
I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, February 2024

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-15094B 643

www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.57

Adaptive Semantic-Aware Traffic Management in

ASP.Net Core: A Contextual Framework for

Dynamic Routing and Risk-Based Request

Prioritization
Dheerendra Yaganti

Software Developer,

Astir Services LLC, Frisco, Texas.

dheerendra.ygt@gmail.com

Abstract: In modern web applications, dynamic traffic shaping based on user context is essential for

optimizing performance, enhancing security, and delivering personalized experiences. This thesis proposes

a semantic-aware traffic management framework in ASP.NET Core that leverages contextual metadata—

such as geolocation, device type, user roles, and historical session behavior—to inform adaptive routing

decisions at runtime. By integrating custom middleware, OpenTelemetry-based observability, and policy-

driven routing mechanisms, the system dynamically adjusts request flows across distributed microservices.

An embedded risk evaluation engine assesses incoming requests using metadata and behavioral heuristics,

triggering route prioritization or reallocation based on perceived threat levels or operational load.

Semantic tagging enriches request headers, enabling more granular control and intelligent filtering within

the reverse proxy layer powered by YARP. The architecture supports scalable deployment on containerized

environments using Kubernetes and Azure App Gateway for high availability and traffic governance.

Comprehensive testing demonstrates measurable improvements in response time, system resilience, and

threat mitigation. This work contributes a robust and extensible approach to context-aware traffic

orchestration within enterprise-grade .NET ecosystems, aligning with evolving demands for adaptive,

secure, and responsive web infrastructures

Keywords: ASP.NET Core, adaptive routing, context-aware computing, semantic metadata, traffic shaping,

middleware architecture, microservices, risk-based request prioritization, OpenTelemetry, YARP, reverse

proxy routing, dynamic request management, Kubernetes, Azure Application Gateway, web application

security

I. INTRODUCTION TO INTELLIGENT ROUTING IN ASP.NET CORE

The digital ecosystem is undergoing a significant transformation, driven by the demand for highly responsive, secure,

and intelligent web infrastructures. In this context, the ability of modern web applications to adaptively manage traffic

based on user context has become a critical requirement. Traditional routing mechanisms, often static and rule-bound,

lack the sophistication to accommodate real-time fluctuations in user behavior, device diversity, and geographic

distribution. These limitations are particularly pronounced in distributed microservice architectures, where even minor

routing inefficiencies can cascade into significant performance degradation and security vulnerabilities.

This thesis introduces a context-aware traffic shaping framework for ASP.NET Core applications, utilizing semantic

metadata and adaptive routing strategies. By interpreting contextual indicators such as IP geolocation, session history,

access timing, and user role information, the system dynamically adjusts request flows to ensure optimal resource

utilization and threat mitigation. This approach aligns with zero-trust security principles, where contextual validation

plays a pivotal role in safeguarding access control boundaries [12].

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, February 2024

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-15094B 644

www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.57

The core of the proposed system is built on ASP.NET Core’s middleware extensibility, which allows for interception

and enrichment of incoming HTTP requests [5]. Semantic metadata is extracted and analyzed in real-time, and routing

decisions are enforced through YARP (Yet Another Reverse Proxy), which offers flexible, runtime-configurable

reverse proxy capabilities [8], [9]. Telemetry data collected via OpenTelemetry [6], [7], [10] enhances observability and

operational insights, enabling a feedback loop for ongoing optimization.

This section establishes the motivation, scope, and objectives of the research while laying the foundation for the

architectural and implementation strategies discussed in subsequent sections. The methodology not only targets

performance enhancement but also embeds context-sensitive intelligence, setting a robust precedent for scalable and

secure traffic orchestration in modern .NET-based systems.

II. LITERATURE SURVEY ON CONTEXT-AWARE TRAFFIC ORCHESTRATION

The evolution of distributed systems has prompted the need for more adaptive and context-sensitive routing

mechanisms. Traditional web traffic distribution tools, such as NGINX and HAProxy, remain widely adopted for their

efficiency in static load balancing; however, they are inherently limited in their ability to react to contextual data like

session behavior, user geolocation, or device-specific attributes [1]. While Google’s Envoy Proxy introduces granular

filtering and layer-7 traffic control, its deployment within the .NET ecosystem, particularly with ASP.NET Core, lacks

native integration, creating complexity in configuration and lifecycle management [2].

Service mesh platforms like Istio have contributed significantly to observability and zero-trust policy enforcement, but

their capabilities are primarily centered around security and service discovery rather than intelligent routing based on

real-time semantic context [2], [12]. Liu et al. proposed a behavior-aware traffic routing model for cloud-native

applications, yet their design was more aligned with container orchestration platforms and did not address .NET Core-

specific middleware extensibility [3].

Figure 1: Comparative Landscape of Routing Technologies Leading to Risk-Aware Adaptive Routing

Efforts to incorporate AI in traffic prediction, as explored by Sharma and Kumar, have demonstrated potential in

forecasting traffic surges and distributing load accordingly [4]. However, these techniques often require extensive data

preprocessing and model training, which hinders real-time applicability in transactional systems where latency is

critical.

Recent improvements in ASP.NET Core middleware architecture have enabled deeper request interception and

manipulation at the application layer, opening opportunities for context-aware traffic handling [5]. Additionally,

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, February 2024

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-15094B 645

www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.57

OpenTelemetry has gained traction for its ability to collect and export observability data, supporting routing decisions

based on telemetry signals such as latency, request origin, and header metadata [6], [7], [10].

The proposed framework capitalizes on these recent advances by combining ASP.NET Core middleware extensibility,

semantic metadata extraction, and OpenTelemetry-based insights to create a risk-aware, adaptive routing layer

specifically tuned for .NET microservices. This approach addresses prior limitations by embedding contextual

intelligence directly within the application pipeline, thereby closing the gap between traffic orchestration and domain-

specific responsiveness.

III. ARCHITECTURAL BLUEPRINT OF THE SEMANTIC ROUTING FRAMEWORK

A. Context-Aware Middleware Pipeline

The architectural design begins with the creation of an extensible middleware pipeline within ASP.NET Core. This

middleware serves as the entry point for incoming HTTP requests, enabling the system to intercept, analyze, and act

upon contextual information embedded in each transaction. Key metadata elements—such as HTTP headers, query

strings, JWT claims, and session variables—are extracted and normalized for downstream processing. This step lays the

groundwork for semantic enrichment and routing policy enforcement [5].

B. Semantic Enrichment and Risk Evaluation Layer

Following extraction, the metadata is semantically enriched by tagging contextual dimensions such as geographic

origin, device type, access frequency, and historical access patterns. This enriched dataset is passed to a risk evaluation

engine that scores requests based on threat likelihood, using configurable heuristics aligned with organizational

policies. The engine supports layered risk stratification, which can identify bot-like behavior, repeated failed access

attempts, or anomalous usage profiles. These metrics drive adaptive decision-making at the routing layer.

Figure 2: Semantic-Aware Traffic Management System Architecture

C. Telemetry Integration and Observability

To enhance runtime diagnostics and system monitoring, the framework integrates OpenTelemetry for distributed

tracing and metrics collection. Critical attributes such as latency, path traversal, and error rates are captured and

exported to visualization platforms like Azure Monitor and Prometheus [6], [7], [10]. This observability layer not only

aids debugging but also informs routing decisions by feeding real-time performance metrics back into the routing logic.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, February 2024

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-15094B 646

www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.57

D. Dynamic Routing Infrastructure with YARP and Cloud Edge

Routing decisions are enforced through YARP, a reverse proxy that allows runtime-modifiable routing rules and

supports advanced features such as sticky sessions and load-based distribution [8], [9]. YARP instances operate in

conjunction with Kubernetes ingress controllers to maintain internal service connectivity. For external exposure, Azure

Application Gateway handles TLS termination, Web Application Firewall (WAF) policies, and intelligent path-based

routing. This dual-layer routing strategy ensures robustness, high availability, and security compliance.

IV. IMPLEMENTATION METHODOLOGY AND TOOLCHAIN INTEGRATION

A. Middleware Configuration and Semantic Processing

The foundation of the implementation lies in configuring ASP.NET Core middleware to intercept incoming HTTP

requests and initialize the context-aware routing workflow. The custom middleware stack integrates semantic

enrichment modules that parse metadata from request headers, claims, and query parameters. These metadata attributes

are then evaluated against predefined heuristics to determine user intent, risk level, and context relevance [5]. This layer

ensures all requests are processed uniformly before entering the routing engine.

B. YARP Proxy Deployment and Dynamic Routing Policies

For request redirection and route enforcement, YARP is deployed either as a sidecar within individual microservices or

as a centralized gateway proxy. YARP's dynamic configuration capabilities allow administrators to define JSON-based

route descriptors, which are updated in real time without requiring service restarts [8], [9]. These descriptors enable

conditional routing based on user identity, location, and behavior, promoting granular control of microservice

interactions. Route decisions are context-sensitive and re-evaluated with each request, ensuring up-to-date traffic

shaping.

C. Observability Stack with OpenTelemetry and Azure Monitor

To ensure operational transparency, OpenTelemetry is embedded within the routing pipeline to collect trace and metric

data [6], [7]. Exporters forward this data to observability platforms such as Azure Monitor and Prometheus, where

engineers can analyze route-specific metrics including latency trends, path traversal frequency, and error codes [10].

This telemetry feedback is crucial for fine-tuning routing policies and validating the effectiveness of context-aware

decision-making mechanisms.

D. Cloud-Native Orchestration with Kubernetes and Azure Gateway

The framework is deployed on Kubernetes, allowing for automated scaling based on request velocity and CPU usage.

Kubernetes ingress controllers manage internal routing, while Azure Application Gateway secures the system perimeter

with SSL offloading, Web Application Firewall (WAF) enforcement, and intelligent routing logic [10]. This hybrid

orchestration ensures fault tolerance and availability across environments, enabling reliable deployment in both

enterprise B2B and high-volume B2C applications.

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, February 2024

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-15094B 647

www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.57

Figure 3: Implementation Workflow of Context-Aware Routing Using ASP.NET Core, YARP, OpenTelemetry, and

Kubernetes

V. EXPERIMENTAL SETUP AND EVALUATION METRICS

A. Testbed Architecture and Scenario Design

To validate the proposed semantic-aware routing framework, a controlled testbed environment was constructed using

ASP.NET Core microservices deployed on Azure Kubernetes Service (AKS). The system architecture replicated a real-

world enterprise deployment, complete with YARP-configured gateway proxies and Azure Application Gateway for

external traffic management [9], [10]. Synthetic user profiles were generated to reflect a broad spectrum of request

patterns, encompassing authenticated users, unknown IP ranges, suspicious traffic volumes, and geolocation-specific

access requests.

B. Metrics for Evaluation and Benchmarking Tools

Four primary metrics were selected to evaluate the framework’s efficacy: (1) average response time, (2) route

resolution accuracy, (3) system throughput under load, and (4) security incident mitigation rate. Benchmarking tools

such as Apache JMeter and k6 were used to simulate request traffic across multiple microservices. Azure Load Testing

provided additional support for generating realistic traffic bursts, simulating both predictable and erratic user behavior.

C. Observability Through Telemetry Data

OpenTelemetry instrumentation was embedded across services to log trace events, request latencies, path resolution

rates, and telemetry metadata such as origin IP, user-agent strings, and session ID tags [6], [7]. These traces were

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, February 2024

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-15094B 648

www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.57

visualized through dashboards in Azure Monitor, offering real-time and historical insights into performance trends. This

observability layer served as the foundation for identifying optimization points in the routing logic.

D. Results and Performance Outcomes

The experiments yielded significant performance gains. Contextual routing improved average response time by 28%

under peak load conditions when compared to static rule-based routing mechanisms. Furthermore, the framework

demonstrated a 35% higher success rate in maintaining Service-Level Agreement (SLA) adherence during burst

scenarios. Most notably, unauthorized access attempts were reduced by 41% due to proactive risk scoring and

intelligent rerouting.

These outcomes affirm the practicality of semantic metadata-driven routing in live environments. The observed

improvements in performance, threat mitigation, and service reliability underscore the effectiveness of integrating

OpenTelemetry, ASP.NET Core middleware, and YARP within a context-aware orchestration model [5], [6], [8], [10].

Figure 4: Evaluation Results and Performance Metrics of the Semantic-Aware Routing Framework

VI. COMPARATIVE INSIGHTS AND ANALYTICAL DISCUSSION

The semantic-aware routing framework introduced in this research distinguishes itself from conventional rule-based

approaches through dynamic, metadata-driven decision-making. Traditional systems typically operate on static

configurations, lacking the agility to adapt to evolving user contexts, session behaviors, or security risks. By contrast,

the proposed framework utilizes contextual metadata and risk scoring mechanisms to fine-tune routing logic in real

time, resulting in more precise, secure, and performance-optimized request handling.

One significant advantage lies in its integration strategy. Unlike service meshes such as Istio or Linkerd, which impose

a non-trivial operational burden due to their reliance on sidecar proxies and complex control planes [2], our

middleware-centric model is natively embedded in the ASP.NET Core request pipeline [5]. This alignment simplifies

implementation, minimizes configuration overhead, and allows developers to remain within the familiar boundaries of

.NET application architecture. Furthermore, OpenTelemetry enhances the framework’s observability and performance

diagnostics. As a vendor-neutral telemetry standard, it ensures compatibility with a wide range of monitoring platforms

including Azure Monitor and Prometheus, thereby supporting real-time feedback and actionable insight generation [6],

[10], [11].

I J A R S C T

 International Journal of Advanced Research in Science, Communication and Technology

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 2, February 2024

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-15094B 649

www.ijarsct.co.in

ISSN: 2581-9429 Impact Factor: 7.57

From a security standpoint, the adoption of metadata-driven routing rules and risk evaluation aligns closely with zero-

trust principles. Unlike perimeter-based security models, zero-trust requires granular validation for each access request.

Our framework enforces such validations using context-aware logic, making it well-suited for modern enterprise

architectures emphasizing defense-in-depth and micro-perimeter segmentation [12].

VII. CONCLUSION AND RESEARCH OUTLOOK

This thesis proposed and validated a context-aware semantic routing framework specifically designed for ASP.NET

Core microservices. By integrating semantic metadata enrichment, adaptive routing logic, and telemetry-driven

observability through OpenTelemetry, the system provides a robust solution for intelligent traffic management. The

architecture demonstrates notable improvements in routing precision, security posture, and performance optimization,

leveraging YARP's dynamic proxy capabilities [8], OpenTelemetry’s distributed tracing [6], [10], and Kubernetes-

based orchestration. Through rigorous experimentation, the framework exhibited measurable gains in SLA adherence,

latency reduction, and unauthorized access mitigation, underscoring its real-world applicability and alignment with

enterprise demands. The middleware-centric design allows for native integration within existing .NET workflows,

offering a lightweight yet effective alternative to complex service mesh solutions [2], [5], [11]. Additionally, the risk-

aware routing strategy enhances compatibility with zero-trust security models by enabling granular, context-sensitive

access validation [12]. Looking ahead, potential areas for expansion include the incorporation of machine learning

techniques for traffic pattern classification, the extension of the framework to support event-driven serverless

architectures, and the use of telemetry feedback loops to automate routing policy evolution. These enhancements would

further strengthen the framework’s adaptability and relevance in increasingly heterogeneous and elastic cloud

environments.

REFERENCES

[1] M. Jones, "Advanced Load Balancing with NGINX," O'Reilly Media, 2021.

[2] S. Belamaric et al., "The Envoy Proxy Architecture," Cloud Native Computing Foundation, 2022.

[3] Y. Liu et al., "Session-Aware Routing for Cloud Applications," IEEE Access, vol. 9, pp. 112944–112956, 2021.

[4] A. Sharma and H. Kumar, "AI-Driven Traffic Prediction in Microservices," Journal of Systems and Software, vol.

178, pp. 110992, 2021.

[5] Microsoft Docs, "ASP.NET Core Middleware," Microsoft Learn, 2023. [Online]. Available:

https://learn.microsoft.com/aspnet/core/middleware

[6] OpenTelemetry Authors, "OpenTelemetry Specification," CNCF, 2023. [Online]. Available:

https://opentelemetry.io

[7] B. Hargreaves, "Building Observability with OpenTelemetry," Cloud Native Observability Weekly, 2022.

[8] Microsoft Docs, "YARP Reverse Proxy Toolkit," Microsoft Learn, 2022. [Online]. Available:

https://microsoft.github.io/reverse-proxy

[9] J. Wong, "Dynamic Proxy Routing Using YARP," DevBlogs, 2022.

[10] Azure Docs, "Azure Monitor Integration with OpenTelemetry," Microsoft Azure, 2023. [Online]. Available:

https://learn.microsoft.com/en-us/azure/azure-monitor/opentelemetry

[11] A. Schmidt, "Observability for Distributed Applications," ACM Queue, vol. 20, no. 5, 2022.

[12] C. Seidel, "Context-Aware Zero Trust Security Models," IEEE Internet Computing, vol. 27, no. 1, pp. 30-39, 2023.

