ADDIE ('Analysis, Design, Development, Implementation and Evaluation')

Ashwini Naresh Kudtarkar
Shri G.P.M. Degree College of Science and Commerce, Andheri, Mumbai, Maharashtra

Abstract

Florida State University initially developed the ADDIE framework to explain, "...the processes involved in the formulation of an instructional systems development (ISD) program for military underservice training that will adequately train individuals to do a particular job and which can also be applied to any underservice curriculum development activity The model originally contained several steps under its five original phases (analyse, design, develop, implement, and evaluate).

Keywords: ADDIE

I. INTRODUCTION

Florida State University initially developed the ADDIE framework to explain, "...the processes involved in the formulation of an instructional systems development (ISD) program for military underservice training that will adequately train individuals to do a particular job and which can also be applied to any underservice curriculum development activity The model originally contained several steps under its five original phases (analyse, design, develop, implement, and evaluate).
The initial concept behind the instructional design model involved completing each phase sequentially before advancing to the next one. However, over time, practitioners have refined and evolved these steps, resulting in a more dynamic and interactive model compared to the original hierarchical version. By the mid-1980s, the version familiar today appeared. ${ }^{[4]}$

ADDIE Model
The precise origins of the ADDIE label are somewhat unclear, but the foundational concepts of Instructional Systems Design (ISD) can be traced back to a model that was developed for the U.S. armed forces in the mid-1970s. Branson (1978) provides an account of this development, where the Center for Educational Technology at Florida State University collaborated with a branch of the U.S. Army to create a model known as the Interservice Procedures for Instructional Systems Development (IPISD). This model was intended to be used by the Army, Navy, Air Force, and Marine Corps.
In Branson's narrative, the IPISD model is described with five primary headings: Analyze, Design, Develop, Implement, and Control. Notably, subsequent historical reviews of Instructional Design (ID) frequently reference this model. However, it's essential to point out that users and authors generally do not use the ADDIE acronym in this context. Instead, they primarily refer to the IPISD model. Consequently, it is evident that the ADDIE acronym is not derived from the IPISD model.

Abstract

Analysis phase The analysis phase clarifies the instructional issues and objectives, and identifies the learning environment and learner's existing knowledge and skills. Questions the analysis phase addresses include: Who are the learners and their characteristics? What is the desired new behaviour? What types of learning constraints exist? What are the delivery options? What are the pedagogical considerations? What adult learning theory considerations apply? What is the timeline for project completion? The process of asking these questions is often part of a needs analysis. During the needs analysis instructional designers (IDs) will determine constraints and resources in order to fine tune their plan of action. ${ }^{[6]}$

Design phase

The design phase is concerned with various elements, including learning objectives, assessment instruments, exercises, content, subject matter analysis, lesson planning, and media selection. This phase should be characterized by systematic and specific approaches. "Systematic" implies employing a methodical and organized process for identifying, developing, and evaluating a set of strategies aimed at achieving project goals. Meanwhile, "specific" emphasizes the need for the instructional design team to diligently execute each component of the instructional design plan, paying careful attention to detail. In the design phase, it is common to create documents such as design proposals or concept and structure notes to assist in the final development stage.

Development phase

During the development phase, instructional designers and developers work on creating and assembling the content assets that were defined in the earlier design phase. In cases where e-learning is part of the project, programmers are responsible for developing or integrating the necessary technologies. Designers are involved in crafting storyboards, while testers focus on debugging both the materials and procedures. The team collaboratively reviews and revises the project based on feedback. A crucial step in this phase involves conducting a pilot test, which is imperative for ensuring the effectiveness of the course material. This pilot test typically involves key stakeholders and a rehearsal of the course material. . ${ }^{[7]}$

Implementation phase

The implementation phase is focused on the development of procedures designed to facilitate training for both instructors and learners. Training facilitators are responsible for covering various aspects, including the course curriculum, learning objectives, delivery methods, and assessment procedures. For the learners, preparation involves training on any new tools, whether software or hardware, and ensuring smooth student registration. Additionally, this phase encompasses the critical process of evaluating the design's effectiveness in practice.

Evaluation phase

The evaluation phase consists of two aspects: formative and summative. Formative evaluation is present in each stage of the ADDIE process, while summative evaluation is conducted on finished instructional programs or products. Donald Kirkpatrick's Four Levels of Learning Evaluation are often utilized during this phase of the ADDIE process.

Stage 1. Analysis:

Goals: To develop understanding of Mensuration.

Task Analysis:

Content analysis: Concept of Perimeter and Area, Perimeter and Area of Square,Perimeter and Area of Rectangle, Perimeter and Area of Triangle,Perimeter and Area of Circle
Task Analysis: (Basic skills required): knowledge of plane figures and their dimensions and units, Basic knowledge computer operating skills on PowerPoint, YouTube, Google form etc.
Analysis of the learner: $7^{\text {th }}$ class students, independent thinkers, moderate maturity level, Basic knowledge of 2dimensional shapes, curious and eager to explore, technosavy.

Stage 2. Design:

Designing Learning Outcomes (for Assessment):
After watching this presentation the learner will be able to.....
Define the term Perimeter and Area
Calculate Perimeter and Area of Square objects
Calculate Perimeter and Area of Rectangular objects
Calculate Perimeter and Area of Triangular objects
Calculate Perimeter and Area of Circular objects
Solve word problem base on mensuration
Choosing the Course format: It will be a blend of computers (offline and online) and classroom setting.

Creating an instructional strategy

Pre instructional activities: Quiz through ICT in the form of Google form, S Examples to calculate Perimeter and Area.
Learner's participation: group discussion, question-answer session, co-operative learning.
Follow through activity: Students will be able to solve numeric and word problem base on Perimeter and Area.
Designing Evaluation Strategies:
Formative evaluation: exploratory question through-out the process of learning.
Summative evaluation: students will discuss the application of mensuration in real life example. They should understand how to find out perimeter and area of plane surfaces.

Stage 3. Development

Story board:

ANIMATION/ VISUALS/ VIDEO	CONTENT (TEXT)	AUDIO AND SOUND EFFECTS
SLIDE NO: 1	SLIDE TITLE: Details about Me	
Text with custom animation	Name of Students:- Harikesh R Yadav Roll no.:- B-28 Class :- F.Y.B.Ed SEM:- 1 Year:- 2020-2021 Guided By :- Vikas Sir Project Based Course:- ICT Activity no. 2	No audio
SLIDE NO: 2	SLIDE TITLE: Topic name and Content	

Copyright to IJARSCT
www.ijarsct.co.in

Volume 3, Issue 7, January 2023

Text and pictures with custom animation	Mensuration Perimeter and Area of plane figures Square Rectangle Triangle Circle	No audio
SLIDE NO: 3	SLIDE TITLE: Discussion between boy and girl	
Cartoon Pictures of boy and girl showing discussion between them	Girl : What we are going to learn today? Boy: Today we are going tolearn how to calculate perimeter and area of plane figuresl ike square, rectangle, triangleand circle etc.	No audio
SLIDE NO: 4	SLIDE TITLE: Discussion between boy and girl	
Cartoon Pictures of boy and girl showing discussion between them with animation	Boy: Do you know what is what is the perimeter and area of plane figures and how we can calculate it? Girl : I also don't know but we will learn today	No audio
SLIDE NO: 5	SLIDE TITLE: Definition of Perimeter and Area	
Text and picture showing Perimeter and Area with animation	What is the perimeter? Perimeter of a shape is defined as the total distance around the shape. What is the Area? Area is the region bounded by the shape of an object.	Voice over for the points written
SLIDE NO: 6	SLIDE TITLE: Girl thinking	
Picture of girl and chess board with animation	Girl thinking about how to calculate perimeter and area of chess board.	No audio
SLIDE NO: 7	SLIDE TITLE: Perimeter and Area of Square	
Text and picture with animation	Perimeter and Area of Square Perimeter of Square $=4 \times$ side $=4 \times$ a Area of Square $=$ side \times side $=\mathrm{a} \times \mathrm{a}$	No audio
SLIDE NO: 8	SLIDE TITLE: Example	

Volume 3, Issue 7, January 2023

Text and picture with animation	Find the perimeter and area of the chess board whose length of each side is 20 m . Solution : Here $1=20 \mathrm{~cm}$, Perimeter of Square $=4 \times$ side $\begin{gathered} =4 \times \mathrm{a} \\ =4 \times 20 \\ =80 \mathrm{~cm} . \end{gathered}$ Area of Square $=$ side \times side $\begin{aligned} & =\mathrm{a} \times \mathrm{a} \\ & =20 \times 20 \end{aligned}=400 \mathrm{~cm}^{2} .$ Therefore Perimeter and area of chess board are 80 cm and 400 cm 2 respectively.	No voice
SLIDE NO: 9	SLIDE TITLE: Girl thinking	
Picture of boy and door with animation	Boy thinking about how to calculate perimeter and area of door.	$\begin{aligned} & \hline \text { No } \\ & \text { voice } \end{aligned}$
SLIDE NO: 10	SLIDE TITLE: : Perimeter and Area of Rectangle	
No pictures Custom animationappear	Perimeter and Area of Rectangle $\begin{aligned} \text { Perimeter of Square } & =2 \times(\text { length }+ \text { breadth }) \\ & =2 \times(1+\mathrm{b}) \end{aligned}$ Area of Square $=$ length \times breadth $=1 \times b$	No sound
SLIDE NO: 11	SLIDE TITLE: Example	
Text and picture with animation	Find the perimeter and area of the chess board whose length is 2 m and height is 5 m . Solution : Here $1=2 \mathrm{~m}$ and $\mathrm{h}=5$, Perimeter of Rectangle $=2 \times($ length + height $)$ $\begin{aligned} & =2 \times(2+5) \\ & =2 \times 10 \\ & =20 \mathrm{~m} . \end{aligned}$ Area of Rectangle $=$ length \times height $\begin{array}{ll} =2 \times 5 & =10 \mathrm{~m}^{2} \\ =2 \times 5 \end{array}$ Therefore Perimeter and area of door are 20 m and $10 \mathrm{~m}^{2}$ respectively.	No voice
SLIDE NO: 12	SLIDE TITLE: Girl thinking	
 Picture of girl triangular sign board with animation	Girl thinking about how to calculate perimeter and area of triangular sign board.	No audio
pyright to IJARSCT ww.ijarsct.co.in		

SLIDE NO: 13	SLIDE TITLE: Perimeter and Area of Triangle	
Text and picture with animation	Perimeter and Area of Triangle Perimeter of Triangle $=$ sum of all three sides $=a+b+c$ Area of Triangle $=1 / 2 \times$ base \times height $=1 / 2 \times b \times h$	No audio
SLIDE NO: 14	SLIDE TITLE: Example	
Text and picture with animation	Find the perimeter and area of triangularsign board whose height is 24 cm and base is 20 cm and length of remaining two sides is same which 18 cm . Solution : Here $\mathrm{h}=24 \mathrm{~cm}, \mathrm{~b}=20 \mathrm{~cm}, \mathrm{a}=\mathrm{b}=18 \mathrm{~cm}$, Perimeter of Triangle $=$ sum of all three sides $\begin{aligned} & =a+b+c \\ & =18+20+18 \end{aligned}$ $=56 \mathrm{~cm} .$ Area of Triangle $=1 / 2 \times$ base \times height $\begin{aligned} & =1 / 2 \times b \times h \\ & =1 / 2 \times 20 \times 24 \\ & =240 \mathrm{~cm}^{2} \end{aligned}$ Therefore Perimeter and area of triangular board are 20 m and $10 \mathrm{~m}^{2}$ respectively.	No voice
SLIDE NO: 15	SLIDE TITLE: Girl thinking	
Picture of boy and clock with animation	Boy thinking about how to calculate perimeter and area of clock.	$\begin{aligned} & \hline \text { No } \\ & \text { voice } \end{aligned}$
SLIDE NO: 16	SLIDE TITLE: : Perimeter and Area of Circle	
No pictures Custom animationappear	Perimeter and Area of Circle	No sound
SLIDE NO: 17	SLIDE TITLE: Example	

Text and picture with animation	Find the perimeter and area of the circular clock of radius is 14 cm . Solution: Here $\mathrm{r}=14 \mathrm{~cm}$, Perimeter of Circle $=2 \pi r$ $\begin{aligned} & =2 \times 22 / 7 \times 14 \\ & =2 \times 22 \times 2 \\ & =88 \mathrm{~cm} . \end{aligned}$ Area of Circle $=\pi r^{2}$ $\begin{aligned} & =22 / 7 \times 14^{2} \\ & =22 \times 14 \times 2 \quad=616 \mathrm{~cm}^{2} . \end{aligned}$ Therefore Perimeter and area of circular clock are 80 cm and 400 cm 2 respectively	No voice
SLIDE NO: 18	SLIDE TITLE: Assignment and Exercise	
Text and picture with animation	Assignment : Watch the following video which will help to solve the exercise. Link of video : https://youtu. be/K_aR9B4tKFk Exercise : Try to solve the following Quiz. Quiz link: https://forms.gle/DmW1HyKzQ3PhFeL38	No voice

Stage4. Implementation:

Students will be tested for basic skills of ICT. If required, they will be trained in these skills. Teacher will give necessary instructions.
The CAI will be presented. In case of the presence of the teacher, $\mathrm{He} /$ She will insure that the instruction on the screen will be followed sincerely by students.

Stage5. Evaluations:

In the process of learning, students will respond to the instruction and questions throughout the presentation.
The task will be given to test the application of the learnt knowledge.
Students will be given a quiz at the end of learning to give views on the effectiveness of the CAI.

II. CONCLUSION

The ADDIE learning model is highly appealing due to its straightforward and intuitive nature. It offers a strategic approach that relies on measurable learning objectives, acting as a catalyst for achieving high-quality instructional design. If you're seeking to develop and execute an efficient training program using a well-established and proven process, the ADDIE model is a valuable choice. It provides a systematic framework that guides instructional designers in crafting effective and impactful learning experiences.

REFLECTION

[1]. Through this activity I learnt how to use ADDIE model and what is ADDIE model.
[2]. I also learnt how to teach student by virtually.
[3]. CAI package is a self-learning study material for students they can learn in the absence of teacher.

