

A Survey on “Text-to-Speech Systems for Real-Time Audio Synthesis”

Prof. Mrunalinee Patole¹, Akhilesh Pandey², Kaustubh Bhagwat³,

Mukesh Vaishnav⁴, Salikram Chadar⁵

Assistant Professor, Department of Computer Engineering¹

Students, Department of Computer Engineering^{2,3,4,5}

RMD Sinhgad School of Engineering, Pune, India

Abstract: *Text to Speech (TTS) is a form of speech synthesis wherein the text is converted right into a spoken human-like voice output. The state of the art strategies for TTS employs a neural network based totally method. This paintings pursuits to take a look at a number of the problems and barriers gift inside the contemporary works, especially Tacotron-2, and attempts to in addition enhance its performance by means of editing its structure. till now many papers were published on these topics that display various exceptional TTS structures by means of developing new TTS products. The aim is to have a look at different textual content-to-Speech structures. in comparison to different text-to-Speech systems, Tacotron2 has multiple blessings. In opportunity algorithms like CNN, speedy-CNN the algorithmic program may not investigate the photo fully however in YOLO the algorithmic application check out the picture absolutely by predicting the bounding boxes through using convolutional network and possibilities for those packing containers and detects the image faster in comparison to alternative algorithms.*

Keywords: LSTM, Attention, Tacotron, WaveNet, MelGAN

I. INTRODUCTION

Currently, chatter bots were used in lots of services of our day lives. these bots can be built to answer a fixed of predefined questions or even to develop a humanlike verbal exchange. On the one hand, those bots are very helpful in text-pushed services which includes virtual assistants, answering doubts, making appointments, confirming delivery, and so on. however, the textual content-established nature of those chatterbots ends in a few barriers related to human interplay and accessibility.

on this way, to empower those abilities textual content-to-speech (TTS) systems have emerged, that's a technology to transform written language into human speech, therefore, TTS systems may be used no longer simplest as human-technology interfaces to computer-based services, but additionally as accessibility for the visually impaired people. in this state of affairs, WAVY that is a pinnacle employer specialised in improving a patron's enjoy thru conversational systems based totally on artificial intelligence and chatbots, started out a research to put in force TTS structures to allow extra efficient and inclusive services.

TTS structures are educated with datasets composed of texts and audios, as a consequence, the system learns the sound (e.g., the waveform) of words, syllables, and letters. however, the resulting voice is the same as the one supplied in the schooling dataset, which means that to produce a selected voice the TTS gadget needs to be trained with the goal voice.

This paper describes Tacotron 2, a neural community structure for speech synthesis without delay from textual content. The gadget consists of a recurrent series-to-series function prediction network that maps person embedding to mel-scale spectrograms, followed by means of a changed WaveNet model acting as a vocoder to synthesize time-domain waveforms from the ones spectrograms. The version achieves an average opinion rating (MOS) of 4.50 three corresponding to a MOS of four.58 for professionally recorded speech. To validate our layout selections, we gift ablation studies of key additives of our system and compare the impact of the usage of Mel spectrograms as the

conditioning enter to WaveNet in place of linguistic, length, and F0 capabilities. We similarly show that the use of this compact acoustic intermediate representation allows for a significant reduction in the size of the WaveNet architecture.

II. LITERATURE SURVEY

In latest years, massive research has been made in this field to broaden textual content to Speech Engines. there is an exhaustive listing of Architectures on this discipline which assist gain the project. Few architectures studied by way of us are:

1. Tacotron
2. Tacotron2
3. Wavenet
4. WaveGlow
5. MelGAN

except those, there are different architectures as properly. a majority of these architectures differ of their speeds, accuracy, price and complexity. a number of the relevant researches are mentioned in this phase

1. Attention-Based Models for Speech Recognition by Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, Yoshua Bengio in 2015

This paper evaluates interest-based totally models on a phoneme popularity venture using the extensively used TIMIT dataset. At on every occasion step in generating an output series (phonemes), an interest mechanism selects or weighs the indicators produced by using a skilled feature extraction mechanism at probably all of the time steps within the enter collection (speech frames). The weighted function vector then allows to condition the era of the following detail of the output series. for the reason that utterances in this dataset are as a substitute quick (normally underneath five seconds), we measure the potential of the taken into consideration fashions in spotting a lot longer utterances which were created by using artificially concatenating the existing utterances.

2. Tacotron: Towards End-to-End

Speech Synthesis by means of Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J. Weiss, Navdeep Jaitly, Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, Quoc Le, Yannis Agiomyrgiannakis, Rob Clark, Rif A. Saurous in 2017 on this paper, Tacotron, an give up-to-cease generative textual content-to-speech model that synthesizes speech immediately from characters is provided. Given pairs, the version may be skilled completely from scratch with random initialization. The paper gives numerous key strategies to make the collection-to sequence framework perform well for this difficult venture. Tacotron achieves a three.82 subjective five-scale mean opinion rating on US English, outperforming a production parametric gadget in phrases of naturalness. in addition, considering the fact that Tacotron generates speech at the body stage, it's considerably faster than sample-degree autoregressive strategies.

3. Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions by Jonatha Shen1, Ruoming Pang1, Ron J. Weiss1, Mike Schuster1, Navdeep Jaitly1, Zongheng Yang*2, Zhifeng Chen1, Yu Zhang1, Yuxuan Wang1, RJ Skerry-Ryan1, Rif A. Saurous1, Yannis Agiomyrgiannakis1, and Yonghui Wu in 2018

This paper describes Tacotron 2, a neural community architecture for speech synthesis at once from textual content. The device consists of a recurrent collection-to-series function prediction network that maps person embedding to mel-scale spectrograms, followed by a changed WaveNet model appearing as a vocoder to synthesize time-domain waveforms from the ones spectrograms. the brand new version achieves an average opinion score (MOS) of four.53 similar to a MOS of four. fifty eight for professionally recorded speech. To validate the design selections, the authors present ablation studies of key components of the device and compare the effect of the usage of Mel spectrograms as the conditioning input to WaveNet in place of linguistic, duration, and F0 functions. They similarly display that the use

of this compact acoustic intermediate representation lets in for a giant discount within the size of the WaveNet structure.

4. Wave Glow: A Flow-based Generative Network for Speech Synthesis by Ryan Prager, Rafael Valle, Bryan Catanzaro in 2018

This paper describes Wave Glow: a go with the flow-based community capable of producing high satisfactory speech from Mel spectrograms. Wave Glow combines insights from Glow and WaveNet as a way to offer speedy, efficient and excessive excellent audio synthesis, without the want for automobile-regression. Wave Glow is implemented using only a unmarried network, skilled using simplest a unmarried price characteristic: maximizing the chance of the training information, which makes the schooling technique simple and strong.

5. Multi-band MelGAN: Faster Waveform Generation for High-Quality Text-to-Speech by Geng Yang, Shan Yang, Kai Liu, Peng Fang, Wei Chen, Lei Xie in 2020

This paper proposes multi-band MelGAN, a far quicker waveform generation version focused on 86f68e4d402306ad3cd330d005134dac textual content-to-speech. particularly, it improves the authentic MelGAN by the subsequent elements. First, there may be an boom in the receptive field of the generator, which is proven to be useful to speech era. 2nd, a substitute to the characteristic matching loss with the multire solution STFT loss to better degree the difference between faux and real speech is brought. collectively with pre-education, this development leads to both higher high-quality and higher training stability.

III. PROPOSED WORK

3.1 TTS Engines

For green implementation, selection of structure is the maximum vital component. therefore, distinctive TTS engines like Tacotron and Tacotron2 are in comparison.

The backbone of Tacotron is a seq2seq version with attention. The model includes an encoder, an interest-based totally decoder, and a publish-processing net. At a excessive-degree, our version takes characters as enter and produces spectrogram frames, which might be then transformed to waveforms.

In comparison to the original Tacotron, Tacotron 2 makes use of simpler constructing blocks, using vanilla LSTM and convolutional layers inside the encoder and decoder instead of CBHGstacks and GRU recurrent layers. Tacotron 2 does now not use a “discount issue”, i.e., each decoder step corresponds to a unmarried spectrogram body. vicinity-touchy interest is used instead of additive interest.

3.2 Tacotron 2

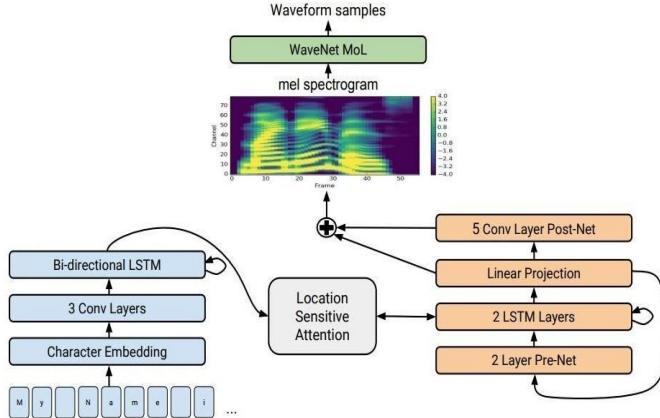

Desk below indicates a comparison of our approach towards numerous prior structures. on the way to higher isolate the impact of the use of Mel spectrograms capabilities, we evaluate to WaveNet conditioned on linguistic features [8] with similar changes to the WaveNet architecture become introduced above. We additionally evaluate to the original Tacotron that predicts linear spectrograms and uses Griffin-Lim to synthesize audio, as well as concatenative [30] And parametric [31] baseline systems, both of which have been used in production at Google. we find that the proposed system appreciably outperforms all other TTS structures, and consequences in an MOS corresponding to that of the floor fact audio

Table: MOS (Mean Opinion Score) of different algorithms

System	MOS
Parametric	3.492±0.096
Tacotron (Griffin-Lim)	4.001±0.087
Concatenative	4.166±0.091

WaveNet (Linguistic)	4.341±0.051
Ground truth	4.582±0.053
Tacotron 2	4.526±0.066

3.3 General Architecture

The network consists of an encoder and a decoder with attention. The encoder converts a individual collection into a hidden feature illustration which the decoder consumes to are expecting a spectrogram. enter characters are represented using a discovered 512-dimensional character embedding, which might be passed thru a stack of three convolutional layers each containing 512 filters with shape 5×1 , i.e., wherein every clear out spans 5 characters, followed by batch normalization [18] and ReLU activations. As in Tacotron, those convolutional layers version longer-term context (e.g., N-grams) within the input individual series. The output of the very last convolutional layer is passed into a single bi-directional [19] LSTM [20] layer containing 512 devices (256 in each course) to generate the encoded functions. The encoder output is fed on with the aid of an interest network which summarizes the full encoded collection as a hard and fast-length context vector for every decoder output step. We use the area-touchy attention from [21], which extends the additive interest mechanism [22] to apply cumulative interest weights from previous decoder time steps as an additional feature. This encourages the model to transport ahead continuously via the input, mitigating ability failure modes where some subsequences are repeated or omitted through the decoder. attention possibilities are computed after projecting inputs and area functions to 128-dimensional hidden representations. area functions are computed the usage of 32 1-D convolution filters of duration 31. The decoder is an autoregressive recurrent neural community which predicts a Mel spectrogram from the encoded input collection one frame at a time. The prediction from the previous time step is first exceeded thru a small pre-net containing 2 fully related layers of 256 hidden ReLU units. We found that the pre-net acting as an information bottleneck become critical for gaining knowledge of interest. The prenet output and attention context vector are concatenated and exceeded through a stack of two uni-directional LSTM layers with 1024 units. The concatenation of the LSTM output and the attention context vector is projected thru a linear transform to predict the target spectrogram frame. ultimately, the expected Mel spectrogram is handed thru a five-layer convolutional post-internet which predicts a residual to add to the prediction to improve the overall reconstruction. each individual Embedding place sensitive interest 3 Conv Layers Bidirectional LSTM input textual content 2 Layer Pre-internet 2 LSTM Layers Linear Projection Linear Projection prevent Token five Conv Layer submit-net Mel Spectrogram WaveNet MoL Waveform Samples Fig. 1. Block diagram of the Tacotron 2 machine structure. publish-net layer includes 512 filters with shape 5×1 with batch normalization, observed with the aid of tan activations on all however the very last layer. We minimize the summed suggest squared errors (MSE) from earlier than and after the post-net to resource convergence. We also experimented with a log-chance loss via modeling the output distribution with a aggregate Density network [23, 24] to avoid assuming a regular variance through the years, but discovered that these

had been greater difficult to train and that they did now not result in better sounding samples. In parallel to spectrogram body prediction, the concatenation of decoder LSTM output and the attention context is projected right down to a scalar and passed thru a sigmoid activation to expect the opportunity that the output sequence has completed. This “forestall token” prediction is used at some point of inference to allow the version to dynamically decide when to terminate era instead of constantly producing for a fixed length. Specifically, era completes at the first body for which this chance exceeds a threshold of zero.5. The convolutional layers in the community are regularized the use of dropout [25] with opportunity 0.5, and LSTM layers are regularized the usage of region out [26] with probability 0.1. with a purpose to introduce output version at inference time, dropout with chance zero.5 is implemented handiest to layers within the pre-net of the autoregressive decoder. In comparison to the unique Tacotron, our model uses simpler constructing blocks, using vanilla LSTM and convolutional layers in the encoder and decoder in preference to “CBHG” stacks and GRU recurrent layers. We do now not use a “discount component”, i.e., each decoder step corresponds to a single spectrogram body.

IV. CONCLUSION

This paper in short discusses the specific textual content-to-Speech Engines, consisting of Tacotron and Tacotron2. multiple engines are as compared based on elements like pace and accuracy. compared with Tacotron, Tacotron2 has more advanced applications in exercise.

Tacotron 2 isn't always without its flaws. throughout experimentation, mistakes such as skipped phrases, unnatural prosody, pronunciation problems, amongst others were found. demanding situations with recognize to the stop-to-quit neural technique, difference between anticipated features and floor reality, amongst others were a number of the other issues encountered. The device may be educated at once from statistics with out relying on complex function engineering.

REFERENCES

- [1] P. Taylor, *textual content-to-Speech Synthesis*, Cambridge UniversityPress, new york, new york, u.s., 1st version, 2009.
- [2] J. Hunt and A. W. Black, “Unit choice in a concatenative speech synthesis system the usage of a huge speech database,” in Proc. ICASSP, 1996, pp. 373–376.
- [3] A. W. Black and P. Taylor, “mechanically clustering similar gadgets for unit selection in speech synthesis,” in Proc. Eurospeech, September 1997, pp. 601–604.
- [4] Ok. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Ki-tamura, “Speech parameter era algorithms for HMM-based speech synthesis,” in Proc. ICASSP, 2000, pp. 1315–1318.
- [5] H. Zen, k. Tokuda, and A. W. Black, “Statistical parametric speech synthesis,” *Speech conversation*, vol. 51, no. eleven, pp.1039–1064, 2009.
- [6] H. Zen, A. Senior, and M. Schuster, “Statistical parametric speech synthesis the use of deep neural networks,” in Proc. ICASSP, 2013, pp. 7962–7966.
- [7] K. Tokuda, Y. Nankaku, T. Toda, H. Zen, J. Yamagishi, and K. Oura, “Speech synthesis based on hidden Markov models,” Proc. IEEE, vol. a hundred and one, no. 5, pp. 1234–1252, 2013. van den Oord, S. Dieleman, H. Zen, ok. Simonyan,
- [8] O. Vinyals, A. Graves, N. Kalchbrenner, A. W. Senior, and k. Kavukcuoglu, “WaveNet: A generative version for uncooked audio,” CoRR, vol. abs/1609.03499, 2016.
- [9] S. O. Arik, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky, Y. Kang, X. Li, J. Miller, J. Raiman, S. Sengupta, and. Shoeybi, “Deep voice: actual-time neural text-to-speech,” CoRR, vol. abs/1702.07825, 2017.
- [10] S. O. Arik, G. F. Diamos, A. Gibiansky, J. Miller, ok. Peng, W. Ping, J. Raiman, and Y. Zhou, “Deep voice 2: Multi-speaker neural text-to-speech,” CoRR, vol. abs/1705.08947, 2017