
IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 4, Issue 2, January 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-15205 34

www.ijarsct.co.in

Impact Factor: 7.53

Exploring Security Challenges and Solutions in

Kubernetes: A Comprehensive Survey of

Challenges and State-of-the-Art Approaches
Tejas Vilas Acharekar

Institute of Distance and Open Learning, Mumbai, Maharashtra, India

tejasacharekar2@gmail.com

Abstract: This research paper presents a comprehensive and in-depth study of Kubernetes security

Challenges and solutions. The research takes a systematic approach starting at the container level and

ending with the pod and the broader Kubernetes cluster. This paper analyses vulnerabilities at these

various levels to reveal potential vulnerabilities and challenges. This paper also examines certain high-

availability techniques that can enhance a Kubernetes cluster's overall effectiveness. The findings of this

study will help to improve knowledge of Kubernetes' high availability and security features as well as throw

some light on container-specific strategies and sensitivities to increase system stability and reduce

vulnerability.

Keywords: Kubernetes, security solutions, high availability, container vulnerabilities, pod analysis,

Kubernetes cluster, system resilience, strategies

I. INTRODUCTION

Kubernetes is one of the popular container orchestration platform for deploying, managing, and scaling containerized

applications. Kubernetes offers several features that make it a secure platform, Network Policy, includes Role-Based

Access Control (RBAC), and Group Security Policies. However, some security risks are present in Kubernetes,

misconfigurations, including container image vulnerabilities, and unauthorized access.

This research paper provides a comprehensive and detailed investigation in Kubernetes's high availability and security

solutions. The study takes a systematic approach, starting at the container level and progressing to larger Kubernetes

pools and clusters. By analysing vulnerabilities at different levels, the document will reveal potential weaknesses and

challenges. In addition, the article explores a series of high-availability strategies that can improve the overall efficiency

of a Kubernetes cluster.

The results of this study contribute to a better understanding of Kubernetes security and high availability considerations

and shed light on container-specific strategies and sensitivities for building resilient systems.

This study aimed to do an in-depth study of containerization, its architecture from a security perspective, and how

container security affects a Kubernetes cluster. We will also discuss various high-availability methods in Kubernetes,

including the high-availability technologies built into Kubernetes

II. BACKGROUND AND RELATED WORK

When we talk about Kubernetes or any containerization tool, most of the companies prefer docker as shown in Fig 1.

So, to understand security issues for Kubernetes we need to understand security issues in containers. To understand the

architecture of docker containers we can compare traditional virtualization technologies and docker shown in Fig 2. [1]

In docker you have a single OS and the resources that are shared between the containers. According to the Docker

official documentation [2], some vulnerabilities that I found in Docker include unrestricted access to infected docker,

host resources, images and infected host kernel. These vulnerabilities can be exploited by attackers to take control of

systems, gain access of sensitive data, or disrupt operations.

As discussed in [3] security landscape in Docker container environments is notably complex due to the multitude of

components requiring protection. The Docker daemon, a critical component, must be secured adequately to ensure the

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 4, Issue 2, January 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-15205 35

www.ijarsct.co.in

Impact Factor: 7.53

safety of the containers it hosts. Any vulnerabilities in the Docker daemon could potentially compromise the entire

containerized ecosystem. Whether the host server operates on bare metal or as a virtual machine, it serves as a

foundational layer requiring robust security measures. Breaches at this level could have cascading effects on the

security of the entire Docker environment. Beyond the confines of containers, data volumes and external storage

systems pose further security concerns. Protecting sensitive data stored externally is paramount to prevent unauthorized

access or data breaches. So basically, for securing Kubernetes or any orchestration tool, we need to secure the docker

image first which is the founding block of any pod.

Figure 1 List of Container Tools

Figure 2 VM vs Container Virtualization Architecture

III. EVALUATION METHODOLOGY

We will take a systematic approach to understanding the important factors that are contributing to the security of any

container and Kubernetes.

3.1 Docker Architecture

As shown in Fig 3. Docker employs a client-server architecture where the Docker client interacts with the Docker

daemon to handle tasks such as constructing, executing, and disseminating Docker containers. The Docker client and

daemon can coexist on a single system, or a Docker client can be linked to a remote Docker daemon. Communication

between the Docker client and daemon occurs through a REST API, utilizing either UNIX sockets or a network

interface. Additionally, Docker Compose serves as an alternative Docker client, enabling the management of

applications comprising multiple containers..

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 4, Issue 2, January 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-15205 36

www.ijarsct.co.in

Impact Factor: 7.53

3.2 Container Layers

When we talk about docker images, docker images consist of a series of ordered build instructions. Each instruction in a

Dockerfile translates to an image layer. What it means is that each layer is directly proportional to the instructions we

have given in the Dockerfile. Layers may include dependencies, libraries, and application code. Each layer introduces

potential vulnerabilities

3.3 Current Security Issue with Containers

 The shared underlying kernel architecture of containers presents a critical security consideration. Securing the

host alone is insufficient.

 Unpatched software vulnerabilities within container images can be exploited by attackers.

 Compromised container registries or malicious code injection during image building can lead to widespread

infections.

 Improper resource isolation can allow containers to access unauthorized resources or interfere with other

containers.

 Granting unnecessary privileges to containers increases the attack surface and potential damage.

Figure 3: Docker Architecture

3.4 Security Best Practices for Containers

 Reduce the attack surface by using minimal base images and removing unnecessary packages.

 Regularly scan container images for vulnerabilities and apply patches promptly.

 Store and pull images from reliable registries with robust security measures.

 Define resource limits for containers to prevent resource starvation and unauthorized access.

 Avoid granting unnecessary privileges to containers and utilize least-privilege principles.

3.5 Pod Security Concerns

While container security is crucial, it forms one piece of a larger puzzle. Pods, which group one or more containers and

shared resources, introduce additional security considerations. Sharing resources within a pod necessitates careful

access control and network isolation to prevent containerized applications from interfering with each other.

Shared file systems, namespaces, and network resources within a pod create potential avenues for lateral movement

between compromised containers.

Overly permissive service accounts assigned to pods can grant excessive access to cluster resources.

3.6 Pod Security Best Practices

 Isolate sensitive applications by running them in dedicated pods to prevent lateral movement.

 Utilize network policies to restrict communication between pods and define allowed ingress and egress traffic.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 4, Issue 2, January 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-15205 37

www.ijarsct.co.in

Impact Factor: 7.53

 Define resource quotas and limits for pods to prevent resource hogging and ensure fair resource allocation.

 Grant service accounts assigned to pods only the minimum permissions required for their functionality.

3.7 Current Best Practices for Securing Highly Available Kubernetes Clusters

 RBAC is a security mechanism that restricts access to resources based on the user’s role.

 Network policies are a set of rules that control the traffic flow between pods in a Kubernetes cluster.

 Secrets are sensitive data such as passwords, tokens, and certificates that should be kept secure. It is

recommended to use Secrets Management to protect sensitive data.

 Pod Security Policies (PSPs) are a set of rules that define the security context of a pod.

 Regularly updating and patching the Kubernetes cluster can help to keep the cluster secure and protect it from

known vulnerabilities.

IV. RESULT AND DISCUSSION

After going through the references, research articles, CNCF web pages and discussing with Piers. This research paper

has presented a comprehensive analysis of security solutions and high-availability strategies in Kubernetes.

In respect to container level security unpatched software, misconfigurations, and insufficient isolation expose

containers to attack. Best practices include using minimal base images, keeping software up-to-date, and implementing

resource quotas.

Secondly shared resources and unrestricted communication within pods require careful access control and network

isolation. Techniques like separate pods for sensitive applications and network policies are crucial.

Lastly protecting the control plane, implementing RBAC, and enabling logging are essential. High-availability

measures like redundancy, self-healing mechanisms, and disaster recovery planning ensure continuous service delivery.

While exploring and researching container security I came across some container scanning tools that are open source

which can help to scan images to check vulnerabilities. It will help to use secure images even if we are using images

from verified resources or we are building our docker images.

4.1 Docker Scout

Docker Scout [6] examines the contents of container images, producing a comprehensive report that outlines the

packages and vulnerabilities identified. Additionally, it offers recommendations on potential remediation measures for

addressing issues uncovered during the image analysis.

4.2 Trivy

Trivy [7], a versatile security scanner, specializes in analysing container images, and thoroughly examining the image

contents to identify and report on various security aspects. Its scanning capabilities include scrutinizing OS packages,

software dependencies, known vulnerabilities (CVEs), Infrastructure as Code (IaC) issues, misconfigurations, sensitive

information, and software licenses within container images.

V. CONCLUSION AND FUTURE WORK

In conclusion, this research paper has provided a comprehensive examination of Kubernetes security challenges and

solutions, focusing on container-level vulnerabilities, pod analysis, and broader Kubernetes cluster considerations. The

study has underscored the importance of understanding and addressing security issues in containerization, particularly

within the Docker framework, which forms the foundation of Kubernetes pods.

Key insights include the need for minimal base images, regular vulnerability scanning, and robust pod security

practices. Open-source tools like Docker Scout and Trivy were recommended for enhanced image security.

Future research should explore emerging challenges within evolving Kubernetes versions and other orchestration

platforms. Investigating the effectiveness of recently developed security tools and assessing the real-world

implementation of suggested best practices will offer practical insights for industry practitioners. Additionally, a

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 4, Issue 2, January 2024

Copyright to IJARSCT DOI: 10.48175/IJARSCT-15205 38

www.ijarsct.co.in

Impact Factor: 7.53

comparative analysis of container scanning tools can aid decision-makers in selecting optimal solutions, considering

factors such as accuracy and integration feasibility into CI/CD pipelines.

ACKNOWLEDGMENT

I would like to express my sincere gratitude to the open-source community, whose collective efforts have significantly

contributed to the advancement of Kubernetes and container technologies. Additionally, I extend my appreciation to the

researchers and practitioners whose work has laid the foundation for this study.

REFERENCES

[1]. Avi. Docker Architecture and its Components for Beginners [Internet]. Geekflare. 2019 [cited 2023 Aug 31].

Available from: https://geekflare.com/docker-architecture/

[2]. Docker security [Internet]. Docker Documentation. 2023 [cited 2023 Aug 31]. Available from:

https://docs.docker.com/engine/security/

[3]. Murray A. Docker container security: Challenges and best practices [Internet]. Mend. Mend.io; 2023 [cited

2024 Jan 20]. Available from: https://www.mend.io/blog/docker-container-security/

[4]. Docker overview [Internet]. Docker Documentation. 2023 [cited 2024 Jan 20]. Available from:

https://docs.docker.com/get-started/overview/

[5]. Top 5 Docker security risks and best practices [Internet]. Tigera. 2021 [cited 2024 Jan 20]. Available from:

https://www.tigera.io/learn/guides/container-security-best-practices/docker-security/

[6]. Docker Scout [Internet]. Docker Documentation. 2023 [cited 2024 Jan 20]. Available from:

https://docs.docker.com/scout/

[7]. Container image [Internet]. Github.io. [cited 2024 Jan 20]. Available from:

https://aquasecurity.github.io/trivy/v0.48/docs/target/container_image/

