
IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 7, January 2023

Copyright to IJARSCT 288

www.ijarsct.co.in

Impact Factor: 7.301

Hacking the Web: "A Deep Dive into Cross-Site

Scripting (XSS)"
Jayashree Patade, Abdul Qadir, Shoeb Khan

Shri G.P.M. Degree College of Science and Commerce, Andheri, Mumbai, Maharashtra

Abstract: Advances in technology and the digitization of organizational functions and services have moved the

world into a new era of computing capabilities and sophistication. The proliferation and usability of such complex

technological services raises several security issues. One of the most critical issues is cross-site scripting (XSS)

attacks. This paper focused on concise and accurate detection and comprehensive analysis of XSS injection

attacks, detection and prevention. I conducted a thorough study and reviewed several research papers and

publications with a specific focus on researchers' defensive techniques to prevent XSS attacks and divided them

into five categories: machine learning techniques, server-side techniques, client-side techniques, proxy-based

techniques, and combined approaches. Most of the existing state-of-the-art XSS defense approaches carefully

analyzed in this paper offer protection against traditional XSS attacks such as stored and bounced XSS. There is

currently no reliable solution that provides adequate protection against a newly discovered XSS attack known as

DOM-based and mutation-based XSS attacks. After reading all the proposed models and identifying their flaws, I

recommend a combination of static, dynamic, and code auditing in conjunction with secure coding and ongoing

user awareness campaigns about new XSS attacks.

Keywords: XSS Attacks, Defensive Techniques, Vulnerabilities, Web Application Security.

I. INTRODUCTION

XSS (Cross-Site Scripting) is a programming error that occurs when user input is not properly sanitized. An attacker

exploits this vulnerability to inject unfiltered scripting code into a web application, resulting in account takeover,

session theft, or cooking and redirection to the attacker's website when the parser processes the script. An XSS attack

can be launched on any vulnerable web page written in any programming language. A thorough analysis of cross-site

scripting vulnerabilities was presented in detail. We talked about what XSS is, the many forms of XSS attacks, how an

attacker can exploit this weakness, the results of an XSS attack, and the protection strategies the research community has

put in place to combat XSS attacks. On the other hand, we examined these defense strategies and identified flaws in

how they defended against specific XSS attacks. However, despite the efforts of researchers, XSS attacks can still disrupt

web applications to a greater extent regardless of the fact that various tactics and approaches have been implemented to

prevent the vulnerability. Due to the virtually unchanged behavior of the browser, it is difficult to detect XSS attacks and

distinguish between malicious JavaScript and legitimate online content. Several sections of the article are neatly

organized according to relevant topics: Definition and classification of XSS, as well as the injection methods used by

XSS and the damage it causes to web applications, are covered in Segment 2. Segment 3 describes the research data

composition and compares CWE names using development vulnerability data analysis software. Segment 4 presents

related work. Segment 5 discusses XSS prevention and defense mechanism along with researchers' defensive

techniques for XSS attacks (advantages and disadvantages). Segment 6 describes the challenges associated with detecting

and defending against XSS attacks, along with the precise precautions that should be implemented in response to a

given episode. The current issue is broken down into individual parts, and then a perspective for the future is presented.

II. BACKGROUND OF THE CROSS-SITE SCRIPTING ATTACK

2.1 Categories of XSS Attacks

A cross-site scripting attack typically occurs when an attacker attacks a website by injecting malicious JavaScript code

into client-side input parameters. Figure 1 shows a comprehensive view of the four XSS attack scenarios described in

this document. The XSS vulnerability exploits the fact that web applications run scripts in user browsers. If the user

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 7, January 2023

Copyright to IJARSCT 289

www.ijarsct.co.in

Impact Factor: 7.301

manipulates or changes the dynamically generated script, he exposes the online application to danger. Although four

categories of XSS attacks are mentioned in this document, as shown in Figure 1, most current web application

developers and researchers are familiar with only three of them because they are more common in the research

community. Organizations such as the Open Web Application Security Project (OWASP) have recognized these three

types of XSS attacks as the most common XSS attack vectors on the web.

Figure 1. A brief overview of the four categories of cross-site scripting vulnerabilities.

2.2 Stored Cross-Site Scripting (XSS) Attack

This form of XSS vulnerability is sometimes referred to as persistent XSS. This is due to the fact that the malicious

script is still present on the server even after the attack is complete. During this type of attack, an attacker injects code

that has been maliciously written to the server in a way that cannot be removed. As shown in Figure 3, the scenario I

used to illustrate a stored XSS attack inserted a script tag directly into the Document Object Model (DOM) and then

hypothetically executed a malicious script using JavaScript. While this is the most popular way to exploit XSS, it is also

the most common approach that has been neutralized by advanced security professionals and security-conscious

software developers. A user uploads a malicious XSS script to the database, which is requested and viewed by other

users, resulting in the script being executed on their systems, as described in Figure 3.

Figure 2. Injection methods of a typical cross-site scripting attacks.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 7, January 2023

Copyright to IJARSCT 290

www.ijarsct.co.in

Impact Factor: 7.301

Figure 3. Stored XSS attack scenario.

2.3 Reflected Cross-Site Scripting (XSS) Attack

Reflected XSS attacks, also known as non-permanent attacks, create a URL that allows an attacker to inject arbitrary

script into a targeted web application. Most publications and academic sources introduce reflected XSS before

addressing the concept of preserved XSS. For inexperienced programmers, reflected XSS attacks are often more

difficult to detect and exploit than cached XSS attacks.

Cached XSS attacks are relatively easy to understand from a developer's perspective. Clients provide resources to servers.

This is usually done via the HTTP protocol. After the server receives the requested resource from the client, it enters it

into the database. When another client later accesses the resource, the malicious script is inadvertently executed in the

client's Internet browser, as shown in Figure 3.

Reflected XSS attacks, on the other hand, work similarly to cached XSS attacks, but do not require a database or server.

As shown in Figure 4, the client code is directly affected in the browser, so the server is not involved in the reflected

XSS attack. Web applications can be vulnerable to this type of attack depending on the actions users take (see Figure 4).

Scripts that are not stored on the user's computer.

Figure 4. Reflected cross-site scripting scenario.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 7, January 2023

Copyright to IJARSCT 291

www.ijarsct.co.in

Impact Factor: 7.301

4

2.4 Document Object Model-Based Cross-Site Scripting (XSS) Attack

A DOM-based XSS attack is clearly a client-side attack. The type of XSS attack based on the DOM model is shown in

Figure 5 as the third important classification of XSS attacks

Figure 5. Dom-based cross-scripting attack scenario.

The implementation of the DOM in different browsers can make some browsers vulnerable while others are not.

Compared to typical reflected or cached XSS attacks (Figure 3 and Figure 4), these XSS attacks require extensive

knowledge of the browser's DOM and JavaScript to be discovered and exploited. DOM-based XSS attacks are

fundamentally different from other types of XSS in that they do not require any communication with the server. By

convention, the source is usually a DOM object that can store text, and the sink is generally a DOM API that can run a

script that has been stored as text. For DOM XSS to work, both a "source" and a "sink" must be present in the browser's

DOM, since no server is involved. In most cases, the sink is a DOM API that can run a script stored in the resource as

text. It is almost impossible to detect DOM XSS using static analysis tools or other popular scanners because it never

touches the server

2.5 Mutation-Based Cross-Site Scripting (mXSS) Attack

Dr. In his publication, Mario Heiderich revealed six (6) new subclasses of mXSS attacks In an mXSS attack, the DOM can

be completely avoided using InnerHTML, which allows automatic changes to the HTML content. mXSS is sometimes

referred to as mutated XSS or mutation-based XSS.

Figure 6. Mutation-based cross-site scripting (mXSS) attack scenario.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 7, January 2023

Copyright to IJARSCT 292

www.ijarsct.co.in

Impact Factor: 7.301

5

This is because it is difficult to predict and involves recursion. When the HTML script is loaded into the browser's

document object model, the data is mutated, causing an error. However, the content loaded into the browser's DOM is

mutated to verify that it is error-free and does not contain any incorrect tags. This is achieved using the element. An

internal HTML attribute. The fundamental disadvantage of this form of XSS attack is its ability to bypass server-side

defenses and client-side filters. Figure 6 shows a potential mutation-based XSS attack scenario.

When an external actor inserts something that appears to be safe, as shown in Figure 6, the browser overwrites and

modifies it when processing the HTML, resulting in a mutated XSS attack. This makes it incredibly difficult to find and

debug errors in application logic. Despite its novelty and widespread misinterpretation, mXSS attacks have been used to

bypass the most sophisticated XSS filters available. mXSS was used to bypass solutions such as DOMPurify, OWASP

AntiSamy, and Google Caja, and a large number of popular web applications (especially email clients) were found to be

vulnerable. At its core, mXSS works by using filter-safe payloads that mutate to insecure payloads after filtering. All

major browsers are vulnerable to mXSS attacks. Developers must understand how browsers handle optimizations and

conditionals when rendering DOM nodes.

2.6 Composition of XSS Comparative Research Data Sources

This research uses a subset of the global dataset containing the CVE and CWE security vulnerability database. However,

I only focused on the software development component containing information containing CVE details for XSS

vulnerability assessment, as shown in Figure 7. The data consists of CVE-ID, CWE-ID, Explanation, Severity, and the

CVSS and CWE names under which the vulnerability falls.

However, the abbreviations and acronyms used in this survey are carefully explained in Section 3.1.

As Figure 7 shows, this was the dataset category used from a programming perspective. The results

of this survey were thoroughly analyzed to determine annual trends in XSS vulnerabilities.

Figure 7. A brief overview of the dataset used for analyzing XSS vulnerability.

Abbreviations and Acronyms

XSS = Cross-Site Scripting;

DOM = Document Object Model;

mXSS = Mutation-Based Cross-Site Scripting; NVD [23] [24] = National Vulnerability Database;

CVE [25] = Common Vulnerabilities and Exposures; CWE [26] = Common Weakness Enumeration; CVSS = Common

Vulnerability Scoring System.

Comparative of the Top 20 Software Development Vulnerabilities

The pie charts below illustrate the number of the top 20 Software Development Vulnerabilities based on CWE Name from

2014 to 2022. Over the last nine years, the most frequent report of a cross-site scripting (XSS) vulnerability has been

alarmingly received, as shown in Figure 8. I used python Jupiter Notebook to analyze the data

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 7, January 2023

Copyright to IJARSCT 293

www.ijarsct.co.in

Impact Factor: 7.301

7

Figure 8. Comparative analysis of XSS vulnerability’s yearly trends

IIII. XSS PREVENTION AND DEFENSE MECHANISM

The XSS prevention and defence mechanism are explicitly explained in the following sections:

3.1 Preventive Measures and Standard Procedures for Cross-Site Scripting

Attack

This section highlights most of the standard solutions that can be used to significantly reduce the impact of XSS

attacks. It highlights the description of XSS mitigation rules that developers can implement to prevent XSS attacks.

Obviously, these techniques are not magic; they are ineffective without sufficient user awareness. Figure 8 illustrates

that only two vulnerabilities, XSS and SQL injection, dominate the web application security attack field. Developers can

now protect themselves against XSS attacks using numerous measures. User-entered data that is not trusted is protected

using a combination of filtering, leakage, and sanitization procedures. The following Table 1 and Table 2 describe each

technique: There are two types of escaping: input escaping and output escaping. Practical input escaping requires

proper context detection of embedded untrusted data. In contrast, output escaping is performed on the written data of the

response web page. It also takes into account the context of the data, which is necessary to mitigate stored XSS attacks

Technique Explanation

Filtering This implies that any unsafe user input must be filtered to

remove dangerous phrases like the

Table 1. General methods for preventing XSS attacks.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 7, January 2023

Copyright to IJARSCT 294

www.ijarsct.co.in

Impact Factor: 7.301

8

Character Encoded Format

/ / or & #47

‘ ‘ or & #39

“ & quot; or & #34

> > or & #62

< < or & #60

& & amp; or & #38

& #35

) & #41

(& #40

Table 2. HTML entity encoding

The spread of XSS vulnerabilities is attracting the interest of security researchers and developers. The variety of XSS

attacks that each solution is designed to defend against has inspired the development of a wide range of

countermeasures. Based on the metrics of their implementation model, I grouped these solutions or techniques into five

categories: client-side techniques, server- side techniques, machine learning techniques, and proxy-based techniques. In

the following subsections, I have highlighted the most significant and effective methods proposed by researchers as

advantages and observed the limitations of these approaches as disadvantages. See the appendix for more information

on the researchers' techniques

IV. DISCUSSION AND CONCLUSION

Discussion: The deep dive into Cross-Site Scripting (XSS) has shed light on the significance of this web vulnerability,

its potential consequences, and the measures needed to mitigate it. During our deep dive into Cross-Site Scripting

(XSS), we also explored the evolving nature of this threat and the need for continuous adaptation and improvement

Conclusion

In conclusion, this discussion underscores the multifaceted nature of XSS and the necessity for a collaborative approach

to mitigate its risks. XSS remains a formidable challenge in web security that demands vigilance, cooperation, and

adaptability.

Final Thoughts

This deep dive into XSS serves as a call to action for web developers, ethical hackers, legal experts, and users to work

collectively to make the web a safer place. By embracing a proactive stance, staying informed about emerging threats,

and fostering a culture of security awareness, we can better protect ourselves and our digital environments. We

appreciate the insights and expertise shared by our panelists and the engagement of our audience in this discussion. As

we navigate the ever- changing web security landscape, let's remember that security is a shared responsibility, and

together, we can mitigate the risks of XSS and other vulnerabilities, making the web a more secure place for all.

REFERENCES

[1] Kirsten, S. (2016) Cross Site Scripting (XSS) Software Attack. https://owasp.org/www-community/attacks/xss/

[2] Agrawal, D.P. and Wang, H. (2018) Computer and Cyber Security. Auerbach Publications, New York.

https://doi.org/10.1201/9780429424878

[3] Jiang, F., Fu, Y., Gupta, B.B., Liang, Y., Rho, S., Lou, F., et al. (2020) Deep Learning Based Multi-Channel

Intelligent Attack Detection for Data Security. IEEE Transactions on Sustainable Computing, 5, 204-212.

https://doi.org/10.1109/TSUSC.2018.2793284

[4] Baş Seyyar, M., Çatak, F.Ö. and Gül, E. (2018) Detection of Attack-Targeted Scans from the Apache

HTTP Server Access Logs. Applied Computing and Informatics, 14, 28-36. https://doi.org/10.1016/j.aci.2017.04.002

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 7, January 2023

Copyright to IJARSCT 295

www.ijarsct.co.in

Impact Factor: 7.301

[5] Chen, H.-C., Nshimiyimana, A., Damarjati, C. and Chang, P.-H. (2021) Detection and Prevention of Cross-Site

Scripting Attack with Combined Approaches. 2021 International Conference on Electronics, Information, and

Communication (ICEIC), Jeju, 31 January-3 February 2021, 1-4. https://doi.org/10.1109/ICEIC51217.2021.9369796

[6] Gan, J.-M., Ling, H.-Y. and Leau, Y.-B. (2021) A Review on Detection of Cross-Site Scripting Attacks (XSS) in

Web Security. International Conference on Advances in Cyber Security, Penang, 8-9 December 2020, 685-709.

https://link.springer.com/chapter/10.1007/978-981-33-6835-4_45

[7] Wibowo, R.M. and Sulaksono, A. (2021) Web Vulnerability Through Cross Site Scripting (XSS) Detection with

OWASP Security Shepherd. Indonesian Journal of Information Systems, 3, 149-59.

https://doi.org/10.24002/ijis.v3i2.4192

[8] Dora, J.R. and Nemoga, K. (2021) Ontology for Cross-Site-Scripting (XSS) Attack in Cybersecurity. Journal of

Cybersecurity and Privacy, 2021, 319-339. https://doi.org/10.3390/jcp1020018

[9] Nirmal, K., Janet, B. and Kumar, R. (2018) Web Application Vulnerabilities—The Hacker’s Treasure. 2018

International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, 11-12 July 2018,

58-62. https://doi.org/10.1109/ICIRCA.2018.8597221

[10] Cui, Y., Cui, J. and Hu, J. (2020) A Survey on XSS Attack Detection and Prevention in Web Applications.

Proceedings of the 2020 12th International Conference on Machine Learning and Computing, Shenzhen, 15-17

February 2020, 443-449. https://doi.org/10.1145/3383972.3384027

[11] Khazal, I. and Hussain, M. (2021) Server Side Method to Detect and Prevent Stored XSS Attack. Iraqi Journal for

Electrical and Electronic Engineering, 17, 58-65. https://doi.org/10.37917/ijeee.17.2.8

