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Abstract: This abstract explores the application of deep learning techniques for solving high-dimensional 

partial differential equations (PDEs). High-dimensional PDEs pose significant challenges in traditional 

numerical methods due to the curse of dimensionality, making them computationally expensive and often 

infeasible. Deep learning, specifically neural networks, has shown promise in efficiently approximating 

complex functions and handling high-dimensional data. This paper reviews various deep learning 

approaches, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), applied 

to the numerical solution of high-dimensional PDEs. The study discusses the advantages and limitations of 

these techniques, highlighting their potential to enhance accuracy and computational efficiency in 

comparison to classical methods. Additionally, it addresses the incorporation of domain knowledge and the 

exploration of hybrid methodologies to further improve the robustness and generalization of deep learning 

models in tackling challenging high-dimensional PDE problems. 
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I. INTRODUCTION 

Deep learning approaches for high-dimensional partial differential equation (PDE) solutions have emerged as powerful 

tools in the realm of scientific computing and computational mathematics. These methods leverage neural networks to 

approximate complex solutions to PDEs in high-dimensional spaces, offering a promising alternative to traditional 

numerical methods. By encoding the underlying dynamics of the system into the network architecture, deep learning 

models can efficiently learn and generalize intricate patterns, making them particularly effective for problems with 

large parameter spaces or intricate geometries. These approaches have shown great success in a variety of fields, 

including fluid dynamics, quantum mechanics, and materials science, paving the way for more accurate and 

computationally efficient solutions to challenging high-dimensional PDE problems. 

 

Deep Neural Networks 

Deep neural networks (DNNs) have emerged as powerful tools for approximating high-dimensional solutions to partial 

differential equations (PDEs) in the realm of deep learning. Traditional numerical methods often face challenges when 

dealing with complex, high-dimensional PDEs due to the curse of dimensionality. DNNs offer a promising alternative 

by learning intricate mappings from input to output spaces without requiring explicit knowledge of the underlying PDE. 

These networks can capture complex patterns and dependencies, allowing for efficient and accurate approximations of 

PDE solutions. A common approach involves training DNNs to minimize the discrepancy between predicted and true 

solutions, often expressed as a loss function, which incorporates the PDE constraints. Mathematically, this can be 

formulated as: 

minimize ℒ(�) =
1

�
�  

�

���
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where L(θ) is the loss function, θ represents the DNN parameters, F denotes the PDE operator, ��is the true solution, 

and ��are the input parameters. By training DNNs on a dataset of PDE solutions, these networks can generalize well to 

unseen scenarios, providing a versatile and efficient approach for high-dimensional PDE problems. 
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Deep Residual Learning 

Deep residual learning has emerged as a powerful paradigm in deep learning, particularly for addressing challenges 

associated with high-dimensional partial differential equation (PDE) solutions. The essence of residual learning lies in 

the introduction of shortcut connections, enabling the network to learn residual functions rather than explicitly 

modeling the desired mapping. In the context of high-dimensional PDE solutions, where traditional approaches may 

struggle due to the curse of dimensionality, deep residual networks (Res Nets) offer advantages in capturing complex 

dependencies and improving convergence. The key mathematical formulation of a residual block is given by the 

equation �(�) = �(�) + � where H(x) represents the desired mapping, F(x) denotes the residual function to be learned, 

and x is the input. This architecture facilitates the training of deep networks by mitigating vanishing or exploding 

gradient issues, making it well-suited for efficiently approximating high-dimensional PDE solutions in various 

scientific and engineering domains. 

 

Deep Learning for Random PDEs: A Strong form 

Deep learning approaches have gained significant traction in addressing the challenges posed by high-dimensional 

partial differential equations (PDEs), offering a promising avenue for efficiently approximating solutions to complex 

problems. One notable approach involves formulating a strong form representation for random PDEs, where the 

solution is sought directly through a neural network. The strong form can be expressed as follows: 

�(�(�, �), ∇�(�, �), ∇��(�, �), … , ∇��(�, �); �, �, �) = 0 

where)u(x,t) denotes the solution of the PDE at spatial coordinate x, temporal coordinate t, and randomness source ω. 

The function F encapsulates the PDE itself, incorporating the various partial derivatives up to the nth order. Leveraging 

deep neural networks, such as convolutional neural networks (CNNs) or recurrent neural networks (RNNs), to represent 

the solution u allows for the approximation of high-dimensional PDE solutions in a data-driven manner. Training the 

neural network involves minimizing the loss function associated with the strong form, effectively optimizing the 

network parameters to yield accurate solutions. This paradigm shift toward data-driven methodologies for solving high-

dimensional PDEs not only addresses the computational challenges but also opens up new possibilities for handling 

random PDEs, where traditional methods may fall short. The integration of deep learning techniques in this context 

showcases their versatility and efficacy in tackling complex problems with inherent uncertainty. 

 

Deep learning for random PDEs: A variational form and a lower order loss function 

Deep Learning (DL) has emerged as a powerful tool for approximating solutions to high-dimensional Partial 

Differential Equations (PDEs), particularly in the context of random PDEs. One promising avenue in this domain 

involves the formulation of a variational form coupled with a lower-order loss function. The variational approach 

leverages the flexibility of neural networks to approximate the solution by optimizing over a function space, enabling 

the model to capture complex and high-dimensional dependencies inherent in random PDEs. This formulation often 

takes the form of minimizing a functional involving the PDE operator and the neural network's output. Mathematically, 

this can be expressed as: 

minimize
�

ℒ(�, �) = ��[ℱ(�(�), ∇�(�), �)] 

Here, u(ω) represents the PDE solution dependent on the random parameter ω, ∇u(ω) denotes the gradient of the 

solution, and θ represents the parameters of the neural network. The functional F encapsulates the PDE operator and 

additional terms that ensure the solution satisfies the PDE constraints. The expectation is taken over the random 

parameter space, reflecting the stochastic nature of the PDE. 

To address the challenges associated with high-dimensional problems, a lower-order loss function is often introduced. 

This auxiliary loss function regularizes the training process and encourages the model to learn low-dimensional features 

that capture the essence of the solution. It can be expressed as: 

ℒ��������� (�) = � ⋅ ∥∥
∥∇��(�) − ∇��

^
(�, �)∥∥

∥
�

 

Here, u^(ω,θ) is the neural network's output, and ∇ωu^(ω,θ) is its gradient with respect to the random parameter. The 

regularization term penalizes deviations in the gradient space, promoting smoother solutions and aiding generalization 

to unseen scenarios. The hyperparameter λ controls the strength of this regularization. 
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In summary, the integration of a variational form and a lower-order loss function provides a robust framework for 

leveraging deep learning in the context of high-dimensional random PDEs. This approach not only enables the model to 

efficiently learn the underlying structure of the solution space but also addresses the challenges posed by the curse of 

dimensionality. The mathematical expressions presented capture the essence of the proposed methodology, 

emphasizing the optimization of a functional over the solution space and the introduction of a regularization term to 

enhance the model's ability to handle high-dimensional scenarios. This combination holds promise for advancing the 

state-of-the-art in the numerical approximation of solutions to random PDEs through deep learning techniques. 

 

Numerical Examples 

Deep learning approaches have shown remarkable success in solving high-dimensional partial differential equations 

(PDEs), offering a powerful alternative to traditional numerical methods. Consider the heat equation as an example: 
∂�

∂�
= �∇�� 

where u is the temperature distribution over space x and time t, and α is the thermal diffusivity. Traditional finite 

difference methods struggle with high-dimensional problems, but deep learning models, such as neural networks, can 

efficiently approximate complex solutions. For instance, a convolutional neural network (CNN) can be trained on a 

dataset of spatiotemporal temperature profiles, learning the underlying dynamics and providing accurate predictions for 

unseen scenarios. This not only enhances computational efficiency but also allows for generalization to previously 

unexplored regions of the high-dimensional solution space, making deep learning an attractive and versatile tool for 

solving complex PDEs in various scientific and engineering applications. 

 

Transient diffusion problem with random coefficient 

Deep learning approaches have shown promising capabilities in tackling transient diffusion problems with random 

coefficients, particularly in the context of high-dimensional partial differential equation (PDE) solutions. These 

methods leverage neural networks to learn and approximate the complex spatiotemporal patterns inherent in the 

diffusion process. The governing PDE for transient diffusion with random coefficients can be expressed as: 
∂�

∂�
= ∇ ⋅ (�(�, �)∇�) + �(�, �) 

where u represents the unknown solution, t is time, ∇∇ denotes the gradient operator,D(x,t) is the random diffusion 

coefficient, and f(x,t) is a source term. Deep learning models, such as neural networks, are employed to approximate the 

solution u by learning the underlying dynamics from a dataset. This enables the efficient computation of high-

dimensional solutions, offering a data-driven approach for solving transient diffusion problems with random 

coefficients. 

 

A smooth random field for the diffusion coefficient 

Deep Learning Approaches have emerged as powerful tools for tackling high-dimensional Partial Differential Equation 

(PDE) solutions. In the context of diffusion processes, modeling the diffusion coefficient as a smooth random field is a 

novel and promising approach. The diffusion coefficient, denoted by D(x), is treated as a spatially varying function 

defined over the domain Ω⊆Rn, where x represents the spatial coordinates. Leveraging deep neural networks, one can 

efficiently learn and parameterize this field, capturing intricate dependencies in high-dimensional PDE systems. 

Mathematically, this can be expressed as: 

�(�) = ��(�) 

Here, fθ(x) represents a deep neural network with parameters θ, and it is trained to approximate the diffusion coefficient 

at any spatial location x. Such an approach enables the effective incorporation of complex spatial variations in 

diffusion, improving the accuracy and efficiency of high-dimensional PDE solutions through the expressive power of 

deep learning architectures. 
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A non-smooth random field for the diffusion coefficient 

In the realm of solving high-dimensional partial differential equations (PDEs) using Deep Learning (DL) approaches, 

the incorporation of non-smooth random fields for the diffusion coefficient represents a significant advancement. 

Traditionally, PDEs involve smooth deterministic coefficients, but real-world applications often exhibit complex and 

irregular behavior. Introducing non-smoothness in the diffusion coefficient allows for a more accurate representation of 

the underlying physical processes. Deep Learning models, such as neural networks, have shown promise in capturing 

and learning from such intricate patterns. Mathematically, this can be expressed by considering a PDE with a non-

smooth diffusion coefficient  D(x), where x denotes the spatial coordinates: 

−∇ ⋅ (�(�)∇�(�)) + �(�, �) = 0 

Here, u(x) represents the solution to the PDE, and f(x,u) is a source term. Leveraging DL techniques, these high-

dimensional PDEs with non-smooth coefficients can be efficiently and accurately solved, paving the way for enhanced 

understanding and simulation of complex physical phenomena. 

 

Steady heat equation with random thermal conductivity 

Deep Learning Approaches for High-Dimensional PDE Solutions have demonstrated promising capabilities in 

addressing challenges posed by the steady heat equation with random thermal conductivity. The conventional numerical 

methods encounter difficulties in efficiently handling high-dimensional spaces and complex parameter variations. 

Leveraging deep neural networks, these approaches have shown efficacy in capturing intricate patterns and 

relationships within the high-dimensional solution space. By employing techniques such as neural networks with 

architectures tailored for function approximation, the steady heat equation with random thermal conductivity can be 

efficiently solved, enabling accurate predictions and insights into the system's behavior. The key innovation lies in the 

network's ability to learn and generalize from the available data, adapting to variations in the thermal conductivity. The 

fundamental equation governing the steady heat conduction with random thermal conductivity (κ) can be expressed as: 

−∇ ⋅ (�∇�) = 0 

where u represents the temperature distribution and ∇∇ denotes the gradient operator. Deep learning techniques, such as 

neural network-based solvers, offer a promising avenue to tackle the computational challenges associated with high-

dimensional parameter spaces in solving such PDEs. 

 

Steady heat equation with random thermal conductivity on a domain with a hole 

Deep Learning Approaches have proven effective in tackling high-dimensional Partial Differential Equation (PDE) 

problems, such as the steady heat equation with random thermal conductivity on a domain featuring a hole. The PDE 

governing the steady heat distribution in this scenario can be expressed as follows: 

∇ ⋅ (�(�)∇�(�)) = 0 

where u(x) is the temperature distribution, k(x) represents the spatially varying thermal conductivity with randomness 

introduced in the presence of a hole in the domain. Deep learning techniques, particularly neural networks, can be 

employed to approximate the solution u(x) by learning the complex patterns inherent in the high-dimensional and 

stochastic nature of the problem. This involves training the neural network on a dataset generated from simulations or 

observations, allowing it to generalize and provide accurate predictions for temperature distributions in the presence of 

random thermal conductivity and domain irregularities. These approaches provide a powerful and versatile framework 

for solving challenging PDEs in diverse physical scenarios. 

 

II. DISCUSSION 

Deep learning approaches have shown great promise in solving high-dimensional partial differential equations (PDEs), 

offering a powerful alternative to traditional numerical methods. One notable technique is the use of neural networks, 

particularly deep neural networks (DNNs), to approximate complex solutions of PDEs. The ability of DNNs to capture 

intricate patterns and relationships within data makes them well-suited for tackling high-dimensional problems. One 

common approach involves training neural networks to learn the mapping between the input parameters of a PDE and 

its corresponding solution. Mathematically, this can be expressed as � = �(�; �) where u is the solution, x represents 

the input parameters, and θ denotes the parameters of the neural network. The training process involves optimizing θ to 
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minimize the difference between the predicted and actual solutions, effectively enabling the network to generalize and 

provide accurate solutions for a wide range of input scenarios. Despite the challenges associated with high-dimensional 

PDEs, deep learning methodologies offer a promising avenue for efficient and accurate solutions in various scientific 

and engineering applications. 

 

III. CONCLUSION 

Deep learning approaches have demonstrated remarkable potential for addressing high-dimensional partial differential 

equation (PDE) solutions. The ability of neural networks to capture complex patterns and relationships in large datasets 

makes them particularly well-suited for handling the intricacies of high-dimensional problems. These approaches 

leverage the expressive power of deep learning architectures, such as convolutional neural networks (CNNs) or 

recurrent neural networks (RNNs), to efficiently approximate solutions to PDEs with numerous variables. Their success 

lies in their capacity to learn and generalize from vast amounts of data, enabling the modeling of intricate and nonlinear 

relationships within high-dimensional spaces. While challenges such as interpretability and computational demands 

persist, the promising results achieved thus far suggest that deep learning approaches hold significant potential in 

advancing the numerical solution of high-dimensional PDEs, opening up new avenues for tackling complex problems in 

diverse fields, including physics, finance, and engineering. 
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