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Abstract: Solving high-dimensional partial differential equations (PDEs) poses a significant challenge due 

to the computational complexity and memory requirements involved. Traditional numerical methods 

encounter limitations when dealing with large-scale problems, motivating the exploration of alternative 

techniques. Deep learning has emerged as a promising approach to address these challenges by leveraging 

the representational power of neural networks. In the context of solving high-dimensional PDEs, deep 

learning techniques offer several advantages, including scalability, flexibility, and the ability to learn 

complex mappings between input and output spaces. By utilizing architectures such as convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs), researchers have developed innovative methods to 

approximate solutions to high-dimensional PDEs. These approaches often involve training neural networks 

on simulated or experimental data to learn the underlying dynamics of the system, enabling efficient and 

accurate predictions. Additionally, techniques such as physics-informed neural networks (PINNs) integrate 

domain knowledge into the learning process, enhancing the robustness and interpretability of the models. 

Despite the progress achieved, challenges remain in optimizing network architectures, handling large 

datasets, and ensuring generalization to diverse problem domains. Nevertheless, the intersection of deep 

learning and high-dimensional PDEs holds great promise for advancing computational science and 

engineering applications, paving the way for more efficient and scalable solutions to complex physical 

phenomena 

 

Keywords: Deep Learning, Solving, Single-line Approach, Efficiency 

 

I. INTRODUCTION 

Solving high-dimensional partial differential equations (PDEs) has been a longstanding challenge in various scientific 

and engineering fields due to the computational complexity associated with traditional numerical methods. However, 

recent advancements in deep learning techniques have shown promise in tackling this issue effectively. By leveraging 

deep learning models such as neural networks, researchers have been able to develop innovative approaches for solving 

PDEs in high-dimensional spaces efficiently. These methods typically involve training neural networks to approximate 

the solution of the PDE by learning from a set of training data or by directly solving the PDE using techniques like deep 

Galerkin methods or physics-informed neural networks. The advantage of using deep learning in this context lies in its 

ability to handle complex, nonlinear relationships within the PDE while effectively capturing high-dimensional features 

of the problem domain. Moreover, deep learning-based approaches offer scalability and adaptability, allowing for the 

solution of PDEs in diverse high-dimensional scenarios encountered in fields such as computational physics, finance, 

materials science, and beyond. As researchers continue to explore and refine these techniques, the integration of deep 

learning into the realm of high-dimensional PDE solving holds great promise for advancing our understanding and 

application of complex physical phenomena across various disciplines. 

 

II. METHODOLOGY 

To tackle high-dimensional partial differential equations (PDEs) using deep learning, we employ neural networks as 

function approximators to learn the complex mappings between input variables and the PDE solution. The methodology 

involves several key steps: 
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1. Problem Formulation: Define the high-dimensional PDE problem, including the governing equations, boundary 

conditions, and initial conditions. 

2. Data Generation: Generate a dataset of input-output pairs by sampling the high-dimensional input space and solving 

the PDE numerically using traditional methods (e.g., finite element methods or finite difference methods). 

3. Network Architecture Design: Design deep neural network architecture suitable for approximating the PDE 

solution. This architecture typically includes multiple layers of neurons, possibly incorporating convolutional layers for 

spatial dimensions and recurrent layers for temporal dimensions in time-dependent PDEs. 

4. Loss Function Definition: Define a loss function that quantifies the discrepancy between the neural network 

predictions and the true PDE solution. Common choices include mean squared error or other physically motivated loss 

functions. 

5. Training: Train the neural network by minimizing the defined loss function using gradient-based optimization 

techniques such as stochastic gradient descent (SGD) or Adam. 

6. Validation and Testing: Validate the trained model on a separate validation dataset and assess its performance. 

Additionally, test the model on unseen data to evaluate its generalization capability. 

The methodology can be summarized mathematically as: 

���
�

 �  

�

���

����, ��(��)� 

where � represents the parameters of the neural network, L denotes the chosen loss function, �� is the neural network 

model, and (��, ��) are the input-output pairs from the dataset. 

 

Nonlinear Black–Scholes Equation with Default Risk 

The Black-Scholes equation is a cornerstone in financial mathematics, used to model the price dynamics of financial 

derivatives. However, when considering default risk, the equation becomes nonlinear due to the presence of a default 

boundary. This nonlinear Black-Scholes equation with default risk is challenging to solve, particularly in high-

dimensional settings, where traditional numerical methods struggle due to the curse of dimensionality. 

To address this challenge, deep learning techniques have emerged as a promising approach for solving high-

dimensional partial differential equations (PDEs) efficiently. Deep neural networks (DNNs) have shown remarkable 

capabilities in learning complex mappings from input to output spaces, making them suitable candidates for 

approximating the solutions of PDEs. 

One approach involves formulating the nonlinear Black-Scholes equation with default risk as an initial or boundary 

value problem and training a deep neural network to approximate its solution. The neural network takes the relevant 

inputs such as asset price, time, volatility, and default boundary information and outputs an approximation of the option 

price. 

Mathematically, the solution �(�, �) of the nonlinear Black-Scholes equation with default risk can be represented as: 

∂�

∂�
+ ℒ��(�) = 0 

where ℒ��(�) represents the Black-Scholes operator with default risk. By training the neural network on a dataset of 

known solutions or using reinforcement learning techniques, the network learns to approximate the solution of the 

nonlinear Black-Scholes equation accurately, even in high-dimensional spaces, offering a promising avenue for 

efficient and accurate pricing of financial derivatives under default risk. 

 

Hamilton–Jacobi–Bellman Equation 

The Hamilton-Jacobi-Bellman (HJB) equation is a fundamental concept in optimal control theory, often used to solve 

high-dimensional partial differential equations (PDEs) arising in various fields such as finance, robotics, and aerospace 

engineering. It represents a dynamic programming equation that characterizes the optimal value function of a stochastic 

control problem. In many practical scenarios, solving the HJB equation analytically is intractable due to the curse of 

dimensionality, especially in high-dimensional state spaces. 
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To address this challenge, deep learning techniques have been increasingly employed to approximate solutions to the 

HJB equation in high-dimensional settings. Deep neural networks (DNNs) are particularly well-suited for this task due 

to their ability to learn complex mappings from input to output spaces. By parameter zing the value function in the HJB 

equation with a deep neural network, one can leverage techniques such as stochastic gradient descent to iteratively 

update the network parameters until convergence to an approximate solution is chieved. 

The HJB equation in its general form is given by: 
∂�

∂�
+ ���

�∈�
 {−�(�, �, ∇�)} = 0 

where V is the value function, t is time, x is the state, u is the control input, and H is the Hamiltonian of the system. 

Deep learning methods seek to approximate the value function V directly from data, bypassing the need for explicit 

analytical solutions in high-dimensional spaces. By training the neural network on historical data or through 

reinforcement learning techniques, the approximate solution to the HJB equation can be obtained, enabling efficient and 

scalable solutions to complex optimal control problems. 

 

Allen–Cahn Equation 

The Allen-Cahn equation, a classical partial differential equation (PDE) in the field of materials science and phase 

transitions, describes the evolution of a scalar order parameter in time. It is given by: 
∂�

∂�
= �∇�� − �(�) + �(�, �) 

where �(�, �) represents the order parameter, ∇� is a small positive constant representing the interface thickness, 

\(\nabla^2\) is the Laplacian operator, �(�) is a double-well potential, and �(�, �)is a noise term. 

Solving high-dimensional versions of the Allen-Cahn equation poses significant challenges due to the curse of 

dimensionality and the computational complexity involved. Recently, deep learning techniques have emerged as 

powerful tools for approximating solutions to high-dimensional PDEs. Specifically, neural networks can learn complex 

mappings from input space to solution space without explicitly solving the PDE. 

In the context of the Allen-Cahn equation, deep learning approaches involve training neural networks to approximate 

the solution manifold. By feeding input data consisting of spatial and temporal coordinates into the neural network, it 

learns to predict the evolution of the order parameter over time. This approach bypasses the need for traditional grid-

based numerical methods, offering advantages in terms of computational efficiency and scalability to high-dimensional 

systems. Moreover, deep learning frameworks can handle noisy data and capture intricate spatiotemporal patterns, 

making them particularly well-suited for modeling complex phase transitions described by the Allen-Cahn equation in 

high-dimensional systems. 

 

III. MATERIALS AND METHODS 

To solve high-dimensional partial differential equations (PDEs) using deep learning, we adopt a neural network-based 

approach that leverages the expressive power of deep learning architectures to approximate the solutions. The key idea 

is to train a deep neural network to directly learn the mapping from the input space, typically the domain of the PDE, to 

the solution space, where the solution of the PDE resides. Let's denote the input space as Ω and the solution space as U. 

The PDE we aim to solve is of the form: 

�(�(�), ∇�(�), ∇��(�), … , ∇��(�), �) = 0 

where �(�) is the solution function defined on Ω, and ∇ represents the gradient operator. Our goal is to find an 

approximation ��(�) such that �(��(�), ∇��(�), … , ∇���(�), �) ≈ 0, where � denotes the parameters of the neural 

network. 

We employ a deep neural network architecture, such as a convolution neural network (CNN) or a recurrent neural 

network (RNN), to learn this mapping. The network takes x as input and outputs ��(�). To train the network, we 

minimize a suitable loss function that quantifies the error between the predicted solution ��(�) and the true solution of 

the PDE. This is achieved through techniques like stochastic gradient descent (SGD) or more advanced optimization 

algorithms. Additionally, we may augment the training data using techniques like data augmentation or domain 

decomposition to improve generalization and handle high-dimensional input spaces efficiently. 
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BSDE Reformulation 

In recent years, the quest to tackle high-dimensional partial differential equations (PDEs) has led to a surge of interest 

in leveraging deep learning techniques for their solution. One promising avenue in this pursuit is the reformulation of 

these PDEs as backward stochastic differential equations (BSDEs), a framework that offers a unique perspective on the 

underlying dynamics. By expressing the PDEs in terms of BSDEs, we can tap into the rich reservoir of methodologies 

developed for solving stochastic processes, harnessing their flexibility and efficiency. 

At the heart of this reformulation lies the fundamental relationship between PDEs and BSDEs, encapsulated by the 

Feynman-Kac formula: 

�(�, �) = � ��  
�

�

�(�, ��)�� + �(��) ∣ �� = �� 

Here, �(�, �) represents the solution of the PDE at time t and position x, while �(�, ��) and �(��)  encode the drift and 

terminal conditions, respectively, of the corresponding BSDE. By manipulating this relationship and exploiting the 

expressive power of deep learning architectures such as neural networks, we can effectively approximate the solution of 

the original PDE. This approach not only circumvents the curse of dimensionality that plagues traditional numerical 

methods but also opens up avenues for capturing complex nonlinearities and high-dimensional dependencies with 

remarkable accuracy. 

In essence, the reformulation of high-dimensional PDEs as BSDEs, coupled with the prowess of deep learning, 

represents a paradigm shift in the realm of computational mathematics, offering a potent tool for tackling some of the 

most challenging problems in science and engineering. 

 

IV. CONCLUSION 

In conclusion, employing deep learning techniques for solving high-dimensional partial differential equations (PDEs) 

presents a promising avenue with both challenges and opportunities. By leveraging neural networks, particularly deep 

architectures like convolutional neural networks (CNNs) or recurrent neural networks (RNNs), researchers have 

demonstrated remarkable success in approximating solutions to complex PDEs in high-dimensional spaces. These 

methods offer advantages such as scalability to large datasets, flexibility in handling non-linearities, and potential for 

parallelization across computing resources. 

Mathematically, the deep learning framework for solving PDEs involves parameterizing the solution space using neural 

networks. For instance, in the context of solving the heat equation in a high-dimensional domain Ω, the temperature 

distribution �(�, �) can be approximated by a neural network ��(�, �), where � represents the network parameters. This 

parameterization transforms the PDE into a problem of learning the parameters � that minimize the discrepancy 

between the predicted and actual solutions, typically through techniques like stochastic gradient descent. 

However, challenges persist, including the need for large amounts of labeled data, issues with generalization to unseen 

regions of the domain, and computational inefficiency for extremely high-dimensional systems. Additionally, the 

interpretability of deep learning models in the context of PDE solutions remains an ongoing research area. 

Despite these challenges, the marriage of deep learning and high-dimensional PDEs holds great promise for advancing 

scientific computing, enabling more efficient and accurate solutions to a wide range of physical phenomena across 

various disciplines. Continued research efforts aimed at addressing the aforementioned challenges will likely lead to 

further advancements in this field. 
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