

Role of Blue-Green Algae (BGA) in Soil Fertility Improvement

Shiv Kumar and Narendra Mohan

Paryavaran Shodh Ekai

Botany Department

D. A. V. College, Kanpur

drshivkumarsingh75@gmail.com

Abstract: *Blue-Green Algae (BGA), commonly known as cyanobacteria, are among the earliest photosynthetic organisms on Earth and hold immense potential for sustainable agriculture. Their natural capacity for biological nitrogen fixation and organic matter contribution makes them a valuable bio-input for enhancing soil fertility. In the context of declining soil health due to excessive chemical fertilizer use, BGA offers an eco-friendly alternative that not only enriches soil with essential nutrients but also improves soil structure, water retention, and microbial diversity. This article explores the physiological traits of BGA, mechanisms through which they enhance soil fertility, and their practical applications in agriculture, especially in rice-paddy ecosystems. Drawing upon current research findings, field case studies, and comparative analyses with conventional practices, this paper evaluates the agronomic, environmental, and economic implications of BGA usage. Furthermore, it addresses the challenges of large-scale BGA adoption and outlines necessary policy interventions and future research priorities. By integrating BGA into organic and integrated nutrient management strategies, farmers can move toward a more regenerative and resilient agricultural model. This article provides an in-depth academic overview of the role of BGA as a pivotal agent in sustainable soil fertility management.*

Keywords: *Blue-Green Algae*

I. INTRODUCTION

Soil fertility is the capacity of soil to provide essential nutrients for plant growth. It is a critical determinant of agricultural productivity and food security. Over the past few decades, the intensive use of chemical fertilizers and unsustainable agricultural practices has led to a significant decline in soil health. The degradation of soil structure, reduction in microbial diversity, and contamination of water resources have prompted researchers and policymakers to search for sustainable alternatives. Among various biological inputs, **Blue-Green Algae (BGA)**, also known as **cyanobacteria**, have emerged as promising biofertilizers with the potential to restore and enhance soil fertility through natural ecological processes.

Blue-Green Algae are photosynthetic microorganisms capable of fixing atmospheric nitrogen in a bioavailable form, particularly in waterlogged and low-nitrogen soils. They are naturally present in aquatic environments and moist soils, forming symbiotic associations with plants, particularly in rice paddy ecosystems. Their role in nitrogen fixation, soil aggregation, organic matter enrichment, and enhancement of microbial diversity places them at the forefront of low-cost and eco-friendly solutions to fertility decline.

The relevance of BGA in the context of **climate-resilient and regenerative agriculture** has been increasingly acknowledged in recent years. Their application is particularly significant for developing countries like India, where large portions of agricultural land are degraded and access to synthetic inputs is limited for smallholder farmers. In addition to direct nutrient contributions, BGA also facilitate **bioremediation**, help in **soil carbon sequestration**, and contribute to **improved water-use efficiency**.

Despite their recognized potential, the adoption of BGA at a large scale has remained limited due to a lack of awareness, technical know-how, and support infrastructure. This article seeks to fill the knowledge gap by offering a

comprehensive academic overview of the role of BGA in improving soil fertility. The article will examine the physiological characteristics of BGA, the mechanisms by which they enhance soil health, their application in diverse agro-ecosystems, comparative effectiveness, environmental benefits, and policy implications.

II. UNDERSTANDING BLUE-GREEN ALGAE (BGA)

Blue-Green Algae (BGA), scientifically classified as **cyanobacteria**, are gram-negative, photosynthetic prokaryotes capable of surviving in a wide range of environmental conditions—from freshwater ponds and rice paddies to moist soils and even deserts. Despite their name, they are not true algae but bacteria with chlorophyll *a*, which allows them to perform oxygenic photosynthesis much like higher plants. Their characteristic blue-green color is due to the presence of phycocyanin, a pigment involved in light absorption; Venkataraman (1981).

BGA are one of the oldest known life forms on Earth and played a vital role in the oxygenation of Earth's atmosphere during the Precambrian era. In the modern context, their agronomic and ecological relevance stems from their ability to fix atmospheric nitrogen (N_2) into ammonia (NH_3) through specialized cells called **heterocysts**. This nitrogen-fixing capacity is especially important in nutrient-deficient and submerged agricultural systems such as rice paddies.

BGA exist in both **free-living forms** (e.g., *Anabaena*, *Nostoc*, *Oscillatoria*) and **symbiotic forms** (e.g., *Anabaena azollae* in association with the water fern *Azolla*). The free-living species form mats or films on the soil surface and enhance soil fertility by fixing nitrogen, producing growth-promoting substances, and improving soil structure through the secretion of polysaccharides; Rai et al. (2002).

In addition to nitrogen fixation, BGA contribute to **phosphorus solubilization**, organic matter accumulation, and increased microbial biomass in the rhizosphere. Some species also release **plant growth-promoting substances** (PGPS) such as indole acetic acid (IAA), vitamins, and amino acids that stimulate root development and nutrient uptake in crops. Their mat-forming ability aids in minimizing weed growth and reducing evaporation, indirectly conserving soil moisture; Singh (1961).

The natural habitat and adaptability of BGA make them particularly effective in **flooded environments**, where oxygen levels are low and nitrogen leaching is common. Their role becomes crucial in rice cultivation, which is practiced over vast areas in South and Southeast Asia.

Overall, BGA represent an ancient but technologically underutilized group of microorganisms in modern sustainable agriculture. Understanding their biology and ecological functions is foundational for appreciating their role as a **biological soil fertility enhancer** and for integrating them effectively into modern farming systems.

III. MECHANISM OF SOIL FERTILITY ENHANCEMENT BY BLUE-GREEN ALGAE (BGA)

The contribution of Blue-Green Algae (BGA) to soil fertility is multifaceted, involving both direct nutrient inputs and indirect ecological improvements. These mechanisms play a vital role in maintaining and restoring the health and productivity of soil systems, particularly in low-input or organic agriculture.

3.1 Biological Nitrogen Fixation (BNF)

The most well-known and significant contribution of BGA to soil fertility is **biological nitrogen fixation (BNF)**. Certain BGA genera such as *Anabaena*, *Nostoc*, *Aulosira*, and *Calothrix* possess specialized thick-walled cells called **heterocysts**, which provide a micro-anaerobic environment conducive to nitrogenase enzyme activity. This enzyme catalyzes the conversion of atmospheric nitrogen (N_2) into ammonia (NH_3), which is readily utilized by plants.

According to Singh et al. (2011), BGA in rice fields can fix up to **20–30 kg N/ha/season**, significantly reducing the dependency on synthetic nitrogenous fertilizers. This nitrogen is released into the soil either through algal cell lysis or through excretion during growth, benefiting the root zone.

3.2 Soil Organic Matter (SOM) Enhancement

BGA contribute to the **accumulation of organic carbon** in soils through photosynthesis and the secretion of extracellular polysaccharides (EPS). These substances increase the organic content of soil, enhancing its **structure**,

water-holding capacity, and microbial biomass. EPS also facilitate the aggregation of soil particles, promoting better aeration and resistance to erosion.

3.3 Phosphorus Solubilization and Mobilization

Certain BGA species help in **mobilizing insoluble forms of phosphorus**, making it available to plants. This occurs via the release of organic acids and phosphatases, which convert bound phosphate into soluble forms. Phosphorus is a critical macronutrient, and its bioavailability is often a limiting factor in crop production.

3.4 Stimulation of Microbial Activity and Symbiosis

BGA act as **catalysts for microbial proliferation** in the rhizosphere by providing carbon-rich compounds. They interact synergistically with other beneficial soil organisms such as **azotobacter, phosphate-solubilizing bacteria, and arbuscular mycorrhizal fungi**, creating a bio-enhanced zone around plant roots.

3.5 Production of Plant Growth Regulators

Several strains of BGA have been shown to synthesize **plant growth-promoting substances** like **indole acetic acid (IAA), gibberellins, cytokinins**, and vitamins. These compounds promote seed germination, root elongation, and overall crop vigor. For example, research by Subhashini and Kaushik (2010) confirmed that inoculating rice fields with BGA led to higher seedling vigor and increased tillering.

3.6 Soil pH Regulation and Heavy Metal Chelation

The photosynthetic activity of BGA can influence **soil pH** through carbon dioxide sequestration, helping neutralize acidic soils. Additionally, the EPS matrix produced by cyanobacteria has a high binding affinity for **heavy metals**, contributing to soil detoxification.

Conclusion

Through these multiple mechanisms, BGA serve not only as a source of nutrients but also as biological engineers of the soil ecosystem. Their integration into farming practices enhances nutrient cycling, improves crop performance, and reduces ecological footprint.

IV. APPLICATION OF BGA IN AGRICULTURE

The practical utilization of Blue-Green Algae (BGA) in agriculture, especially in rice-based and water-intensive systems, has shown promising results in terms of productivity, sustainability, and cost-effectiveness. Their application strategies, ease of cultivation, and compatibility with organic and integrated nutrient management (INM) practices make BGA a valuable tool in improving soil fertility across diverse agro-ecological zones.

4.1 Mode of Cultivation and Inoculation

BGA biofertilizers are generally cultivated in **nursery plots, shallow trays, lined pits, or cement tanks** using a nutrient medium composed of superphosphate and soil slurry. After 7–10 days of sunlight exposure and watering, the algal mat develops, dries into flakes, and is stored or applied directly to the field.

In field conditions, **4–10 kg/ha** of dried BGA flakes are broadcast in **wetland rice paddies** under flooded conditions, ideally 7–10 days after transplantation. As they multiply rapidly in submerged soils, they form a green mat that fixes nitrogen and improves organic matter over time.

4.2 Use in Rice-Based Cropping Systems

The use of BGA is particularly effective in **lowland rice cultivation**, where waterlogged conditions favor cyanobacterial growth. Studies by Kannaiyan (2000) and Singh et al. (2011) report a **10–20% increase in rice yields** when BGA is used as part of the nutrient management strategy. BGA application also helps reduce synthetic nitrogen requirements by **up to 25–30%**.

4.3 Use in Integrated Nutrient Management (INM)

BGA works synergistically with **organic manures, green manures, and chemical fertilizers**. In INM systems, their integration results in **balanced nutrient supply**, higher fertilizer use efficiency, and improved soil biological health. For example, combining 75% of recommended nitrogen with BGA inoculation can lead to yield levels comparable to 100% chemical nitrogen inputs, thus saving costs and reducing environmental burden.

4.4 Environmental and Economic Benefits

- **Cost savings:** Replacing or supplementing synthetic nitrogen with BGA can reduce fertilizer expenditure, which is especially important for smallholder farmers.
- **Environmental protection:** BGA reduces the risk of **nitrate leaching** and **greenhouse gas emissions**, often associated with chemical fertilizers.
- **Carbon sequestration:** Their photosynthetic ability enables BGA to contribute to **carbon capture**, improving soil organic carbon levels and mitigating climate change.

4.5 Recent Innovations and Commercial Products

Yadav et al. (2014) in their journal concluded that with increased interest in biological farming, several research institutions and agri-tech companies have developed **commercial formulations of BGA biofertilizers** (e.g., liquid inoculants, encapsulated BGA products). These products are being promoted through extension programs under **Paramparagat Krishi Vikas Yojana (PKVY)** and **National Mission on Sustainable Agriculture (NMSA)** in India.

4.6 Challenges in Field Application

Despite proven benefits, the widespread adoption of BGA is hindered by:

- Limited awareness and training at the farmer level.
- Lack of standardization in production and application methods.
- Competition with other algae or weeds in the field.
- Climate variability affecting growth conditions.

Conclusion

The successful application of BGA in agriculture hinges on appropriate extension services, supportive policies, and continuous field-level research. Their inclusion in organic and sustainable farming practices can significantly enhance soil fertility and agricultural resilience; Kumar & Kumar (2020).

V. CASE STUDIES AND RESEARCH FINDINGS

Numerous field studies and research experiments across different agro-climatic zones have demonstrated the efficacy of Blue-Green Algae (BGA) in enhancing soil fertility, improving crop productivity, and reducing dependency on chemical fertilizers. These empirical insights further substantiate the potential of BGA in sustainable agriculture.

5.1 IARI Trials in Rice Fields (India)

A landmark study conducted by the **Indian Agricultural Research Institute (IARI), New Delhi** in the Indo-Gangetic Plains demonstrated that the application of BGA in flooded paddy fields could substitute **20–30 kg/ha of nitrogen** annually. The trial also revealed a **10–15% increase in grain yield**, along with improvements in soil texture and water retention (Kannaiyan, 2000).

5.2 Tamil Nadu Agricultural University (TNAU)

Field experiments conducted at TNAU showed that the combined application of **BGA and 75% recommended dose of nitrogen (RDN)** resulted in rice yields statistically at par with 100% RDN. Moreover, plots treated with BGA had

significantly higher microbial biomass carbon and nitrogen, indicating an enriched soil microbial ecosystem (Subashini & Kaushik, 2010).

5.3 ICAR-Central Rice Research Institute, Cuttack

Researchers at ICAR-CRRI found that inoculation with *Aulosirafertilissima* and *Anabaena azollae* not only enhanced nitrogen availability but also improved **phosphorus uptake and root proliferation** in rice. The BGA-treated plots showed **reduced nitrogen loss through volatilization and leaching**, improving nitrogen use efficiency (NUE).

5.4 Farmers' Field in Uttar Pradesh

Participatory rural research in **Barabanki and Gorakhpur districts** showed that farmers using BGA with 50% urea reported **similar rice yields** to those applying 100% urea. The economic analysis suggested a **cost saving of ₹1,200–₹1,500 per hectare**, making BGA a viable option for marginal farmers.

5.5 International Studies

A study in the **Mekong Delta, Vietnam**, reported that inoculation with indigenous cyanobacteria significantly improved **organic matter content, soil pH, and rice root density**, indicating long-term soil fertility improvements (Nguyen et al., 2017). Similar results were reported from trials in Egypt and the Philippines, where BGA contributed to **reduced fertilizer input costs and improved soil aggregation**.

5.6 Laboratory Analyses and Meta-Studies

Meta-analysis of over 40 trials (Rai, 2008) indicated that BGA could:

- Improve **soil organic carbon by 12–18%** over 3 years.
- Enhance **microbial biomass nitrogen** by up to 30%.
- Increase soil **dehydrogenase and phosphatase activity**, critical indicators of soil biological health.

These findings affirm that the benefits of BGA are not confined to nutrient supply alone but extend to long-term **soil fertility regeneration and agro-ecological resilience**.

Conclusion

The accumulated evidence from field trials, lab studies, and farmer experiences confirms that BGA is a potent biofertilizer. Its multifunctional benefits ranging from enhanced crop yields to improved soil biology all make it a strategic component in future-ready, sustainable agricultural models.

VI. CHALLENGES, LIMITATIONS, AND FUTURE PROSPECTS

Despite the promising role of Blue-Green Algae (BGA) in improving soil fertility and enhancing crop productivity, several **challenges and limitations** affect its widespread adoption. Understanding these barriers is critical to formulating strategies that can mainstream BGA-based practices into regular agronomic systems.

6.1 Key Challenges and Limitations

Environmental Dependence: BGA growth is highly dependent on **specific waterlogged and sunlit conditions**, which are not universally present in all cropping systems. Their effectiveness diminishes in non-flooded or upland fields.

Strain Compatibility: Not all strains of BGA are effective under all agro-climatic conditions. Many indigenous strains need **local screening, adaptation, and multiplication**, which requires institutional infrastructure.

Lack of Farmer Awareness: In many rural regions, farmers remain unaware of the existence and benefits of BGA. There is also **insufficient training on cultivation, handling, and field inoculation techniques**.

Competition from Other Algae and Weeds: In open fields, BGA often faces competition from **undesirable algal species or aquatic weeds**, which may hinder its proliferation or efficacy.

Storage and Shelf Life: Dried BGA flakes or formulated inoculants have limited shelf life. Maintaining **viability and purity** during transport and storage is a logistical challenge, especially in regions with inadequate facilities.

6.2 Institutional and Policy Barriers

There is **limited commercial production** of high-quality BGA biofertilizers.

Agricultural extension programs often focus more on **chemical inputs** than biological alternatives.

Regulatory mechanisms for biofertilizers are still evolving in many countries, resulting in market fragmentation.

6.3 Future Prospects and Research Directions

Strain Development and Genomic Research: Advanced studies using **molecular tools** can help in the development of **genetically superior BGA strains** that are more efficient nitrogen fixers, tolerant to environmental stress, and adaptable to various cropping systems.

Integration with Organic and Precision Farming: BGA can be a vital input in **organic agriculture** and **low-input sustainable intensification** systems. Its use can be further enhanced using **GIS mapping, remote sensing, and IoT-based monitoring** to track algal growth and field application effectiveness.

Public-Private Partnerships (PPPs): Collaboration between **research institutions, NGOs, and agri-biotech firms** can enable large-scale production, quality control, and farmer-level dissemination.

Policy Support and Incentives: Inclusion of BGA in government schemes like the **National Project on Organic Farming (NPOF), PKVY, and MIDH** can incentivize its usage. Subsidies, demo plots, and training campaigns would accelerate farmer adoption.

Conclusion

While challenges persist, the road ahead for BGA is promising. With appropriate technological, institutional, and policy support, Blue-Green Algae can emerge as a cornerstone of eco-friendly, resource-conserving agriculture in the decades to come.

VII. CONCLUSION

The role of Blue-Green Algae (BGA) in enhancing soil fertility represents a convergence of ecological sustainability and agricultural productivity. As photosynthetic, nitrogen-fixing organisms, BGA offer a biologically efficient and environmentally benign alternative to synthetic nitrogen fertilizers. According to F.A.O. (2019), BGA's ability to improve soil health, stimulate microbial activity, and contribute to carbon and nutrient cycling makes them an invaluable component of regenerative agricultural practices.

The application of BGA, especially in waterlogged and rice-based systems, has shown substantial improvements in **crop yield, soil organic matter, and nutrient availability**. Research from leading Indian institutions such as IARI, CRRI, and TNAU confirms that BGA can **supplement 20–30 kg N/ha/year**, leading to cost savings and environmental benefits. Moreover, their integration in **integrated nutrient management (INM)** systems supports long-term soil sustainability.

Despite these advantages, broader adoption is hindered by **environmental dependencies, lack of awareness, infrastructural limitations**, and a need for policy support. However, advancements in microbial biotechnology, supportive government programs, and increasing farmer awareness offer pathways for overcoming these challenges.

As global agriculture transitions toward sustainability and resilience, BGA can play a **critical role in low-cost, low-impact fertility enhancement**, particularly for smallholders and organic practitioners. Scaling up their usage through targeted extension, research investment, and policy incentives can bring the dual benefit of ecological health and food security.

REFERENCES

- [1] Kannaiyan, S. (2000). *Bioresource technology for sustainable agriculture*. Associated Publishing Company.
- [2] Singh, P. K., & Singh, V. (2011). Blue-green algae as biofertilizers in India. *Proceedings of Indian National Science Academy*, B54, 495–507.
- [3] Rai, A. N., Bergman, B., & Rasmussen, U. (2002). *Cyanobacteria in Symbiosis*. Springer Netherlands.
- [4] Subashini, D., & Kaushik, B. D. (2010). Impact of blue green algae application on soil microbial population and rice productivity. *Indian Journal of Microbiology*, 50(1), 32–37.
- [5] Venkataraman, G. S. (1981). Blue-Green Algae for Rice Production: A Manual for Its Promotion. *FAO Soils Bulletin* No. 46, Food and Agriculture Organization.
- [6] Yadav, R. P., & Chandra, R. (2014). Biofertilizers, eco-friendly fertilizer: A review. *International Journal of Current Microbiology and Applied Sciences*, 3(3), 377–385.
- [7] Singh, R. N. (1961). Role of blue-green algae in nitrogen economy of Indian agriculture. *Indian Council of Agricultural Research Bulletin*, 131, 1–34.
- [8] Nguyen, M. T., Le, D. H., & Pham, T. T. (2017). Effect of cyanobacterial inoculation on rice yield and soil properties in the Mekong Delta. *Journal of Agricultural Science and Technology*, 19(5), 1189–1198.
- [9] Kumar, A., & Kumar, R. (2020). Blue-green algae: Sustainable biofertilizer for agriculture. *Journal of Applied and Natural Science*, 12(2), 203–209.
- [10] FAO. (2019). *Soil Fertility Management in Support of Food Security in Sub-Saharan Africa*. Food and Agriculture Organization of the United Nations.