to the		
				dynamic LBA		
				algorithm,		
			cloud systems.	performance is		
			cioud systems.	measured in terms		
	1	1	1			
				of duration		
				of duration,		
				of duration, execution time, and resource		

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

IJARSCT

Volume 4, Issue 1, February 2024

Simjanoska et al,		
2019	Balancer in	theinvestigates cloud compares five explains how to five software load
	Cloud	computing loadcommercial loadimprove Citrix ADC balancers (AV
		balancing and balancers (AVIBLX network Vantage, Barracuda
		server Vantage, F5, performance viaF5, A10, and Citri
		consolidation Barracuda, A10,load balancingBLX) based on the
		strategies, offersand Citrix BLX)techniques includingfeatures, scalability
		a taxonomy, based on their round robin and performance,
		evaluates existing features, hashing, as well as compatibility,
		solutions, and advantages, and the Data Layer automation, an
		addresses issuesdisadvantages. The Development Kitsecurity. It assists I
		before proposing goal is to help IT (DPDK). In organisations i
		future researchorganisations addition, he isselecting the fine
		areas. choose the mostinvestigating Globalload balancer for
		appropriate loadServer Loadtheir organisation
		balancer for theirBalancing (GSLB)based on uniqu
		needs. to improverequirements an
		application preferences.
		availability and
		response time by
		sending consumers
		to the closest data
		centre based on their
		location.
Ala'anzy et al		ingThe goal of thisThe methodologyThe paper gives an The paper provide
2019		verstudy is toconsists of apperview of loada comprehensiv
	Consolidation i	5
	Cloud Compu	
	Environments:	Abalancing (SLR) that methods in cloud balancing and serve
	Meta-Study	techniques for examines loadservices, introduces a consolidation
		server balancing andtaxonomy, analysesalgorithms,
		consolidation inserver current solutions, and including
		cloud computingconsolidation reacts to difficulties proposed taxonomy
		settings and give algorithms in and future research analysis of existin
		a taxonomy and cloud computing, objectives. techniques an
		meta-analysis oflusing mapping o
		the mostpredetermined challenges an
		successful search criteria and future researc
		strategies. The quality directions.
		report alsoassessment. The
		discusses authors suggest a
		problems, taxonomy based
		measurements, on common
		and potentialfeatures, present
		future research descriptive
		areas in the topic. statistics, and
		address problems
1		and potential
		una potentia
		research areas.

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, February 2024

10.	Jyoti	et	al, Cloud	computing	Propose a	a cloud-	collect	ed	data	Edge co	omputin	g uses	The	Conflu	ience
	2019		and load	balancing	based	platform	from n	nultip	le sites	edge	device	s to	Framewo	ork	
			in	cloud-	for data	science	such	as T	ſwitter,	process	nearby	data,	integrate	s edge	and
			computin	g survey	education	that	GitHul	b,	Stack	reducin	ig latend	cy and	fog coi	nputing	g to
					includes	online	Overfl	ow,	and	cloud	band	width	achieve	effi	cient
					learning	and	Kaggle	e to a	analyse	while f	log com	puting	computi	ng, whi	le an
					collabora	tive	data so	cientis	sts and	extends	s this	with	optimal	algoi	rithm
					capabiliti	es.	engine	ers'be	haviou	interme	ediate	cloud	enhances	5	job
					Confirm	its	r patte	erns.	Using	nodes	to	add	allocatio	n	and
					usefulnes	s by	Python	n, R	, and	additio	nal		scheduli	ng	to
					doing a	a case	Gephi,		they	capabil	ities.	Multi-	increase	effici	iency
					study at a	n Indian	conduc	cted		agent	s	ystems	and	scalab	oility.
					institutior	and a	sentim	ent	and	contain	indep	endent	Real-wo	rld	
					data	science	networ	k a	nalyses	agents	that coc	operate	evaluatio	ons	have
					course,		to acq	uire i	nsights	to achie	eve goa	ls, and	yielded	remarl	kable
					comparin	-					cement		results i		ls as
											-		diverse		smart
					to tr					agents	to lea	rn by	cities		and
					classroom	IS.	difficu	lties	and	explori	ng and	using	healthca	re.	
							future	direct	ions.	optimal	l stra	ategies	3		
										without	t e	xplicit	t		
										instruct	tion.				

IV. CONCLUSION

According to the literature survey the evaluation of Load Balancing for cloud systems concludes by showing how well it performs in terms of resource allocation optimization and service performance enhancement. The method's ability to account for factors such as service demand and server capacity enhances load distribution throughout the cloud infrastructure, hence enhancing overall system efficiency. The survey points out the need for greater research to handle dynamic workload fluctuations and scalability issues in cloud systems. When everything is taken into account, the findings demonstrate how important sophisticated load balancing algorithms are to maximizing resource utilization and ensuring excellent service delivery in cloud computing. The crucial function of load balancing strategies in cloud systems is to enhance system performance and maximizing resource use. A comprehensive overview of the topic is provided by the survey, which looks at several elements that impact load balancing, including resource availability and workload characteristics. Still, it is clear that there are research gaps concerning scalability and dynamic load balancing, which points to possible directions for further study. Further, the survey emphasizes how crucial it is to continue researching load balancing methods in order to keep up with the changing needs of cloud computing.

REFERENCES

- [1]. Vijay R, Sree TR. Resource Scheduling and Load Balancing Algorithms in Cloud Computing. Procedia Computer Science. 2023 Jan 1;230:326-36.
- [2]. Kaviarasan R, Balamurugan G, Kalaiyarasan R. Effective load balancing approach in cloud computing using Inspired Lion Optimization Algorithm, e-Prime-Advances in Electrical Engineering, Electronics and Energy, 2023 Dec 1;6:100326.
- [3]. Mishra SK, Sahoo B, Parida PP. Load balancing in cloud computing: a big picture. Journal of King Saud University-Computer and Information Sciences. 2020 Feb 1;32(2):149-58.
- [4]. Adaikalaraj JR, Chandrasekar C. To improve the performance on disk load balancing in a cloud environment using improved Lion optimization with min-max algorithm. Measurement: Sensors. 2023 Jun 14:100834.

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-15374

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, February 2024

- [5]. Afzal S, Kavitha G. Load balancing in cloud computing–A hierarchical taxonomical classification. Journal of Cloud Computing. 2019 Dec 23;8(1):22.
- [6]. Huang PC, Chin TL, Chuang TY. Server placement and task allocation for load balancing in edge-computing networks. IEEE Access. 2021 Oct 4;9:138200-8.
- [7]. Shafiq DA, Jhanjhi NZ, Abdullah A, Alzain MA. A load balancing algorithm for the data centres to optimize cloud computing applications. IEEE Access. 2021 Mar 10;9:41731-44.
- [8]. Moharir M, Shobha G, Oppiliappan A, GVL RM, Pandit SN, Akash R, Saxena M. A study and comparison of various types of load balancers. In2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE) 2020 Dec 1 (pp. 1-7). IEEE.
- [9]. Ala'Anzy M, Othman M. Load balancing and server consolidation in cloud computing environments: a metastudy. IEEE Access. 2019 Sep 30;7:141868-87.
- [10]. Jyoti A, Shrimali M, Mishra R. Cloud computing and load balancing in cloud computing-survey. In2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence) 2019 Jan 10 (pp. 51-55). IEEE.
- [11]. Simjanoska M, Ristov S, Velkoski G, Gusev M. L3B: Low level load balancer in the cloud. InEurocon 2013 2013 Jul 1 (pp. 250-257). IEEE.
- [12]. Wang Q, Liu D. Research on load balancing method in cloud computing. In2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) 2018 Oct 12 (pp. 1489-1493). IEEE.
- [13]. Deepa T, Cheelu D. A comparative study of static and dynamic load balancing algorithms in cloud computing. In2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) 2017 Aug 1 (pp. 3375-3378). IEEE.
- [14]. Huang PC, Chin TL, Chuang TY. Server placement and task allocation for load balancing in edge-computing networks. IEEE Access. 2021 Oct 4;9:138200-8.

