

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, February 2024

A Literature Survey on AI Health Care System

Sachin Shetty V S, Vedanth M, Manjunath S Department of Information Science and Engineering Global Academy of Technology, Bengaluru, India

Abstract: The integration of Artificial Intelligence (AI) in healthcare systems has witnessed remarkable progress in recent years, revolutionizing the landscape of patient care, diagnostics, and medical research. This paper provides a comprehensive survey of the diverse applications, challenges, and benefits of AI in healthcare. We explore the role of machine learning algorithms and natural language processing in enhancing diagnosis and treatment planning. The utilization of AI for predictive analytics, personalized medicine, and patient management is discussed, showcasing its potential to improve healthcare outcomes and reduce costs. Additionally, we address ethical considerations, data privacy concerns, and regulatory frameworks that accompany the implementation of AI in healthcare. Through an extensive literature review, this paper aims to offer insights into the current state of AI in healthcare, highlighting key trends and future directions for research and development in this rapidly evolving field.

Keywords: Healthcare, Artificial intelligence, Technology, Data

I. INTRODUCTION

Artificial Intelligence (AI) has emerged as a transformative force in the field of healthcare, with notable impacts on various facets of the industry. This technological advancement is particularly noteworthy for its role in early disease detection, contributing to more timely and effective treatment interventions. Another critical application of AI in healthcare is in the realm of diagnosis and decision support. By analysing extensive patient data, including electronic health records, lab results, and symptoms, AI systems aid healthcare professionals in diagnosing diseases and crafting personalized treatment plans. The integration of decision support systems, driven by real-time analysis of the latest medical research and patient data, enhances clinical decision-making, fostering more informed and tailored healthcare interventions.

In this digital era, keeping track of your health has never been easier. Our system not only maintains a record of your previous reports but does so with the utmost precision and organization. Accessing your health history is at your fingertips, empowering you with the knowledge you need for informed decisions about your well-being.

Understanding health conditions is fundamental to making informed decisions. Our system goes beyond the basics, providing comprehensive information about different diseases. Empower yourself with knowledge, and be proactive in managing your health with a reliable source of information right at your fingertips

While the integration of AI in healthcare holds tremendous promise, it also raises ethical considerations and privacy concerns. Striking a balance between innovation and safeguarding patient data is crucial for the responsible adoption of AI technologies. Ongoing research, collaboration between healthcare professionals and AI developers, and the establishment of robust regulatory frameworks are essential for realizing the full potential of AI in improving healthcare outcomes.

II. LITERATURE SURVEY

The literature review thoroughly investigates ten articles dedicated to the field of multi-disease prediction based on symptoms, specifically within the context of an AI healthcare system for identifying the nearest doctor. This examination employs a diverse range of machine and deep learning methods, showcasing various approaches in the analyzed works.

The proposed solutions address challenges such as explainability, data privacy, and model stability, incorporating stateof-the-art algorithms and innovative strategies. The intersection of machine learning and healthcare underscores the interdisciplinary nature of healthcare data mining throughout the literature.

Copyright to IJARSCT www.ijarsct.co.in DOI: 10.48175/IJARSCT-15351

379

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, February 2024

The research emphasizes the necessity for holistic techniques in predicting multiple diseases through symptom-based approaches. Additionally, the reviewed papers suggest potential avenues for future research, including refining models and exploring multi-tasking model applications. This forward-thinking perspective underscores the dynamic nature of the field, with researchers consistently aiming to enhance forecast accuracy, customize interventions, and ultimately improve healthcare outcomes. In essence, this literature review provides an evolving overview of the developing field of multi-disease prediction, highlighting various achievements and outlining the direction of future developments in healthcare data analytics.

[1] represents an innovative healthcare assistant designed to predict various ailments using Artificial Intelligence and machine learning. AI-DOC allows users to input medical parameters for disease forecasts, offering a user-friendly platform that reduces time and expenses for initial checkups. This method aims to support healthcare professionals by providing early aid to patients, emphasizing simplicity for easy understanding of medical reports and promoting informed decision-making. With a commitment to privacy, AI-DOC integrates a login feature to safeguard personal medical data, contributing to enhanced health outcomes for users.

Dr. Meera Gandhi and her team have developed [2], an interactive AI-driven medical assistant. This application utilizes AI to analyze symptoms, diagnose medical conditions, and offer personalized treatments based on user input and health metrics. With features like medication reminders and health report generation, it aims to transform healthcare by enhancing accessibility, efficiency, and personalization for both users and healthcare providers.

In [3], the article explores how AI impacts the diagnostic process in dermatology, streamlining it by separating prediction and judgment aspects. Dermatologists' attitudes towards AI vary, with some uncertain and others highlighting its data processing speed. Ethical considerations are discussed, stressing the need for a new mindset and involving medical professionals in AI design for effective integration.

[4] conducts a comprehensive examination of AI-based medical assistant chatbots, exploring their design, implementation, and applications in healthcare. It delves into chatbots across medical consultation, mental health interventions, and diabetic patient support, scrutinizing diverse models using technologies like natural language processing and machine learning.

The document [5] delves into the progress, hurdles, and forthcoming prospects within smart healthcare systems, emphasizing the use of AI and machine learning. It explores the transition towards personalized healthcare frameworks to accommodate the increasing population affected by chronic ailments and meet the needs of diverse demographics.

[6] offers an extensive examination of Natural Language Processing (NLP) in smart healthcare, highlighting its techniques and applications. It scrutinizes various NLP approaches and their utilization across healthcare domains, addressing issues like the COVID-19 pandemic and mental health.

The research paper [7] explores the utilization of machine learning algorithms to optimize the scheduling of medical appointments, predicting patient attendance and improving resource utilization in healthcare environments.

[8] traces the progression of healthcare technology from Healthcare 1.0 to Healthcare 5.0, emphasizing the transition towards personalized and IoT-driven healthcare solutions. It introduces the concept of Comprehensive Personalized Healthcare Services (CPHS) to overcome existing limitations.

The document [9] underscores the necessity for smart healthcare systems, emphasizing the role of AI, ML, and speech recognition in providing affordable technical solutions while upholding care standards. It proposes an innovative smart healthcare system rooted in speech recognition and integrates edge/fog/cloud computing.

The paper [10] examines the creation of a contextual chatbot tailored for healthcare applications through deep learning techniques, presenting a methodology for development and showcasing its efficacy in providing pertinent responses to user inquiries.

Authors	Contribution	Dataset used	Methodology	Result
Abhishek Parashar,	It contributes by	UCI Machine	This utilizes multiple	Disease prediction
Yukti Mohan and	facilitating the early	Learning	machine learning	models yielded
Sayoni Ghosh,	detection of diseases,	Repository,		impressive results
2022	minimizing	National Library of		
Copyright to IJARSCT	DOI: 1	0.48175/IJARSCT-153	51 3581-9	429 X 380
www.ijarsct.co.in			ATTAC TO A CONTRACT OF A CONTR	

III. ANALYSIS TABLE

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, February 2024

	1		2	
	inaccuracies in	Medicine,	boosting, and linear	of 98.6% for breast
	results, offering a	Mendeley Data.	regression, for	cancer prediction
	patient-friendly		accurate disease	using Logistic
	interface, improving		prediction in diverse	Regression and
	the efficiency of		healthcare domains,	88.6% accuracy for
	healthcare, and		enhancing its role as a	liver disease
	safeguarding the		comprehensive	prediction with the
	privacy of data.		healthcare assistant.	same model.
Dr Meera, Vishal	This revolutionizes	This includes a	This uses Naïve	It primarily
Kumar and Vivek	healthcare with its AI-	combination of	Bayes, NLU, and	discusses the
Kumar,	powered medical	symptoms, medical	machine learning on	functionalities,
2019	assistance. By	conditions,	clinical records for	features, and
2019	analyzing symptoms,			potential benefits
				1
	predicting conditions,	user health	analysis, medical	of the AI-based
	and tracking fitness	activities. This	predictions, and	medical assistant
	activities, it offers	dataset is crucial	personalized health	in revolutionizing
	personalized and	for training the AI	guidance.	healthcare and
	efficient healthcare	algorithms, such as		providing
	solutions.	the Naïve Bayes		personalized
		classifier.		medical assistance
				to users.
Dora Gondocs and	The study investigates	This uses semi-	The study used	The study focuses
Viktor Dorfler	medical professionals'	structured open-	qualitative interviews	on the attitudes,
2022	attitudes toward AI,	ended interviews	with 17 dermatologists	expectations, and
	examining potential	with 17	in the local language	concerns of
	benefits, concerns,	dermatologists as	to explore perspectives	medical
	and implications for	the method of data	on AI in melanoma	professionals
	diagnostics. It also	collection.	diagnosis. Rooted in	regarding the use
	delves into		phenomenology, it	of AI in the
	responsible and		aimed for an initial	diagnostic process
	explainable AI		understanding,	of melanoma.
	concepts, emphasizing		employing thematic	or moranoma.
	the importance of		analysis and	
	collaborative AI		bracketing for	
	design.		reliability.	
Choton Dullo	-	The detect	•	The secults
Chetan Bulla,	The study contributed	The dataset	The methodology	The results
Chinmay Parushetti,	to the development of	comprised user	involved integrating	demonstrated an
Akshata Teli,	chatbots for medical	queries and	natural language	average success
Samiksha Aski and	assistance, improving	symptoms,	processing and	rate of 85% across
Sachin Koppad,	the accessibility of	enabling the	machine learning to	various medical
2020	healthcare	training of the	enable the chatbots to	scenarios,
	information and	chatbots to provide	understand and	indicating the
	support.	accurate responses	respond to user inputs	efficacy of the
		and	effectively.	chatbots in
		recommendations.		providing accurate
				diagnosis and
				treatment
			O DESEARCH IN	recommendations.
L	I	1	ISSN	

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, February 2024

		iume 4, issue 1, i ebit	,, ,	
Mahmoud nasr , Md. Milon Islam , Shady Shehata , Fakhri Karray , and Yuri Quintana 2021	The document thoroughly reviews smart healthcare systems, highlighting health monitoring and disease diagnosis in Ambient Assisted Living. It covers software integration architectures, offering a holistic overview of the smart healthcare field.	The reviewed systems utilize various datasets, including benchmark datasets such as UCI, Framingham, and Pima Indians Diabetes dataset, along with real- time sensor data collected from patients using wearable devices and IoT sensors.	The methodologies employed in the reviewed systems include machine learning techniques such as deep learning, ensemble learning, and traditional machine learning algorithms. The systems utilize IoT and cloud-based frameworks for data collection, preprocessing, and prediction of health conditions.	The accuracy values ranging from 66.67% to 99.45% for disease detection. The systems also evaluate other performance metrics.
Binggui Zhou, Guanghua Yang, Zheng Shi, and Shaodan Ma 2022	Thepapersystematicallyreviewsnaturallanguageprocessing(NLP)insmarthealthcare,coveringtechnicalandapplicationperspectives.ItcomparesvariousNLPapproachesalgorithmsandlistsrepresentativeapplicationsinsmarthealthcarewiththeirrelatedNLPtechniques.	The paper does not explicitly mention the use of a specific dataset. However, it discusses various text-oriented and speech-oriented NLP tasks in the context of smart healthcare.	Conditions.ThemethodologyincludesreviewingstudiesonNLPforsmarthealthcare,detailingvariousNLPapproaches,approaches,anddiscussingtheNLPpipelinetechnically.ThepaperintroducessmarthealthcareapplicationsusingNLPinclinicalpractice,hospitalmanagement,personalcare,publichealth,anddrugdevelopment.	The paper explores NLP's potential in smart healthcare, acknowledges current limitations, and proposes future research directions, including combining NLP techniques, developing end-to- end applications, few-shot learning, and integrating multimodal and longitudinal data.
Catalina valenzuela- núñez, Guillermo latorre-núñez, and Freddy troncoso- espinosa, 2024	The research proposes a model that incorporates overbooking in medical appointments using machine learning to determine patient attendance propensity. It aims to improve patient care through the development of new healthcare systems.	The study utilizes real data obtained from the medical appointment history of three medical specialties at Dr. Guillermo Grant Benavante Hospital in Concepción, Chile. The database contains approximately 340,000 entries.	The research uses machine learning algorithms like Decision Tree, Neural Network, Support Vector Machine, Linear Regression, and Naive Bayes to discern patient characteristics affecting attendance propensity. Models are trained and tested with Rapidminer software;	The proposed model achieves an occupancy rate exceeding 79% when applied to patients with attendance probabilities exceeding 80%.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, February 2024

	r	1		
			ultimately selecting	
			Support Vector	
			Machine for its	
			superior performance.	
Najma Taimoor and	The paper presents a	The survey	The survey	It discusses various
Semeen Rahman,	comprehensive survey	methodology	systematically	approaches and
2022	on personalized	involved extracting	followed guidelines	solutions proposed
	healthcare services,	and summarizing	for literature reviews	in the surveyed
	focusing on the key	information from	in software	literature, such as
	requirements of	various research	engineering to identify	AI/ML techniques
	Healthcare 5.0	findings in the	key research findings	for personalized
	technology. It	domain of IoT and	in IoT and healthcare.	diagnosis and
	identifies gaps in	healthcare.	The authors extracted	treatment,
	existing approaches	However, the	and summarized	blockchain-based
	and proposes a	specific datasets	Healthcare Internet of	techniques for
	methodology to	used are not	Things (HIoT)	reliability, and the
	develop reliable,	explicitly	requirements to	integration of AI
	resilient, and	mentioned in the	support clinical	with IoT
		document.	personalization of	technologies for
	personalized healthcare services	document.	healthcare services.	-
			nearthcare services.	personalized healthcare
	that address the			
	weaknesses of current			monitoring.
	methods.		771 1	
Rashika Raina1 and	The paper tackles the	The paper	The paper discusses	The paper presents
Rakesh Kumar Jha,	demand for an	discusses the	various algorithms	ongoing projects in
2022	intelligent and	scarcity of data as a	available and applied	the healthcare
	interactive healthcare	challenge,	in speech recognition,	domain and
	system by examining	particularly in	0,	discusses the need
	prior speech	training ML	power-efficient	for a prediction
	interactive systems	models for speech	techniques, resource	algorithm for
	and suggesting a	recognition in	allocation techniques,	better optimization
	novel Intelligent and	healthcare. It	and a mathematical	in providing
	Interactive Healthcare	mentions the	model for the	healthcare
	System (I2HS)	variation in speech	proposed architecture	services.
	architecture. It utilizes	features such as	using Hidden Markov	
	C-RAN network	tone, accent, and	Models (HMM).	
	architecture and	languages.		
	computing techniques			
	like edge/fog/cloud			
	for enhanced			
	communication speed,			
	storage, and			
	computing services.			
Prathamesh	The paper discusses	The dataset used	The methodology	The trained model
Kandpal, Kapil	the development of a	for training the	involves importing	successfully
Jasnani, Ritesh Raut,	contextual chatbot for	model consists of	necessary libraries,	provides relevant
Prof. Dr. Siddharth	healthcare purposes	intents, patterns,	preprocessing the data,	responses to user
Bhorge,	using deep learning. It	and responses	building and training a	<u>^</u>
51101 50,	using deep learning. It	and responses	canang ana nanung a	with a

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, February 2024

2020	explores the	stored in a JSON	neural network model,	high accuracy rate.
	applications, relevant	file. These intents	and implementing a	
	work, challenges, and	contain keywords,	decision-making	
	future scope of	responses, and	threshold for the	
	chatbot technology in	patterns that help	chatbot's responses.	
	the healthcare	the chatbot		
	industry.	understand and		
		respond to user		
		queries in the		
		healthcare domain.		

IV. CHALLENGES

While the integration of AI in healthcare offers immense potential, it also comes with several challenges that need to be addressed for its responsible and effective implementation:

1. Data Privacy and Security:

Healthcare data is sensitive and highly regulated. Maintaining the privacy and security of patient information is a paramount concern. Ensuring robust encryption, access controls, and compliance with data protection regulations are essential challenges in implementing AI in healthcare.

2. Interoperability:

Healthcare systems often use different standards and formats for data, making interoperability a significant challenge. Seamless integration of AI applications with existing healthcare IT infrastructure is crucial for effective communication and data exchange.

3. Ethical Considerations:

The ethical use of AI in healthcare, including issues related to bias in algorithms, patient consent, and accountability, requires careful consideration. Striking a balance between innovation and ethical standards is essential to build trust among both healthcare professionals and patients.

4. Limited Data Availability:

AI algorithms, especially machine learning models, require large and diverse datasets for training and validation. Limited availability of high-quality, representative data can hinder the performance and generalizability of AI applications in healthcare.

5. Regulatory Compliance:

Healthcare is subject to stringent regulatory frameworks. Adhering to existing regulations, such as HIPAA (Health Insurance Portability and Accountability Act) in the United States, and navigating the evolving landscape of healthcare regulations worldwide presents a significant challenge for AI developers and healthcare providers.

6. Integration into Clinical Workflows:

Successfully integrating AI tools into existing clinical workflows without causing disruptions or adding unnecessary burden to healthcare professionals is a complex challenge. Ensuring that AI applications complement and enhance, rather than hinder, the work of healthcare providers is crucial.

7. Lack of Standardization:

The absence of standardized guidelines for the development and deployment of AI in healthcare can lead to inconsistencies in practices. Establishing industry-wide standards is vital to ensure the reliability and reproducibility of AI applications.

8. Patient and Provider Adoption:

Acceptance of AI technologies by both patients and healthcare professionals is pivotal for successful implementation. Overcoming resistance to change, addressing concerns about job displacement, and educating stakeholders on the benefits of AI are challenges that need to be managed.

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, February 2024

9. Explainability and Transparency:

Many AI algorithms, especially deep learning models, operate as "black boxes," making it challenging to explain their decision-making processes. Ensuring transparency and interpretability of AI outputs is crucial for gaining trust and acceptance in healthcare.

10. Cost and Resource Allocation:

Implementing AI in healthcare requires significant investment in terms of infrastructure, training, and ongoing maintenance. Allocating resources efficiently and demonstrating the cost-effectiveness of AI applications can be challenging, especially for smaller healthcare facilities.

V. CONCLUSION

In summary, this literature survey on AI healthcare systems illuminates the transformative impact of artificial intelligence in revolutionizing patient care. The exploration of various studies underscores the importance of features such as minimalist user interfaces, effective patient record management, and real-time health updates. The integration of AI in medical assistants, leveraging machine learning and deep learning, emerges as a promising avenue for personalized healthcare, offering advanced symptom analysis, medication reminders, and insightful health reports. While acknowledging the potential, challenges like data privacy and ethical considerations remain pertinent, necessitating continued research and development. This survey provides a comprehensive snapshot of the current state and future prospects of AI in healthcare, contributing valuable insights to the ongoing evolution of intelligent healthcare systems.

VI. ACKNOWLEDGMENT

We would like to express my sincere gratitude to all the researchers, scientists, and authors whose invaluable contributions have shaped the landscape of AI healthcare systems. This literature survey would not have been possible without the wealth of knowledge shared in the various publications and research papers. We extend my appreciation to the academic community and healthcare professionals for their dedication to advancing technology in the service of humanity. Additionally, we would like to acknowledge the support and guidance received from my mentors and peers throughout the process of conducting this literature survey.

REFERENCES

- [1]. Abhishek Parashar, Yukti Mohan and Sayoni Ghosh, "AI-DOC: a Mini Healthcare Assistant for the Digital World", January 2022.
- [2]. Dr Meera, Vishal Kumar and Vivek Kumar, "IntelliDoctor AI based Medical Assistant", 2019.
- [3]. Dora Gondocs and Viktor Dorfler, "AI in medical diagnosis: AI prediction & human judgment", January 2022.
- [4]. Chetan Bulla, Chinmay Parushetti, Akshata Teli, Samiksha Aski and Sachin Koppad, "A Review of AI Based Medical Assistant Chatbot", June 2020.
- [5]. Mahmoud nasr, Md. Milon Islam, Shady Shehata, Fakhri Karray, and Yuri Quintana, "Smart Healthcare in the Age of AI: Recent Advances, Challenges, and Future Prospects", November 2021.
- [6]. Binggui Zhou, Guanghua Yang, Zheng Shi, and Shaodan Ma, "Natural Language Processing for Smart Healthcare", September 2022.
- [7]. Catalina valenzuela-núñez, Guillermo latorre-núñez, and Freddy troncoso-espinosa, "Smart Medical Appointment Scheduling:Optimization, Machine Learning, and Overbooking to Enhance Resource Utilization" January 2024.
- [8]. Najma Taimoor and Semeen Rahman, "Reliable and Resilient AI and IoT-Based Personalised Healthcare Services: A Survey", January 2022.
- [9]. Rashika Raina1 and Rakesh Kumar Jha, "Intelligent and Interactive Healthcare System (I2HS) Using Machine Learning", November 2022.
- [10]. Prathamesh Kandpal, Kapil Jasnani, Ritesh Raut, Prof. Dr. Siddharth Bhorge Contextual Chatbot for Healthcare Purposes (using Deep Learning)", October 2020

Copyright to IJARSCT www.ijarsct.co.in

