
IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, December 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-14061 429

www.ijarsct.co.in

Impact Factor: 7.301

Digital Signature Based on Cryptography

Implementing in Java
Mrs. P. S. Bihade1, Miss. Anjali Pawale2, Miss. Pratima Rathod3, Miss. Neha Ghongade4

Department of Computer Engineering1,2,3,4

Gramin College of Engineering, Vishnupuri, Nanded, Maharashtra, India

Abstract: The digital signature in Java utilizes cryptographic techniques to create a unique hash of a

message, which is then encrypted using a private key. This encrypted hash, along with the original message,

forms the digital signature. Verification involves decrypting the signature with the corresponding public

key, confirming the integrity and origin of the message.

Keywords: Include at least 4 keywords or phrases

I. INTRODUCTION

Digital signatures are cryptographic tools that ensure the authenticity, integrity, and non-repudiation of digital

messages, documents, or data. Similar to handwritten signatures, digital signatures confirm the identity of the sender

and verify that the content hasn't been altered since it was signed. They employ public key cryptography, generating

unique signatures for each piece of information, enhancing security in digital communication and transactions.

Digital signatures in Java provide a secure way to verify the authenticity and integrity of digital messages or

documents. Utilizing cryptographic algorithms, a digital signature ensures that a message hasn't been altered and

originates from a specific sender. Java offers robust libraries and tools to create, manage, and verify digital signatures,

enhancing data security in various applications.

II. RSA ALGORITHM

The RSA algorithm is a public-key encryption method named after its inventors Ron Rivest, Adi Shamir, and Leonard

Adleman. Here's a detailed overview:

Key Generation:

Prime Numbers: Choose two distinct large prime numbers, p and q.

Compute n: Calculate n = p * q. This is used as the modulus for both the public and private keys.

Euler's Totient: Compute φ(n) = (p-1) * (q-1), which represents the count of positive integers less than n that are

coprime to n.

Choose e: Select a public exponent e that is relatively prime to φ(n), usually a small prime number like 65537 (2^16 +

1) or a randomly chosen prime.

Compute d: Calculate the private exponent d, which is the modular multiplicative inverse of e modulo φ(n), i.e., (e * d)

mod φ(n)= 1.

Encryption: Sender uses the recipient's public key (e, n) to encrypt a message M. The ciphertext C is computed as C =

M^e mod n.

Decryption: Receiver uses their private key (d, n) to decrypt the ciphertext C. The original message M is retrieved as

M = C^d mod n.

Security: RSA's security relies on the difficulty of factoring the product of two large prime numbers (n = p * q) to

derive the private key from the public key. As of now, the security of RSA remains strong due to the impracticality of

factoring large numbers quickly.

Usage: RSA is used in various security protocols like SSL/TLS for secure communication on the internet, digital

signatures, and encryption of sensitive data in systems worldwide.

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT
www.ijarsct.co.in

Impact Factor: 7.301

Understanding RSA involves a grasp of number theory, modular arithmetic, and prime factorization. It's crucial to

select large prime numbers to ensure security against brute

III. WORKING

IV. DIGITAL SIGNATUR

KEY GENERATION:

Choose the Algorithm: Select a cryptographic algorithm for digital signatures (e.g., RSA, DSA, ECDSA).

KeyPair Generation: Use a KeyPairGenerator class to generate a public

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA"); // Or the desired algorithm

keyGen.initialize(keySize); // Specify the key size

KeyPairkeyPair = keyGen.generateKeyPair();

Accessing Keys: Retrieve the public and private keys from the generated KeyPair.

PublicKeypublicKey = keyPair.getPublic();

PrivateKeyprivateKey = keyPair.getPrivate();

Store Keys Securely: Safeguard the private key as it's essential for signing and should not be shared.

can be distributed to verify signatures.

Usage: With the keys generated, use the private key to create a digital signature for data and the public key to verify the

signature.

Java's Signature class can be used for signing and verifying

Signing:

Signature signature = Signature.getInstance("SHA256withRSA"); // Specify algorithm

signature.initSign(privateKey);

signature.update(dataToSign);

byte[] digitalSignature = signature.sign();

IJARSCT

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, December 2023

 DOI: 10.48175/IJARSCT-14061

asp of number theory, modular arithmetic, and prime factorization. It's crucial to

select large prime numbers to ensure security against brute-force attacks.

WORKING OF DIGITAL SIGNATURE IN CRYPTOGRAPHY:

DIGITAL SIGNATURE BASED ON CRYPTOGRAPHY IN JAVA

Select a cryptographic algorithm for digital signatures (e.g., RSA, DSA, ECDSA).

KeyPair Generation: Use a KeyPairGenerator class to generate a public-private key pair for the chosen algorithm.

eyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA"); // Or the desired algorithm

keyGen.initialize(keySize); // Specify the key size

KeyPairkeyPair = keyGen.generateKeyPair();

Retrieve the public and private keys from the generated KeyPair.

PublicKeypublicKey = keyPair.getPublic();

PrivateKeyprivateKey = keyPair.getPrivate();

Safeguard the private key as it's essential for signing and should not be shared.

With the keys generated, use the private key to create a digital signature for data and the public key to verify the

Java's Signature class can be used for signing and verifying signatures:

Signature signature = Signature.getInstance("SHA256withRSA"); // Specify algorithm

byte[] digitalSignature = signature.sign();

 ISSN (Online) 2581-9429

, Communication and Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 430

asp of number theory, modular arithmetic, and prime factorization. It's crucial to

CRYPTOGRAPHY:

CRYPTOGRAPHY IN JAVA:

Select a cryptographic algorithm for digital signatures (e.g., RSA, DSA, ECDSA).

private key pair for the chosen algorithm.

eyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA"); // Or the desired algorithm

Safeguard the private key as it's essential for signing and should not be shared. The public key

With the keys generated, use the private key to create a digital signature for data and the public key to verify the

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, December 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-14061 431

www.ijarsct.co.in

Impact Factor: 7.301

Verification:

Signature verifier = Signature.getInstance("SHA256withRSA"); // Specify algorithm

verifier.initVerify(publicKey);

verifier.update(originalData);

booleanisVerified = verifier.verify(signatureToVerify);

These steps involve choosing an algorithm, generating keys, signing data, and verifying signatures using Java's

cryptography libraries. Adjustments may be necessary depending on specific requirements and security considerations.

V. SIGNATURE GENERATION PROCESS:

Signature generation is a critical aspect of cryptography used to verify the authenticity and integrity of digital messages

or data. It involves the use of cryptographic algorithms and keys to create a unique "signature" for a piece of

information. This signature is associated with the signer and the data, ensuring that any alterations to the data can be

detected, and the origin of the data can be authenticated.

Here's a step-by-step explanation of the signature generation process:

1. Hashing the Data: The data to be signed is first processed through a hash function, such as SHA-256 or SHA-1, to

generate a fixed-size output called a hash value or message digest. This hash value is a unique representation of the

original data and is of a fixed length, regardless of the input data size.

2. Signing the Hash: The hash value is encrypted using the signer's private key. This encryption process generates the

digital signature. The private key is kept securely by the signer and should not be shared with anyone.

3. Verification: To verify the signature's authenticity and integrity, the recipient or verifier uses the associated public

key, which corresponds to the signer's private key. The verifier decrypts the received signature using the public key,

obtaining the hash value.

4. Hashing the Received Data: The recipient then independently computes the hash value of the received data using the

same hash function used by the signer.

5. Comparing Hashes: The verifier compares the computed hash value of the received data with the decrypted hash

value obtained from the signature. If both hash values match, it verifies that the data hasn't been tampered with during

transmission and that it was indeed signed by the holder of the private key corresponding to the public key used for

verification.

This process ensures the authenticity, integrity, and non-repudiation of the signed data. Non-repudiation means that the

signer cannot deny their signature's authenticity because only they possess the private key necessary to create that

particular signature.

Digital signatures are fundamental in secure communication, document validation, and ensuring trust between parties in

electronic transactions. Various cryptographic algorithms like RSA, DSA, and ECDSA can be used for generating

digital signatures, each with its own strengths and use cases.

VI. SIGNATURE VERIFICATION MESSAGE:

Verifying a digital signature of a message involves confirming the authenticity and integrity of the message using the

associated signature and public key. Here's an example of how signature verification is performed in a cryptographic

context:

Assuming you have the following elements:

- A message.

- A digital signature corresponding to that message.

- The public key of the signer.

Here's a basic outline of the steps for signature verification:

1. Compute the Hash of the Message: Apply a hash function (e.g., SHA-256) to the original message to generate a

hash value, which creates a unique representation of the message.

2.Decrypt the Signature using the Public Key: Use the public key associated with the signer's private key to decrypt

the received digital signature. This decryption should yield the hash value that was originally encrypted during

signature generation.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, December 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-14061 432

www.ijarsct.co.in

Impact Factor: 7.301

3.Compare Hash Values: Compare the computed hash value of the message with the decrypted hash value obtained

from the signature. If both hash values match, the signature is considered valid.

VII. CORRECTNESS PROOFS OF DIGITAL SIGNATURE

The correctness proof of a digital signature scheme aims to demonstrate that the scheme satisfies certain properties,

primarily focusing on correctness, unforgeability, and soundness. Here's an outline of what such a proof might entail:

1.Correctness: This property ensures that valid signatures can be verified correctly.

- Theorem: A signature generated by the signer using their private key can be verified by anyone using the

corresponding public key.

- Proof Sketch: Show that if a message is signed with a private key and then verified using the associated public key,

the verification process will correctly determine the authenticity and integrity of the message.

2.Unforgeability: This property demonstrates that it's computationally infeasible for an adversary to create a valid

signature without access to the signer's private key.

- Theorem: An adversary, even with access to verified signatures and the public key, cannot produce a new valid

signature without the private key.

- Proof Sketch: Demonstrate that given only the public key and previously verified signatures, an attacker cannot

produce a new valid signature for a different message without knowledge of the private key.

3.Soundness: This property ensures that an adversary cannot successfully forge a valid signature for an arbitrary

message.

- Theorem: For any given message not previously signed, an adversary cannot create a valid signature without the

private key.

- Proof Sketch: Show that regardless of the adversary's computational resources, it's computationally infeasible to

generate a valid signature for a message without the corresponding private key.

These proofs are often based on the hardness assumptions of certain mathematical problems, such as the difficulty of

factoring large integers (RSA), discrete logarithm problem (DSA, ElGamal), or elliptic curve discrete logarithm

problem (ECDSA).

The proofs involve demonstrating that breaking the security of the signature scheme would imply solving the

underlying mathematical problem that the scheme relies on, which is believed to be computationally hard.

Please note that constructing formal proofs for cryptographic schemes requires in-depth knowledge of mathematical

concepts, computational complexity, and cryptographic theory, which often goes beyond the scope of a simple

explanation. The proofs are typically rigorous and involve mathematical reasoning to ensure the security properties hold

in practice.

VIII. PROXY SIGNATURE SCHEME BASED ON CRYPTOGRAPHY:

A proxy signature scheme is a cryptographic protocol that allows one entity (the original signer) to delegate signing

authority to another entity (the proxy signer) without disclosing the original signer's private key. This concept is useful

in various scenarios, such as delegating signing rights to authorized agents, hierarchical signing structures, or

distributed authorization.

Here's an overview of how a proxy signature scheme works:

1. Original Signer (Delegator): This entity holds the original private key and wishes to delegate signing authority to a

proxy signer without revealing the private key.

2. Proxy Signer (Delegate): This entity is authorized by the original signer to sign messages on their behalf. The proxy

signer has their own private key for signing.

Key components and characteristics of a proxy signature scheme:

- Delegation: The original signer delegates the signing capability to the proxy signer without disclosing the private key.

This allows the proxy signer to generate valid signatures on behalf of the original signer.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, December 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-14061 433

www.ijarsct.co.in

Impact Factor: 7.301

- Verification: Signatures produced by the proxy signer can be verified using the original signer's public key, ensuring

that they are valid and authorized by the original signer.

- Non-Transferability: The proxy signer cannot transfer the delegated signing authority to others or create signatures

that appear to be directly from the original signer.

- Unforgeability: It should be computationally infeasible for unauthorized entities to produce valid proxy signatures

without the collaboration or authorization of the original signer or proxy signer.

Proxy signature schemes find applications in scenarios where the original signer cannot directly sign documents but can

delegate signing rights to authorized agents or entities. This can be used in multi-tier authorization structures, e-

government applications, and distributed authorization systems.

There are various constructions and cryptographic techniques used to create proxy signature schemes, often based on

cryptographic primitives like RSA, discrete logarithm problems, elliptic curve cryptography, and other mathematical

hardness assumptions. These schemes require careful design and analysis to ensure security and proper delegation

mechanisms.

In a proxy signature scheme, the authorization process involves establishing trust and enabling a delegate (proxy signer)

to generate valid signatures on behalf of the original signer (delegator) without compromising the security of the

original signer's private key. Here's an outline of the authorization process in a proxy signature scheme:

1.Delegator's Authorization:

- Intent and Authorization: The original signer (delegator) intends to delegate signing authority to a proxy signer.

- Identification and Authentication: The delegator identifies the proxy signer and verifies their identity or authorization

to act as a proxy.

- Establishing Trust Relationship: The delegator authorizes the proxy signer to perform proxy signing on their behalf.

This authorization might involve an explicit agreement, issuance of delegation certificates, or cryptographic credentials.

2.Proxy Signer's Acceptance:

- Acceptance of Proxy Role: The proxy signer acknowledges and accepts the role of acting as a proxy for the delegator.

- Key Generation: The proxy signer generates their own key pair (public key and private key) specifically for

generating proxy signatures.

3.Shared Information and Trust Establishment:

- Sharing Public Keys: The delegator shares their public key with the intended verifiers who will authenticate the proxy

signatures.

- Exchange of Authorization Data: There might be an exchange of authorization data or certificates between the

delegator and the proxy signer to establish and validate the delegated authority. This could involve cryptographic

mechanisms to ensure the authenticity and integrity of the exchanged information.

4.Proxy Signature Generation:

- Signing on Behalf of Delegator: With the established authorization and the proxy signer's possession of their private

key, the proxy signer can generate valid proxy signatures on behalf of the original signer using their delegated

authority.

The authorization process in a proxy signature scheme is crucial for ensuring that only authorized entities can act as

proxies and generate valid signatures on behalf of the delegator. It involves a trust relationship between the delegator

and the proxy signer,

often supported by cryptographic mechanisms to securely delegate signing authority while preserving the security and

integrity of the original signer's private key.

IX. SUMMARY

A digital signature in cryptography involves using a mathematical algorithm to create a unique digital fingerprint for a

message or data. In Java, this is often implemented using libraries like Java Cryptography Architecture (JCA) or Java

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, December 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-14061 434

www.ijarsct.co.in

Impact Factor: 7.301

Cryptography Extension (JCE). The process involves generating a private and public key pair, where the private key is

used to sign the data, and the public key is used to verify the signature. The signature ensures the integrity, authenticity,

and non-repudiation of the message, meaning the sender can't deny sending it, and the receiver can verify its origin and

that it hasn't been altered. This method is widely used in secure communication and authentication processes over the

internet.

REFERENCES

[1]. https://www.javatpoint.com/java-digital-signature

[2]. https://www.geeksforgeeks.org/java-implementation-of-digital-signatures-in-cryptography/

[3]. https://www.tutorialspoint.com/java_cryptography/java_cryptography_creating_signature.htm

[4]. https://chat.openai.com/share/56148be9-d0e4-45f6-bb5e-bf4a2257b2cf

[5]. https://youtube.com/playlist?list=PLSM8fkP9ppPpJqvgL51isB5_0CDAInxr2&si=4v_rbNi_BVJu6zx5

[6]. https://youtu.be/iwMWfVuUiU8?si=VpB22mdaOn-IQQJY

[7]. https://youtu.be/-bCoymc4420?si=SqioMM78-GdOwmyg

[8]. https://www.informit.com/articles/article.aspx?p=170967&seqNum=7

[9]. https://www.veracode.com/blog/research/digital-signatures-using-java

[10]. https://youtu.be/ceM8usRfNZw?si=TT9-iVACWajs3hqp

[11]. https://www.geeksforgeeks.org/java-implementation-of-digital-signatures-in-cryptography/

